JPH05285339A - Wet desulfurizer for flue gas - Google Patents

Wet desulfurizer for flue gas

Info

Publication number
JPH05285339A
JPH05285339A JP4090684A JP9068492A JPH05285339A JP H05285339 A JPH05285339 A JP H05285339A JP 4090684 A JP4090684 A JP 4090684A JP 9068492 A JP9068492 A JP 9068492A JP H05285339 A JPH05285339 A JP H05285339A
Authority
JP
Japan
Prior art keywords
exhaust gas
absorption tower
gas inlet
inlet duct
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4090684A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nishimura
泰行 西村
Hirobumi Yoshikawa
博文 吉川
Naruhito Takamoto
成仁 高本
Hiroshi Ishizaka
浩 石坂
Shigeru Nozawa
滋 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP4090684A priority Critical patent/JPH05285339A/en
Publication of JPH05285339A publication Critical patent/JPH05285339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Chimneys And Flues (AREA)

Abstract

PURPOSE:To improve desulfurizing efficiency without increasing the circulated quantity of a liquid absorbent while sticking of scale to an exhaust gas inlet duct, etc., is prevented by making the inner diameter of an oxidizing tank in the lower part of an exhaust gas inlet duct larger than that of an absorption column in the upper part of the exhaust gas inlet duct. CONSTITUTION:The inner diameter of a tank 20 in the lower part of an exhaust gas inlet duct 4 is made larger than that of an absorption column 2 in the upper part of the exhaust gas inlet duct 4. At this time, let X be the angle between a line connecting the intersection of the upper wall surface of the exhaust gas inlet duct 4 and the side wall surface of the absorption column 2 and the intersection of the lower wall surface of the exhaust gas inlet duct 4 and the side wall surface of the oxidizing tank 20 and a horizontal line and let theta be the spray angle of a liquid absorbent spray nozzle 6 in the absorption tower 2, and X=90-theta/2. Then a part of the liquid absorbent from the nozzle 6 falls along the wall in the absorption column 2 and when it leaves the lowest wall, it turns into droplets to fall to the tank 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は脱硫装置に係わり、特に
排煙などの被処理ガスと吸収液とを接触させて、被処理
ガス中の硫黄酸化物を吸収除去する方式の脱硫装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desulfurization apparatus, and more particularly to a desulfurization apparatus of a type in which a treated gas such as flue gas and an absorbent are brought into contact with each other to absorb and remove sulfur oxides in the treated gas. Is.

【0002】[0002]

【従来の技術】火力発電所における重油焚、石炭焚ボイ
ラから排ガス中には、硫黄化合物(SOx)やHClな
どの酸性有害物質が通常、100〜3000ppmの割
合で含まれており、酸化雨や光化学スモッグの原因物質
とされるため、その効果的な処理手段が望まれている。
2. Description of the Related Art Exhaust gas from a heavy oil-fired or coal-fired boiler in a thermal power plant usually contains acidic harmful substances such as sulfur compounds (SO x ) and HCl in a proportion of 100 to 3000 ppm. Since it is considered to be a causative agent of photochemical smog, effective treatment means thereof is desired.

【0003】前記酸性有害物質を除去するための脱硫法
としては、さまざまなプロセスを提案されているが、湿
式法が主流を占めている。この湿式法には、吸収剤にソ
ーダ化合物を用いるソーダ法、カルシウム化合物を用い
るカルシウム法およびマグネシウム化合物を用いるマグ
ネシウム法等がある。このうち、ソーダ法は吸収剤とS
2との反応性に優れている反面、使用するソーダ類が
非常に高価である。このため、発電用の大型ボイラ等の
排煙脱硫装置には、比較的安価な炭酸カルシウム等のカ
ルシウム化合物を用いる方法が最も多く採用されてい
る。
Although various processes have been proposed as desulfurization methods for removing the acidic harmful substances, the wet method is the mainstream. This wet method includes a soda method using a soda compound as an absorbent, a calcium method using a calcium compound, and a magnesium method using a magnesium compound. Of these, the soda method uses absorbent and S
Although it has excellent reactivity with O 2 , the soda used is very expensive. For this reason, a method using a relatively inexpensive calcium compound such as calcium carbonate is most often used for a flue gas desulfurization apparatus such as a large boiler for power generation.

