JPH05285692A - Flux cored wire for gas shielded arc welding - Google Patents

Flux cored wire for gas shielded arc welding

Info

Publication number
JPH05285692A
JPH05285692A JP9513692A JP9513692A JPH05285692A JP H05285692 A JPH05285692 A JP H05285692A JP 9513692 A JP9513692 A JP 9513692A JP 9513692 A JP9513692 A JP 9513692A JP H05285692 A JPH05285692 A JP H05285692A
Authority
JP
Japan
Prior art keywords
welding
wire
flux
slag
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9513692A
Other languages
Japanese (ja)
Inventor
Tsukasa Yoshimura
司 吉村
Kiyoshi Kato
清 加藤
Hiroyuki Kyo
広之 京
Hirotoshi Ishide
博俊 石出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9513692A priority Critical patent/JPH05285692A/en
Publication of JPH05285692A publication Critical patent/JPH05285692A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To stabilize an arc and to decrease spatters so as to obtain a good penetration of a circular shape by specifying a flux compsn. and specifying the ratio of a current and a wire diameter to a specific range. CONSTITUTION:The compsn. of the flux to be filled into a steel sheath is formed, by the total weigh to the wire, of 4.0 to 6.0% TiO2, <=7.5% total weight of oxide contg. TiO2, 0.02 to 0.08% metal fluoride (value in terms of F) 0.10 to 0.50% Al, 0.10 to 0.65% Mg, 0.5 to 2.0 SiO2/Si, and 3.0 to 6.0 Mn/Si. In addition, the rate of the current I and the wire diameter D (mm) is specified to a 300<I<D<400 range, by which the flux cored wire for gas shielded arc welding for high-current welding is formed. One or >=2 kinds among 0.45 to 1.6% Ni, 0.05 to 0.25% Mo and 0.10 to 0.40% Cu are incorporated as additive components at need into the compsn. As a result, slag envelopability is improved without deteriorating the mechanical performance of the weld metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は鋼構造物の溶接に用いる
ガスシールドアーク溶接用フラックス入りワイヤに関す
るものであり、さらに詳しくは300<I/D<400
の範囲において高電流溶接においても溶接作業性に優れ
かつ良好なビード形状が得られるフラックス入りワイヤ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flux-cored wire for gas shielded arc welding used for welding steel structures, more specifically 300 <I / D <400.
The present invention relates to a flux-cored wire excellent in welding workability and capable of obtaining a good bead shape even in high current welding.

【0002】[0002]

【従来の技術】近年、溶接の自動化、高能率化の進展に
伴い、ガスシールドアーク溶接はますます広く利用され
ている。特に最近では高能率化の手段として、電流密度
を高めて溶融速度を増加させることが一般的に採られて
いる。然し高電流密度溶接ではスパッターの多発、耐気
孔性、耐割れ性、融合不良さらにはスラグの被包性が劣
化してビード形状、外観が乱れる等多くの問題が生ず
る。即ち、鋼ワイヤをCO2ガスで使用して溶接する場
合、電流密度を高めると安定した溶滴移行性が得られ
ず、ビード表面は不均一となり、スパッターが急増し母
材表面へ付着する。また付着したスパッター除去作業も
困難となる。
2. Description of the Related Art In recent years, with the progress of automation of welding and improvement of efficiency, gas shielded arc welding has been more and more widely used. In particular, recently, as a means of increasing efficiency, it has been generally adopted to increase the current density to increase the melting rate. However, in high current density welding, many problems such as frequent occurrence of spatter, porosity resistance, cracking resistance, poor fusion, and deterioration of slag encapsulation resulting in bead shape and disordered appearance occur. That is, when welding a steel wire with CO 2 gas, if the current density is increased, stable droplet transfer cannot be obtained, the bead surface becomes non-uniform, and spatter increases rapidly and adheres to the base material surface. Further, it is difficult to remove the attached spatter.