【0004】このカルシウム化合物を吸収液として用い
る脱硫システムは、気液接触法の違いによりスプレー方
式、濡れ壁方式およびバブリング方式の3種類に大別さ
れる。各方式ともそれぞれ特徴を有しているが、実績が
多く信頼性の高いスプレー方式が世界的にも多く採用さ
れている。このスプレー方式の脱硫システムとしては、
従来から排ガスの冷却、除塵を行う冷却塔、吸収液を噴
霧して排ガス中のSO2と反応させる吸収塔、吸収塔で
生成した亜硫酸カルシウムを酸化する酸化塔の3塔で構
成されていた。しかし、近年になって吸収塔に冷却・酸
化の機能を持たせた一塔型吸収塔(タンク内酸化法)の
開発が進み、最近では一塔型脱硫システムがスプレー方
式の主流になりつつある。
Desulfurization systems using this calcium compound as an absorbing liquid are roughly classified into three types, a spray system, a wetting wall system and a bubbling system, depending on the difference in the gas-liquid contact method. Although each method has its own characteristics, the spray method, which has a proven track record and is highly reliable, is widely used worldwide. For this spray type desulfurization system,
Conventionally, it is composed of three towers: a cooling tower for cooling the exhaust gas and removing dust, an absorption tower for spraying an absorption liquid to react with SO 2 in the exhaust gas, and an oxidation tower for oxidizing calcium sulfite produced in the absorption tower. However, in recent years, the development of the one-column type absorption tower (in-tank oxidation method) in which the absorption tower has the functions of cooling and oxidation has progressed, and recently, the one-column type desulfurization system is becoming the mainstream of the spray method. ..

【0005】図5に従来技術のスプレー方式による一塔
型脱硫装置の一例を示す。一塔型の脱硫装置は、主に吸
収塔2、ミストエリミネータ3、入口ダクト4、スプレ
ーノズル6、吸収液供給管7、吸収液排出管8、吸収液
ポンプ9、空気吹き込み管11、撹拌機12、出口ダク
ト13、酸化タンク20等から構成される。
FIG. 5 shows an example of a conventional one-column tower desulfurization system using a spray method. The one-tower type desulfurization device mainly includes an absorption tower 2, a mist eliminator 3, an inlet duct 4, a spray nozzle 6, an absorption liquid supply pipe 7, an absorption liquid discharge pipe 8, an absorption liquid pump 9, an air blowing pipe 11, and a stirrer. 12, an outlet duct 13, an oxidation tank 20 and the like.

【0006】スプレーノズル6は水平方向に複数個、さ
らに高さ方向に複数段設置されている。また、撹拌機1
2および空気吹き込み管11は吸収塔下部の吸収液が滞
留する酸化タンク20に設置され、ミストエリミネータ
3は吸収塔内最上部あるいは出口ダクト内に設置され
る。ボイラ(図示せず)から排出される排ガス1は吸収
塔2の前後でそれに同伴されているダストおよびHCl
やHFなど酸性ガスが除去された後、入口ダクト4より
吸収塔2に導入され、出口ダクト13より処理済ガス1
0が排出される。この間、吸収塔2にはポンプ9から送
られる吸収液が複数のスプレーノズル6から噴霧され、
吸収液と排ガスの気液接触が行われる。
A plurality of spray nozzles 6 are arranged in the horizontal direction and a plurality of stages are arranged in the height direction. Also, stirrer 1
2 and the air blowing pipe 11 are installed in the oxidation tank 20 in the lower part of the absorption tower where the absorbing liquid stays, and the mist eliminator 3 is installed in the uppermost part of the absorption tower or in the outlet duct. Exhaust gas 1 discharged from a boiler (not shown) is dust and HCl entrained in the exhaust tower 2 before and after it.
After the acidic gas such as HF and HF is removed, it is introduced into the absorption tower 2 through the inlet duct 4 and the treated gas 1 is introduced through the outlet duct 13.
0 is discharged. During this time, the absorption liquid sent from the pump 9 is sprayed from the plurality of spray nozzles 6 to the absorption tower 2,
Gas-liquid contact between the absorbing liquid and the exhaust gas is performed.

【0007】このとき吸収液は排ガス中のSO2を選択
的に吸収し、亜硫酸カルシウムを生成する。亜硫酸カル
シウムを生成した吸収液は酸化タンク20に溜まり、撹
拌機12によって撹拌されながら、空気吹き込み管11
から供給される空気により亜硫酸カルシウムが酸化され
石膏を生成する。炭酸カルシウムおよび石膏が共存する
酸化タンク20には新鮮な吸収液が吸収液供給管7から
供給され、また、酸化タンク20内の吸収液の一部は、
吸収液ポンプ9によって再びスプレーノズル6に送ら
れ、一部は吸収液排出管8より廃液処理・石膏回収系
(図示せず)へと送られる。また、スプレーノズル6か
ら噴霧され微粒化された吸収液の内、液滴径の小さいも
のは排ガスに同伴されるが、吸収塔上部に設けられたミ
ストエリミネータ3よって回収される。
At this time, the absorbing liquid selectively absorbs SO 2 in the exhaust gas and forms calcium sulfite. The absorbing liquid that has generated calcium sulfite collects in the oxidation tank 20 and is stirred by the stirrer 12 while being blown into the air blowing pipe 11
Calcium sulfite is oxidized by the air supplied from, and gypsum is produced. Fresh absorption liquid is supplied from the absorption liquid supply pipe 7 to the oxidation tank 20 in which calcium carbonate and gypsum coexist, and a part of the absorption liquid in the oxidation tank 20 is
It is sent to the spray nozzle 6 again by the absorbent pump 9, and part of it is sent to the waste liquid treatment / gypsum recovery system (not shown) through the absorbent discharge pipe 8. Further, among the absorption liquids atomized by the spray nozzle 6 and atomized, those having a small droplet diameter are entrained in the exhaust gas, but are recovered by the mist eliminator 3 provided at the upper part of the absorption tower.

【0008】カルシウム化合物を用いる図5に示す脱硫
方式では石灰石などのように難溶性の吸収剤を使用して
いるため、吸収塔2が大きくなることおよびスラリ状の
吸収液中の亜硫酸カルシウムや硫酸カルシウムなどが吸
収塔2を構成する部材表面へ付着(スケーリング)を防
止することが重要な課題となっている。
In the desulfurization system shown in FIG. 5 which uses a calcium compound, since the sparingly soluble absorbent such as limestone is used, the absorption tower 2 becomes large and the calcium sulfite and the sulfuric acid in the slurry-like absorbing liquid are used. It is an important issue to prevent calcium (or the like) from adhering (scaling) to the surface of the members constituting the absorption tower 2.

【0009】このため吸収塔2の設計にあたっては吸収
液とガスの接触方法を工夫すると共に、スケールが付着
する可能性のある箇所の面積を極力小さくしたり、スラ
リ状の吸収液を常に循環して使用したり、脱硫反応によ
って生成した硫酸カルシウム(石膏)の一部を種晶とし
て吸収系統に戻すなどの方法が採用されている。特に、
硫黄分の高い燃料を燃焼させて生じる排ガスを処理する
場合、吸収液の循環量を大きくする必要があり、ユーテ
ィリティ低減などおよびスケーリングの防止が非常に重
要な課題となる。
Therefore, in designing the absorption tower 2, the method of contacting the absorbing liquid with the gas is devised, and the area where scale may adhere is minimized or the slurry-like absorbing liquid is constantly circulated. It is used as a seed crystal and a part of calcium sulfate (gypsum) produced by the desulfurization reaction is returned to the absorption system. In particular,
When treating exhaust gas generated by burning a fuel having a high sulfur content, it is necessary to increase the circulation amount of the absorbing liquid, and reduction of utility and prevention of scaling are very important issues.