【0003】スパッター発生量の少ないシールドガスと
してAr−CO2混合ガスを使用して溶接するとピンチ
力によって中央部に幅の狭い過大な溶け込み、いわゆる
フィンガー状の溶け込みを呈する。また積層溶接の突合
せ継手溶接では、溶け込み幅が小さいため融合不良など
の欠陥が発生する等の問題点があった。このフィンガー
状溶け込み形状を改善する手段としてシールドガスにH
eを添加した、例えば特開昭59−45084号公報の
Ar−He−CO2−O2の4種混合ガスによる溶接方法
が提案されている。この方法の効果としてアークの広が
りにより溶け込み形状は改善されるが、特殊シールドガ
スであるためガスのコストが高くなるという実用上の問
題を残している。
When an Ar-CO 2 mixed gas is used as a shield gas with a small amount of spatter generation, welding is performed by a pinch force, which causes an excessively narrow penetration into the central portion, that is, a so-called finger-like penetration. Further, in butt joint welding of laminated welding, there is a problem that defects such as defective fusion occur due to a small penetration width. As a means for improving this finger-like penetration shape, H is added to the shield gas.
For example, a welding method using a mixed gas of four kinds of Ar—He—CO 2 —O 2 disclosed in Japanese Patent Laid-Open No. 59-45084 has been proposed. As a result of this method, the penetration shape is improved by the spread of the arc, but there is a practical problem that the cost of the gas becomes high because it is a special shield gas.

【0004】一方、鋼ワイヤの代わりにフラックス入り
ワイヤを用い、CO2もしくはAr−CO2混合ガスと組
み合わせ電流密度300〜550A/mm2で溶接する
高電流密度溶接法(特開昭56−160878号公報)
が提案されている。しかし、この方法はスラグを多く生
成するフラックス入りワイヤを用いているため、ビード
外観は良好であるが多層溶接において、スラグ巻き込み
等の欠陥が生じ易い等の問題がある他、ワイヤ突出し長
さを非常に長くして溶接するためスパッターが多く発生
するという問題がある。
On the other hand, a high current density welding method in which a flux-cored wire is used in place of the steel wire and is combined with a CO 2 or Ar-CO 2 mixed gas at a current density of 300 to 550 A / mm 2 (JP-A-56-160878). Issue)
Is proposed. However, since this method uses a flux-cored wire that produces a large amount of slag, the bead appearance is good, but in multi-layer welding, there is a problem that defects such as slag entrainment easily occur, and the wire protrusion length is Since welding is performed for a very long time, there is a problem that a lot of spatter is generated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記問題を
解決するためになされたものであって、フラックス組成
を限定し、かつ電流(A)とワイヤ径D(mm)の比が
300<I/D<400の範囲において、安価なCO2
溶接でもアークが安定し、スパッターが少なく、かつ、
円形の良好な溶け込み形状が得られると共に、耐割れ性
が良好で融合不良等の欠陥発生の少ない高品質な溶接部
の得られる高電流溶接用フラックス入りワイヤの提供を
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, limits the flux composition, and has a ratio of current (A) to wire diameter D (mm) of 300 <. Cheap CO 2 in the range of I / D <400
The arc is stable even during welding, there is little spatter, and
An object of the present invention is to provide a flux-cored wire for high-current welding, which can obtain a good circular welded shape, has good crack resistance, and has a high-quality welded portion with few defects such as defective fusion.

【0006】[0006]

【課題を解決するための手段】本発明に係わるガスシー
ルドアーク溶接用フラックス入りワイヤの要旨は、ワイ
ヤ全重量に対してTiO2:4.0〜6.0%、TiO2
を含む酸化物の総量:7.5%以下、金属弗化物(F換
算値):0.02〜0.08%、Al:0.10〜0.
50%、Mg:0.10〜0.65%、SiO2/S
i:0.5〜2.0%、Mn/Si:3.0〜6.0%
でかつ、電流I(A)とワイヤ径D(mm)の比が、3
00<I/D<400の範囲である高電流用ガスシール
ドアーク溶接用フラックス入りワイヤにある。さらに附
加成分としてNi:0.45〜1.6%、Mo:0.0
5〜0.25%、Cu:0.10〜0.40%の一種ま
たは二種以上を含有してなるフラックス入りワイヤにあ
る。以下に本発明に係わるワイヤを上記構成にした理由
を詳細に説明する。
The gist of the flux-cored wire for gas shield arc welding according to the present invention is as follows: TiO 2 : 4.0-6.0%, TiO 2 based on the total weight of the wire.
The total amount of oxides including: 7.5% or less, metal fluoride (F conversion value): 0.02 to 0.08%, Al: 0.10 to 0.
50%, Mg: 0.10 to 0.65%, SiO 2 / S
i: 0.5 to 2.0%, Mn / Si: 3.0 to 6.0%
And the ratio of the current I (A) and the wire diameter D (mm) is 3
It is a flux-cored wire for gas shielded arc welding for high current in the range of 00 <I / D <400. Further, as additive components, Ni: 0.45 to 1.6%, Mo: 0.0
A flux-cored wire containing one or more of 5 to 0.25% and Cu: 0.10 to 0.40%. The reason why the wire according to the present invention has the above structure will be described in detail below.

【0007】[0007]

【作用】本発明者らは、フラックス入りワイヤによる高
電流ガスシールドアーク溶接でのビード形成とスラグ被
包性について種々実験を積ねた結果、次のような知見を
得て本発明を完成したものである。 (1)CO2溶接におけるアーク安定性は、鋼ワイヤよ
りフラックス入りワイヤが優れる。また高電流溶接の場
合は、ビード形状や外観を良好にするためには、スラグ
の被包性が重要な要因となり、フラックス組成の組み合
わせにより、高電流溶接でもスラグの被包性が均一とな
り良好な溶接が可能になる。 (2)高電流溶接における溶接金属の材質を高品質なも
のにするには、脱酸性元素の調整が必要である。 (3)合金剤は、目的に合った強度や特性を得るために
合金剤の調整が必要である。
The present inventors have conducted various experiments on bead formation and slag encapsulation in high current gas shielded arc welding with a flux-cored wire, and have obtained the following findings to complete the present invention. It is a thing. (1) Regarding the arc stability in CO 2 welding, the flux-cored wire is superior to the steel wire. Also, in the case of high current welding, the slag encapsulation is an important factor in improving the bead shape and appearance, and the combination of the flux composition ensures a uniform slag encapsulation even in high current welding. Welding becomes possible. (2) In order to improve the quality of the material of the weld metal in high current welding, it is necessary to adjust the deoxidizing element. (3) As for the alloying agent, it is necessary to adjust the alloying agent in order to obtain the strength and characteristics suitable for the purpose.

【0008】本発明は上記知見に基づいて完成したもの
であり、以下に本発明の構成理由について詳細に説明す
る。まず、本発明においてワイヤ全重量に対してTiO
2を4.0〜6.0%の範囲と限定したのは、TiO2
他のスラグ形成剤にはない優れた被包性およびはくり性
を有する他、アーク安定剤として不可欠の成分である。
40%未満では良好なビード外観、形状が得られない。
一方6.0%を超えるとスラグ生成量が過剰となり、ス
ラグ巻き込みが生じると共に酸性成分である為に溶接時
にスラグとして分離され難く、溶接金属中に非金属介在
物として残留し、溶接金属中の酸素量を増加させ切り欠
き靱性を悪化させる。従ってTiO2の添加量は4.0
〜6.0%の範囲とする。TiO2源としては、ルチー
ルや合成ルチール、チタンスラグ等が使用される。
The present invention has been completed based on the above findings, and the reasons why the present invention is configured will be described in detail below. First, in the present invention, TiO based on the total weight of the wire is used.
2 is limited to the range of 4.0 to 6.0% because TiO 2 has excellent encapsulation and peeling properties that other slag forming agents do not have, and is an essential component as an arc stabilizer. is there.
If it is less than 40%, good bead appearance and shape cannot be obtained.
On the other hand, if it exceeds 6.0%, the amount of slag produced becomes excessive, slag entrainment occurs, and since it is an acidic component, it is difficult to separate it as slag during welding, and it remains as non-metallic inclusions in the weld metal and remains in the weld metal. Notch toughness is deteriorated by increasing oxygen content. Therefore, the amount of TiO 2 added is 4.0
The range is up to 6.0%. As the TiO 2 source, rutile, synthetic rutile, titanium slag, etc. are used.