【0010】[0010]

【発明が解決しようとする課題】前述のように従来の脱
硫装置においては、脱硫率を高くするためには吸収液の
循環量を大きくして脱硫性能を維持する必要があり、そ
のために循環ポンプ9の所要動力が大きくなる問題があ
った。また、図4に図5の脱硫装置の排ガス入口ダクト
4付近の詳細図を示すように、吸収塔2と酸化タンク2
0はほぼ同一径からなるため、吸収塔2の内の最下段の
スプレヘッダ5に設けられたスプレノズル6から散布さ
れる吸収液が、排ガス入口ダクト4に一部付着し、これ
がスケール22となる。このスケール22が排ガス1の
排ガス入口ダクト4内での流れを乱し、脱硫率を低下さ
せること、およびスケール22が形成された箇所でのダ
クト材料の腐食が生じることなどの問題があった。
As described above, in the conventional desulfurization apparatus, in order to increase the desulfurization rate, it is necessary to increase the circulation amount of the absorbing liquid to maintain the desulfurization performance. Therefore, the circulation pump is required. There was a problem that the required power of 9 became large. Further, as shown in FIG. 4 which is a detailed view around the exhaust gas inlet duct 4 of the desulfurization apparatus of FIG. 5, the absorption tower 2 and the oxidation tank 2 are shown.
Since 0 has almost the same diameter, part of the absorbing liquid sprayed from the spray nozzle 6 provided in the lowermost spray header 5 of the absorption tower 2 adheres to the exhaust gas inlet duct 4 and becomes the scale 22. There are problems that the scale 22 disturbs the flow of the exhaust gas 1 in the exhaust gas inlet duct 4 to reduce the desulfurization rate, and the duct material is corroded at the place where the scale 22 is formed.

【0011】そこで、本発明の目的は、吸収液の循環量
を大きくしないで、しかも排ガスの入口ダクト等にスケ
ールが付着するのを防ぎながら、脱硫性能を高くした湿
式排煙脱硫装置を提供することである。
Therefore, an object of the present invention is to provide a wet flue gas desulfurization apparatus which has a high desulfurization performance without increasing the circulation amount of the absorbing liquid and preventing the scale from adhering to the exhaust gas inlet duct or the like. That is.

【0012】[0012]

【課題を解決するための手段】本発明の上記目的は次の
構成により達成される。すなわち、化石燃料等の燃焼排
ガスを吸収液に接触させ、排ガス中の硫黄酸化物を除去
するスプレ方式吸収塔および該吸収塔下部に酸化タンク
を備え、該酸化タンク内の吸収液を吸収塔に循環供給す
る湿式排煙脱硫装置において、吸収塔の排ガス入口部の
上方の吸収塔の内径より排ガス入口部の下方の酸化タン
クの内径を大きくした湿式排煙脱硫装置である。
The above objects of the present invention can be achieved by the following constitutions. That is, a combustion type exhaust gas such as fossil fuel is brought into contact with an absorption liquid, and a spray type absorption tower for removing sulfur oxides in the exhaust gas and an oxidation tank below the absorption tower are provided, and the absorption liquid in the oxidation tank is used as an absorption tower. In the wet flue gas desulfurization apparatus for circulating supply, the flue gas desulfurization apparatus has a larger inner diameter of an oxidation tank below the exhaust gas inlet than the inner diameter of the absorption tower above the exhaust gas inlet of the absorption tower.

【0013】このとき、排ガス入口部を構成するダクト
の上方壁面と吸収塔の側壁面との交点と、排ガス入口部
を構成するダクトの下方壁面と酸化タンクの側壁面との
交点を結んだ線と水平線とがなす角度Xと吸収塔内の吸
収液スプレノズルの噴霧角度θの間に次式 X=90−θ/2 の関係式が成立させることが望ましい。
At this time, a line connecting the intersection point between the upper wall surface of the duct forming the exhaust gas inlet portion and the side wall surface of the absorption tower and the intersection point of the lower wall surface of the duct forming the exhaust gas inlet portion and the side wall surface of the oxidation tank. It is preferable that the following relational expression X = 90−θ / 2 be established between the angle X formed by the horizontal line and the spray angle θ of the absorbing liquid spray nozzle in the absorption tower.

【0014】[0014]

【作用】本発明の脱硫装置において、排ガス入口ダクト
の上方部の吸収塔の内径より、排ガス入口ダクトの下方
部の酸化タンク内径を大きくすることにより、吸収塔内
スプレノズルから散布されるスラリ状の吸収液の一部は
吸収塔内の壁を伝わって落下する。この吸収液が、吸収
塔内の最下壁から離れるとき液滴となって酸化タンクに
落下する。この液滴とガスが接触することによりガス中
のSO2を吸収すると共に吸収液中の亜硫酸カルシウム
も酸化される。このことにより、吸収塔の脱硫性能は向
上し、さらに石膏純度は高くなる。また、吸収塔内の最
下段スプレノズルから散布される吸収液は直接排ガス入
口ダクトに到達しなくなり、スケールが入口ダクト部付
近に形成されることは無くなる。
In the desulfurization apparatus of the present invention, by making the inner diameter of the oxidation tank in the lower part of the exhaust gas inlet duct larger than the inner diameter of the absorption tower in the upper part of the exhaust gas inlet duct, slurry-like particles sprayed from the spray nozzle in the absorption tower are formed. Part of the absorbing liquid falls along the wall inside the absorption tower. When the absorbing liquid leaves the lowermost wall in the absorption tower, the absorbing liquid becomes droplets and drops into the oxidation tank. When the droplets come into contact with the gas, SO 2 in the gas is absorbed and calcium sulfite in the absorbing solution is also oxidized. As a result, the desulfurization performance of the absorption tower is improved and the gypsum purity is increased. Further, the absorbing liquid sprayed from the lowermost spray nozzle in the absorption tower does not directly reach the exhaust gas inlet duct, and the scale is not formed near the inlet duct portion.

【0015】[0015]

【実施例】本発明は、下記の実施例によって、さらに詳
細に説明されるが、下記の例で制限されるものではな
い。 実施例1 図1は本発明の第1実施例に係わる脱硫装置の概略構成
図である。図5に示した従来技術の吸収塔と同様に図1
に示すスプレー方式による一塔型脱硫装置は、主に吸収
塔2、ミストエリミネータ3、入口ダクト4、スプレー
ノズル6、吸収液供給管7、吸収液排出管8、吸収液ポ
ンプ9、空気吹き込み管11、撹拌機12、出口ダクト
13、酸化タンク20等から構成される。図1(a)は
本実施例の脱硫装置の断面図であり、図1(b)は吸収
塔2と酸化タンク20の径方向の寸法を表すための上方
からみた概略図である。
The present invention will be explained in more detail by the following examples, but it should not be construed as being limited thereto. Example 1 FIG. 1 is a schematic configuration diagram of a desulfurization apparatus according to Example 1 of the present invention. Similar to the prior art absorption tower shown in FIG.
The one-column type desulfurization device by the spray method shown in Fig. 1 mainly includes an absorption tower 2, a mist eliminator 3, an inlet duct 4, a spray nozzle 6, an absorbent supply pipe 7, an absorbent discharge pipe 8, an absorbent pump 9, an air blowing pipe. 11, an agitator 12, an outlet duct 13, an oxidation tank 20, and the like. FIG. 1A is a cross-sectional view of the desulfurization apparatus of this embodiment, and FIG. 1B is a schematic view from above for showing the radial dimensions of the absorption tower 2 and the oxidation tank 20.