【0009】更に、本発明ではスラグ形成剤として酸化
鉄、SiO2、Al23、ZrO2、MnO、MgO、B
iO3、Na2O、K2O等の酸化物を併用することがで
きるが、前記TiO2を含めた酸化物の添加量の総和が
7.5%を超えると溶接金属中の酸素量が増加し、切り
欠き靱性を低下させる他にスラグ生成量が多くなると共
にスラグ巻き込み等の欠陥を生じ易くするので上限を
7.5%以下にする必要がある。金属弗化物は、アーク
安定性を高めると共に脱水素作用によって溶接金属の耐
割れ性、低温靱性を向上させる作用がある。これらの作
用はF量換算で0.02%以上添加することにより有効
に発揮される。しかし、0.08%を超えるとスラグ流
動性が過大となり、スラグ被包性を悪くし、ビード形状
が悪化する。従って金属弗化物(F換算)の添加量は
0.02〜0.08%の範囲とする。弗化物としてはN
a、K、Li、Mg、Ca等のアルカリ金属およびアル
カリ土類金属の弗化物が一般的に用いられる。
Further, in the present invention, iron oxide, SiO 2 , Al 2 O 3 , ZrO 2 , MnO, MgO and B are used as slag forming agents.
Oxides such as iO 3 , Na 2 O, and K 2 O can be used in combination, but if the total amount of the oxides including TiO 2 added exceeds 7.5%, the amount of oxygen in the weld metal will increase. In addition to the increase in the notch toughness and the decrease in the notch toughness, the amount of slag is increased and defects such as slag entrainment are likely to occur, so the upper limit must be 7.5% or less. The metal fluoride has an effect of improving arc stability and a dehydrogenation effect of improving crack resistance and low temperature toughness of the weld metal. These effects are effectively exhibited by adding 0.02% or more in terms of F amount. However, if it exceeds 0.08%, the slag fluidity becomes excessive, the slag encapsulation property deteriorates, and the bead shape deteriorates. Therefore, the addition amount of the metal fluoride (converted to F) is in the range of 0.02 to 0.08%. N as a fluoride
Fluorides of alkali metals and alkaline earth metals such as a, K, Li, Mg and Ca are generally used.

【0010】Alは強力な脱酸剤であり溶接金属中の酸
素量を低減するのに有効である。添加量が0.10%未
満ではその効果が十分得られず、一方0.50%を超え
るとAlが溶接金属中へ歩留って靱性を劣化させる。従
ってAlの適正範囲は0.10〜0.50%とする。A
lは単体もしくはAl−Mg、Fe−Al等の合金の形
態で添加してもよい。MgはAlと同様に強力な脱酸剤
である。特に溶接金属中の酸素量を低減するのに最良で
ある。添加量が0.10%未満ではその効果が得られ
ず、一方、0.65%を超えるとスパッタ発生量が多く
なる他スラグの被包性を劣化させる。従ってMgの適正
範囲は0.10〜0.65%とする。Mgは単体もしく
は、Ni−Mg、Ca−Mg、Fe−Mg、Al−M
g、Fe−Si−Mg等のMg合金の形態で添加しても
よい。
Al is a strong deoxidizer and is effective in reducing the amount of oxygen in the weld metal. If the addition amount is less than 0.10%, the effect cannot be sufficiently obtained, while if it exceeds 0.50%, Al is retained in the weld metal and deteriorates the toughness. Therefore, the appropriate range of Al is 0.10 to 0.50%. A
1 may be added alone or in the form of an alloy such as Al-Mg or Fe-Al. Mg, like Al, is a strong deoxidizer. In particular, it is the best for reducing the amount of oxygen in the weld metal. If the addition amount is less than 0.10%, the effect cannot be obtained. On the other hand, if the addition amount exceeds 0.65%, the spatter generation amount increases and the slag encapsulation property deteriorates. Therefore, the appropriate range of Mg is 0.10 to 0.65%. Mg is a simple substance or Ni-Mg, Ca-Mg, Fe-Mg, Al-M
g, Fe-Si-Mg or the like may be added in the form of a Mg alloy.

【0011】更に、本発明の主旨である大電流溶接にお
いてスラグを均一に被包させるためにはSiO2/Si
のバランスが重要であることが判った。Siは有効な脱
酸剤であると共に、ビード形状、外観および溶接作業性
を改善する。大電流溶接では溶融スラグが高温に保持さ
れる時間が長くなるため、溶融スラグがビード全体を均
一に被包させることが難しくなる。特に板厚が薄くなる
に従ってスラグの被包性が劣化してくる。これは、板厚
が薄くなるに従って溶接部の冷却速度が遅くなり溶融ス
ラグはビード上端部へ流れ易くなりビードを均一に被包
できなくなる。その結果ビード形状、外観も悪くなる。
本発明者らは、この欠点を解消すべく検討を重ねた結果
SiO2/Siの比が大きく影響することを見いだし
た。
Further, in order to uniformly enclose the slag in the large current welding which is the main purpose of the present invention, SiO 2 / Si
It turns out that the balance of is important. Si is an effective deoxidizer and improves the bead shape, appearance and welding workability. In high-current welding, the molten slag is kept at a high temperature for a long time, which makes it difficult for the molten slag to uniformly cover the entire bead. In particular, as the plate thickness decreases, the slag encapsulation property deteriorates. This is because as the plate thickness becomes thinner, the cooling rate of the weld becomes slower, the molten slag easily flows to the upper end of the bead, and the bead cannot be uniformly encapsulated. As a result, the bead shape and appearance also deteriorate.
As a result of repeated studies to eliminate this drawback, the present inventors have found that the SiO 2 / Si ratio has a great influence.