【0016】化石燃料等の燃焼排ガス1は吸収塔2の前
後でそれに同伴されているダストおよびHClやHFな
ど酸性ガスが除去された後、入口ダクト4より吸収塔2
に導入され、出口ダクト13より処理済ガス10が排出
される。この間、吸収塔2にはポンプ9から送られる吸
収液が複数のスプレーノズル6から噴霧され、吸収液と
排ガスの気液接触が行われる。このとき吸収液は排ガス
中のSO2を選択的に吸収し、亜硫酸カルシウムを生成
する。亜硫酸カルシウムを生成した吸収液は酸化タンク
20に溜まり、撹拌機12によって撹拌されながら、空
気吹き込み管11から供給される空気により亜硫酸カル
シウムが酸化され石膏を生成する。炭酸カルシウムおよ
び石膏が共存する酸化タンク20には新鮮な吸収液が吸
収液供給管7から供給され、また、酸化タンク20内の
吸収液の一部は、吸収液ポンプ9によって再びスプレー
ノズル6に送られ、一部は吸収液排出管8より廃液処理
・石膏回収系(図示せず)へと送られる。また、スプレ
ーノズル6から噴霧され微粒化された吸収液の内、液滴
径の小さいものは排ガスに同伴されるが、吸収塔上部に
設けられたミストエリミネータ3によって回収される。
The combustion exhaust gas 1 such as fossil fuel is removed from the dust and the acid gas such as HCl and HF accompanying it before and after the absorption tower 2, and then the absorption tower 2 is introduced from the inlet duct 4.
And the treated gas 10 is discharged from the outlet duct 13. During this time, the absorption liquid sent from the pump 9 is sprayed from the plurality of spray nozzles 6 to the absorption tower 2, and the absorption liquid and the exhaust gas are brought into gas-liquid contact. At this time, the absorbing liquid selectively absorbs SO 2 in the exhaust gas to generate calcium sulfite. The absorbing liquid that has generated calcium sulfite is accumulated in the oxidation tank 20, and while being stirred by the stirrer 12, the calcium sulfite is oxidized by the air supplied from the air blowing pipe 11 to generate gypsum. Fresh absorption liquid is supplied from the absorption liquid supply pipe 7 to the oxidation tank 20 in which calcium carbonate and gypsum coexist, and part of the absorption liquid in the oxidation tank 20 is returned to the spray nozzle 6 by the absorption liquid pump 9. A part is sent to the waste liquid treatment / gypsum recovery system (not shown) through the absorbent discharge pipe 8. Further, among the absorption liquids atomized by the spray nozzle 6 and atomized, those having a small droplet diameter are entrained in the exhaust gas, but are recovered by the mist eliminator 3 provided in the upper part of the absorption tower.

【0017】本実施例では図1(a)、図1(b)から
明らかなとおり、排ガス入口ダクト4の上方の吸収塔2
の直径を排ガス入口ダクト4の下方の酸化タンク20の
直径より小さくしていることに特徴がある。しかも、図
2(a)に図1における排ガス入口ダクト4付近の詳細
図を示すように、排ガス入口ダクト4の上方側のダクト
壁面と吸収塔2の側壁面との交点(イ)と、排ガス入口
4の下方側のダクト壁面と酸化タンク20の側壁面との
交点(ロ)を結んだ線が水平線に対してなす角度を45
度とした構造である。
In this embodiment, as is clear from FIGS. 1 (a) and 1 (b), the absorption tower 2 above the exhaust gas inlet duct 4 is shown.
Is smaller than the diameter of the oxidation tank 20 below the exhaust gas inlet duct 4. Moreover, as shown in FIG. 2 (a) in detail in the vicinity of the exhaust gas inlet duct 4 in FIG. 1, the intersection point (a) between the duct wall surface on the upper side of the exhaust gas inlet duct 4 and the side wall surface of the absorption tower 2 and the exhaust gas The angle formed by the line connecting the intersection (b) between the duct wall surface on the lower side of the inlet 4 and the side wall surface of the oxidation tank 20 with respect to the horizontal line is 45.
It is a structured structure.