【0012】まず、軟鋼外皮を用いて、ワイヤ全重量に
対しTiO2:5.0%、Al23:0.3%、Zr
2:0.6%、CaF2:0.1%、Mn:2.3%、
Al:0.3%、Mg:0.3%、SiO2:0.15
〜1.8%、Si:0.3〜0.8%、残部鉄粉および
不可避的不純物からなるフラックスを含有フラックス入
りワイヤ1.4mmφを12種類試作した。このワイヤ
を用いて鋼種SM−400B、板厚12.7mmtの平
板上に溶接電流500A、アーク電圧40V、溶接入熱
30kJ/cm、シールドガス:CO2100% 25
リッター/分の条件で溶接しスラグの被包性を調査し
た。その結果を図1に示す。同図の横軸はワイヤ中のS
i量、縦軸はワイヤ中のSiO2量である。この結果、
ワイヤ量のSiO2量が少ない領域と多い領域でスラグ
被包性が悪くなる傾向を示している。この傾向をSiO
2/Siで整理すると0.5〜2.0の範囲がスラグ被
包性が良好であることが判った。しかし、Siは0.8
%を超えると溶接金属中のSiが過剰となって靱性を劣
化させるので好ましくない。従ってSiO2/Si比は
0.5〜2.0の範囲とする。
First, using a mild steel shell, TiO 2 : 5.0%, Al 2 O 3 : 0.3%, Zr with respect to the total weight of the wire.
O 2 : 0.6%, CaF 2 : 0.1%, Mn: 2.3%,
Al: 0.3%, Mg: 0.3%, SiO 2 : 0.15
.About.1.8%, Si: 0.3 to 0.8%, 12 types of flux-cored wires 1.4 mmφ containing a flux composed of the balance iron powder and unavoidable impurities were experimentally manufactured. Using this wire, a welding current of 500 A, an arc voltage of 40 V, a welding heat input of 30 kJ / cm, a shielding gas of CO 2 100% 25 on a flat plate of steel type SM-400B, plate thickness 12.7 mm t.
Welding was performed under the condition of liter / min and the encapsulation property of slag was investigated. The result is shown in FIG. The horizontal axis of the figure is S in the wire.
The amount of i and the vertical axis are the amount of SiO 2 in the wire. As a result,
The slag encapsulation tends to deteriorate in a region where the amount of SiO 2 in the wire amount is small and a region where the amount of SiO 2 is large. This tendency is SiO
When sorted by 2 / Si, it was found that the slag encapsulation property was good in the range of 0.5 to 2.0. However, Si is 0.8
%, Si in the weld metal becomes excessive and deteriorates the toughness, which is not preferable. Therefore, the SiO 2 / Si ratio is set in the range of 0.5 to 2.0.

【0013】Si、Mnはいずれも脱酸剤として機能を
有するがMn/Siを規定したのは、溶接金属の機械的
性質、特に強度の調整と靱性を向上させるためである。
即ち、Mnは高電流溶接では大入熱となり、焼入れ性を
高めて靱性劣化を防止する効果を有するが、Mn/Si
が3.0未満では、この効果が発揮されず溶接金属材質
に問題を生じる。一方Mn/Siが6.0を超えると溶
接金属の強度が高くなりすぎて靱性が劣化する。従って
Mn/Siは3.0〜6.0の範囲とする。さらに溶接
金属の機械的性質を向上させるためにNiを0.45〜
1.6%、Moを0.05〜0.25%、Cuを0.1
0〜0.40%の範囲で添加することができる。特にM
oは大電流溶接による連続多層溶接大入熱溶接において
は、強度低下や靱性劣化の防止に効果がある。Niは低
温靱性の向上にCuは耐錆性に効果がある。
Both Si and Mn have a function as a deoxidizing agent, but Mn / Si is defined in order to improve the mechanical properties of the weld metal, particularly strength adjustment and toughness.
That is, Mn has a large heat input in high current welding and has the effect of improving hardenability and preventing deterioration of toughness, but Mn / Si
Is less than 3.0, this effect is not exhibited and a problem occurs in the weld metal material. On the other hand, if Mn / Si exceeds 6.0, the strength of the weld metal becomes too high and the toughness deteriorates. Therefore, Mn / Si is set in the range of 3.0 to 6.0. Further, in order to improve the mechanical properties of the weld metal, Ni is added to 0.45 to
1.6%, Mo 0.05-0.25%, Cu 0.1
It can be added in the range of 0 to 0.40%. Especially M
o is effective in preventing strength reduction and toughness deterioration in high heat input welding in continuous multi-layer welding by high current welding. Ni is effective in improving low temperature toughness, and Cu is effective in rust resistance.