【0018】すなわち、図2(b)に前記交点(イ)と
(ロ)を結んだ線の水平線に対してなす角度の一般的な
計算式を示すように、排ガス入口ダクト4の上方側のダ
クト壁面と吸収塔2の側壁面との交点(イ)と排ガス入
口4の下方のダクト壁面と酸化タンク20の側壁面との
交点(ロ)を結んだ線の水平線に対してなす角度Xは、
90度から吸収塔のスプレノズル6の噴霧角度θの1/
2を差し引いた値から計算する。本実施例でのスプレノ
ズル6の噴霧角度は90度であるので、水平線の角度X
は45度となる。
That is, as shown in FIG. 2 (b), which is a general formula for the angle formed by the line connecting the intersections (a) and (b) with respect to the horizontal line, the upper side of the exhaust gas inlet duct 4 is shown. The angle X formed by the line connecting the intersection point (a) between the duct wall surface and the side wall surface of the absorption tower 2 and the intersection point (b) between the duct wall surface below the exhaust gas inlet 4 and the side wall surface of the oxidation tank 20 is the horizontal line. ,
90 ° to 1 / of the spray angle θ of the spray nozzle 6 of the absorption tower
Calculate from the value after subtracting 2. Since the spray angle of the spray nozzle 6 in this embodiment is 90 degrees, the horizontal line angle X
Is 45 degrees.

【0019】本実施例のような構造を有することで、吸
収塔2内のスプレノズル6から散布されるスラリ状の吸
収液の一部は、図3に示すように吸収塔2の内壁面を伝
わり滝のように吸収液が直接、酸化タンク20の側壁面
には接触せずに酸化タンク20内の吸収液の上面に落下
する。このようにスプレノズル6から噴霧される吸収液
が吸収塔2の内径が小さい部分から酸化タンク20の内
径が大きい部分に落下することによって吸収液滴とガス
が接触して、排ガス中のSO2を吸収して脱硫性能は向
上させ、吸収液中の亜硫酸カルシウムも排ガス中の酸素
によって酸化されるので酸化タンク20での酸化も少な
くて済む。
With the structure of this embodiment, a part of the slurry-like absorbing liquid sprayed from the spray nozzle 6 in the absorption tower 2 is transmitted to the inner wall surface of the absorption tower 2 as shown in FIG. The absorption liquid falls directly on the upper surface of the absorption liquid in the oxidation tank 20 without contacting the side wall surface of the oxidation tank 20 like a waterfall. In this way, the absorbing liquid sprayed from the spray nozzle 6 falls from the portion having a small inner diameter of the absorption tower 2 to the portion having a large inner diameter of the oxidation tank 20 so that the absorbing droplets and the gas come into contact with each other, so that SO 2 in the exhaust gas is removed. By absorbing, the desulfurization performance is improved, and the calcium sulfite in the absorbing liquid is also oxidized by oxygen in the exhaust gas, so that the oxidation tank 20 is less likely to oxidize.

【0020】この脱硫装置を用いて、排ガス中のSO2
濃度1000ppmのガスを用いて脱硫試験を実施し
た。ただし、吸収剤は石灰石を用いた。吸収塔2の入口
および出口において、ガス中のSO2濃度を測定したと
ころそれぞれ1000ppmおよび40ppmであっ
た。すなわち、排ガス中のSO2の内96%が除去され
たことになる。また、酸化タンク20より抜き出した固
形物中の石膏純度は98%であった。この試験を100
時間連続運転し、脱硫装置を停止後、排ガス入口ダクト
4を内部点検したところ、スラリなどの固形物は観察さ
れなかった。
Using this desulfurizer, SO 2 in exhaust gas
A desulfurization test was conducted using a gas having a concentration of 1000 ppm. However, limestone was used as the absorbent. When the SO 2 concentration in the gas was measured at the inlet and the outlet of the absorption tower 2, they were 1000 ppm and 40 ppm, respectively. That is, 96% of SO 2 in the exhaust gas was removed. The gypsum purity in the solid substance extracted from the oxidation tank 20 was 98%. This test 100
After continuously operating for a period of time and stopping the desulfurization apparatus, the exhaust gas inlet duct 4 was internally inspected and no solid matter such as slurry was observed.