【0014】以上が本発明のフラックス組成の主要構成
であるが、溶接条件として大電流溶接にて上記フラック
ス組成が有効に作用するもので、その溶接条件を溶接電
流(A)とワイヤ径(D)の関係より300<I/D<
400の範囲とする。また、本発明はフラックスの充填
率は上述の構成要件を満たす限り8〜20%の範囲で選
択でき、ワイヤ径は特に限定されないが、高電流溶接に
おいて溶着速度の観点から1.2〜1.6mmφ程度の
細径ワイヤが望ましい。ワイヤの断面形状は特に限定さ
れないが、アークの安定性、ワイヤ送給性および直進性
の優れたシームレスタイプが最適である。
The above is the main constitution of the flux composition of the present invention. The above-mentioned flux composition effectively works in high current welding as welding conditions. The welding conditions are welding current (A) and wire diameter (D). ), 300 <I / D <
The range is 400. Further, in the present invention, the filling rate of the flux can be selected in the range of 8 to 20% as long as the above-mentioned constitutional requirements are satisfied, and the wire diameter is not particularly limited, but 1.2 to 1. A thin wire of about 6 mmφ is desirable. The cross-sectional shape of the wire is not particularly limited, but the seamless type, which has excellent arc stability, wire feedability, and straightness, is optimal.

【0015】以上のように構成されたフラックス入りワ
イヤを用いて300<I/D<400の範囲で大電流溶
接を行うと、アークが安定でスパッターが少なく、かつ
スラグ被包性が均一でビード形状、外観の良好で、融合
不良等の溶接欠陥発生の少ない高品質な溶接部が高能率
で得られる。次に実施例に基づいて本発明ワイヤを更に
具体的に説明する。
When high current welding is performed in the range of 300 <I / D <400 using the flux-cored wire constructed as described above, the arc is stable, the spatter is small, the slag encapsulation property is uniform, and the bead is uniform. A high-quality weld with good shape and appearance and with few welding defects such as poor fusion can be obtained with high efficiency. Next, the wire of the present invention will be described more specifically based on Examples.

【0016】[0016]

【実施例】表1に試作したワイヤの構成を表2に試験結
果を示す。同表においてNo.1〜8は比較例で、N
o.9〜18が本発明になるワイヤの実施例である。い
ずれも軟鋼外皮を用いて1.4mmφ径に仕上げたワイ
ヤを使用し、下記の条件で溶接して得られた溶接作業性
および溶着金属の引張特性および衝撃値を調べたとこ
ろ、表2の結果が得られた。
[Examples] Table 1 shows the structure of the prototype wire, and Table 2 shows the test results. In the table, No. 1 to 8 are comparative examples, N
o. 9 to 18 are examples of the wire according to the present invention. In each case, a wire finished with a diameter of 1.4 mm using a mild steel shell was used, and the welding workability and the tensile property and the impact value of the deposited metal obtained by welding under the following conditions were examined. was gotten.

【0017】[0017]

【表1】 [Table 1]

【0018】〔溶接条件〕 溶 接 電 流 : 直流逆極性 500A 溶 接 電 圧 : 40V 溶 接 速 度 : 40cm/分 シールドガス : CO2 25リッター/分 ワイヤ突出し長さ: 25mm[Welding conditions] Welding current: DC reverse polarity 500 A Welding voltage: 40 V Welding speed: 40 cm / min Shielding gas: CO 2 25 liters / min Wire protrusion length: 25 mm

【0019】溶接金属の性能は図2に示す開先形状を用
いた。 母材:板厚20mm、鋼種:SM490B、積層法:4
層6パス 尚、溶接金属の物性は、板厚方向および開先幅方向の中
央部から採取した試験片を用いて調査した。また、溶接
作業性は、鋼種:SM490B、板厚12.7mmの平
板上にストリンガービード溶接にて評価した。
For the performance of the weld metal, the groove shape shown in FIG. 2 was used. Base material: plate thickness 20 mm, steel type: SM490B, lamination method: 4
Layer 6 pass The physical properties of the weld metal were investigated using test pieces taken from the central portion in the plate thickness direction and the groove width direction. The welding workability was evaluated by stringer bead welding on a flat plate having a steel type of SM490B and a plate thickness of 12.7 mm.

【0020】表2の試験結果から明らかな様に、本発明
外であるNo.1〜No.8のワイヤは溶接金属の伸び
や靱性、さらには溶接作業性のいずれかの点で問題があ
ることが解った。まずNo.1は酸化物の総量が本発明
の範囲外でスラグ過多となって溶接金属の伸びが低くス
パッタ発生量も多かった。No.2は機械的性能は良好
であるが、フラックス中の弗化物が多くスラグが流れ易
くなり被包性が劣化した。また、No.3、No.4は
TiO2、Mg、Al、SiO2/Si量が本発明外でス
ラグ被包性が悪くビード形状が悪化した。No.5は弗
化物が入っていないために溶融金属中のスラグの浮上が
そこなわれてスラグ巻込み等により伸びが低下した。N
o.6はMn/Siが高く強度が高くなりすぎて伸びが
低下した。また、No.7はスラグ過多、No.8はA
l、Mgが入っていないために溶接金属中の介在物が多
くなり溶接金属の伸びが低下した。これに対しNo.9
〜No.18の本発明になるワイヤは、溶接金属の機械
的性能および溶接作業性も良好なことが確認できた。
As is apparent from the test results of Table 2, No. 1-No. It was found that the wire of No. 8 had a problem in terms of elongation and toughness of the weld metal, and further in workability of welding. First, No. In No. 1, when the total amount of oxides was out of the range of the present invention, the amount of slag was excessive, the elongation of the weld metal was low, and the amount of spatter was large. No. No. 2 had good mechanical performance, but the amount of fluoride in the flux was large and the slag flowed easily, and the encapsulation property deteriorated. In addition, No. 3, No. No. 4, the amount of TiO 2 , Mg, Al, and SiO 2 / Si was outside the scope of the present invention, the slag encapsulation was poor, and the bead shape was poor. No. No. 5 contained no fluoride, so the slag in the molten metal was not floated up, and the elongation decreased due to slag inclusion. N
o. In No. 6, Mn / Si was high and the strength was too high, and the elongation was lowered. In addition, No. No. 7 is excessive slag. 8 is A
Since there was no 1 or Mg, the inclusions in the weld metal increased and the elongation of the weld metal decreased. On the other hand, No. 9
~ No. It was confirmed that the 18 wires of the present invention had good weld metal mechanical performance and welding workability.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】本発明は以上の様に構成されており、溶
接作業性に優れたチタニヤ系フラックス入りワイヤで添
加成分の組合せおよび添加量を規定することにより、溶
接金属の機械的性能を劣化させることなく大電流溶接に
おいてスラグ被包性を改善した。その結果、チタニヤ系
フラックス入りワイヤの欠点を解消し用途を大幅に拡大
し得ることになった。
EFFECTS OF THE INVENTION The present invention is constructed as described above, and the mechanical performance of the weld metal is deteriorated by defining the combination and addition amount of the additive components with the titania-based flux-cored wire excellent in welding workability. The slag encapsulation property was improved in high-current welding without causing the slag. As a result, the drawbacks of the titania-based flux-cored wire can be solved and the application can be expanded significantly.

【図面の簡単な説明】[Brief description of drawings]

【図1】スラグ被包性におよぼすワイヤ中のSi量とS
iO2量の関係を示す図面。
FIG. 1 Si amount and S in wire affecting slag encapsulation
The drawing which shows the relationship of the amount of iO 2 .

【図2】溶接金属の性能試験に使用した開先形状を示す
図面である。
FIG. 2 is a drawing showing a groove shape used for a performance test of weld metal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石出 博俊 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirotoshi Ishide 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼製外皮中にフラックスを充填してなる
ガスシールドアーク溶接用フラックス入りワイヤにおい
て、ワイヤ全重量に対して TiO2:4.0〜6.0% TiO2を含む酸化物の総量:7.5%以下 金属弗化物(F換算値):0.02〜0.08% Al:0.10〜0.50% Mg:0.10〜0.65% SiO2/Si:0.5〜2.0 Mn/Si:3.0〜6.0 でかつ、電流I(A)とワイヤ径D(mm)の比が30
0<I/D<400の範囲である高電流溶接用ガスシー
ルドアーク溶接用フラックス入りワイヤ。
1. A flux-cored wire for gas shielded arc welding, comprising a steel shell filled with a flux, wherein: TiO 2 : 4.0-6.0% TiO 2 based on the total weight of the wire; total: 7.5% or less metal fluoride (F-converted value): 0.02~0.08% Al: 0.10~0.50% Mg: 0.10~0.65% SiO 2 / Si: 0 0.5 to 2.0 Mn / Si: 3.0 to 6.0, and the ratio of the current I (A) to the wire diameter D (mm) is 30.
Flux-cored wire for gas shielded arc welding for high current welding in the range of 0 <I / D <400.
【請求項2】 附加成分としてNi:0.45〜1.6
%、Mo:0.05〜0.25%、Cu:0.10〜
0.40%の一種または二種以上を含有してなる請求項
1記載の高電流溶接用ガスシールドアーク溶接用フラッ
クス入りワイヤ。
2. Ni: 0.45 to 1.6 as an additive component
%, Mo: 0.05 to 0.25%, Cu: 0.10
The flux-cored wire for gas shielded arc welding according to claim 1, which contains 0.40% of one kind or two or more kinds.
JP9513692A 1992-04-15 1992-04-15 Flux cored wire for gas shielded arc welding Pending JPH05285692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9513692A JPH05285692A (en) 1992-04-15 1992-04-15 Flux cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9513692A JPH05285692A (en) 1992-04-15 1992-04-15 Flux cored wire for gas shielded arc welding

Publications (1)

Publication Number Publication Date
JPH05285692A true JPH05285692A (en) 1993-11-02

Family

ID=14129404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9513692A Pending JPH05285692A (en) 1992-04-15 1992-04-15 Flux cored wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JPH05285692A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025298A (en) * 2009-07-28 2011-02-10 Nippon Steel & Sumikin Welding Co Ltd Gas shielded arc welding method
JP2013226578A (en) * 2012-04-25 2013-11-07 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for horizontal fillet gas shielded arc welding of crude oil tank steel
JP2013226577A (en) * 2012-04-25 2013-11-07 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for gas shielded arc welding of crude oil tank steel
JP2013252551A (en) * 2012-06-08 2013-12-19 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas shielded arc welding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025298A (en) * 2009-07-28 2011-02-10 Nippon Steel & Sumikin Welding Co Ltd Gas shielded arc welding method
JP2013226578A (en) * 2012-04-25 2013-11-07 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for horizontal fillet gas shielded arc welding of crude oil tank steel
JP2013226577A (en) * 2012-04-25 2013-11-07 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for gas shielded arc welding of crude oil tank steel
JP2013252551A (en) * 2012-06-08 2013-12-19 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas shielded arc welding

Similar Documents

Publication Publication Date Title
KR880002508B1 (en) Flux cored wire for gas shielded arc welding
KR100920550B1 (en) Flux-cored wire for titania-based gas shielded arc welding
CN1846928B (en) Flux cored electrode and method for forming welding seam with reduced gas trace
KR100733806B1 (en) Cored electrode, and method of forming a weld bead
JP2001314996A (en) Flux-cored wire for gas shielded arc welding for heat resisting steel
KR100985681B1 (en) Flux-cored wire for gas shielded arc welding
US10799974B2 (en) Electrodes for forming austenitic and duplex steel weld metal
JP2614969B2 (en) Gas shielded arc welding titania-based flux cored wire
JP7231499B2 (en) Flux-cored wire and welding method
JPH0420720B2 (en)
WO2020012925A1 (en) Flux-cored wire for two-phase stainless steel welding, welding method and welding metal
KR20210136121A (en) Ni-based alloy flux cored wire
JP3860437B2 (en) Iron-based consumable welding materials and welded joints with excellent fatigue strength at welded joints
JP3860438B2 (en) Iron-based consumable welding materials and welded joints with excellent fatigue strength at welded joints
JPH05285692A (en) Flux cored wire for gas shielded arc welding
JPH07276088A (en) Mag welding flux cored wire for low temperature steel
JPH03146295A (en) Flux cored wire for gas shielded arc welding
JP2020015092A (en) Flux-cored wire for welding two-phase stainless steel, welding method and weld metal
JPH01210195A (en) Flux cored wire for self-shielded arc welding
JPH08281478A (en) Titania flux cored wire for gas shielded arc welding
JP2578906B2 (en) Composite wire for self-shielded arc welding
JPH01271098A (en) Flux cored wire for gas shielded arc welding
JP2795992B2 (en) Flux-cored wire for gas shielded arc welding
JPH10314985A (en) Flux-cored wire for gas shielded metal arc horizontal position welding
CA1104040A (en) Flux cored wire for welding ni-cr-fe alloys