【0021】実施例2 実施例1と同一の装置を用いて、同一条件で100時間
の連続運転試験を実施した。ただし、排ガス入口ダクト
4の上方側のダクト壁面と吸収塔2の側壁面との交点と
排ガス入口4の下方のダクト壁面と酸化タンク20の側
壁面との交点を結んだ線の水平線に対してなす角度Xは
50度とした。吸収塔2での脱硫率は実施例1と同様、
試験期間中96%一定であった。また、酸化タンク20
より抜き出した固形物中の石膏純度は98%であった。
100時間運転後、装置を停止後、排ガス入口ダクト部
を内部点検したところ、スラリなどの固形物は観察され
なかった。
Example 2 Using the same apparatus as in Example 1, a continuous operation test was carried out for 100 hours under the same conditions. However, with respect to the horizontal line of the line connecting the intersection point between the duct wall surface above the exhaust gas inlet duct 4 and the side wall surface of the absorption tower 2 and the intersection point between the duct wall surface below the exhaust gas inlet 4 and the side wall surface of the oxidation tank 20. The angle X is 50 degrees. The desulfurization rate in the absorption tower 2 is the same as in Example 1.
It was 96% constant during the test period. Also, the oxidation tank 20
The gypsum purity in the extracted solid was 98%.
After operating for 100 hours and after stopping the device, the exhaust gas inlet duct was inspected internally and no solid matter such as slurry was observed.

【0022】比較例1 図5に示した従来技術に基づく脱硫装置を用いて、実施
例1と同じ条件で、100時間の連続運転試験を実施し
た。運転中の吸収塔2での脱硫率は初期は95%であっ
たが、試験100時間経過後には93%とわずかである
が性能は低下していた。また、酸化タンク20より抜き
出した固形物中の石膏純度は96%であった。試験終了
後、脱硫装置の運転を停止し、排ガス入口ダクト4を内
部点検をしたところ、図4に示すように排ガス入口ダク
ト4の下側にスラリの固形物が観察された(約1kg堆
積)。さらに、入口ダクト4の材料面の腐食が観察され
た。
Comparative Example 1 Using the desulfurization apparatus based on the conventional technique shown in FIG. 5, a continuous operation test for 100 hours was carried out under the same conditions as in Example 1. The desulfurization rate in the absorption tower 2 during the operation was 95% at the initial stage, but after 100 hours of the test, the desulfurization rate was as small as 93%, but the performance was deteriorated. The gypsum purity in the solid substance extracted from the oxidation tank 20 was 96%. After the test was completed, the operation of the desulfurizer was stopped and the exhaust gas inlet duct 4 was inspected internally, and as shown in FIG. 4, solid slurry was observed below the exhaust gas inlet duct 4 (about 1 kg was deposited). .. Furthermore, corrosion of the material surface of the inlet duct 4 was observed.

【0023】以上の実施例1、2では吸収剤として石灰
石の例を示したが、本発明では、そのほかに生石灰や水
酸化カルシウム、炭酸マグネシウムなどのアルカリ土類
金属の酸化物、水酸化物および炭酸塩などを用いること
ができる。
In Examples 1 and 2 above, an example of limestone was shown as an absorbent, but in the present invention, in addition to this, oxides, hydroxides and oxides of alkaline earth metals such as quicklime, calcium hydroxide and magnesium carbonate, and Carbonate or the like can be used.

【0024】[0024]

【発明の効果】本発明によれば、吸収塔の脱硫性能を向
上でき、副生物である石膏の純度を高くすることができ
る。さらに、排ガス入口ダクト部のスケール防止するこ
とにより、湿式脱硫装置の長期安定運転が可能となる。
According to the present invention, the desulfurization performance of the absorption tower can be improved, and the purity of gypsum as a by-product can be increased. Further, by preventing the scale of the exhaust gas inlet duct portion, the wet desulfurization device can be stably operated for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1における脱硫装置の吸収塔
の概略構造図である。
FIG. 1 is a schematic structural diagram of an absorption tower of a desulfurization device in Example 1 of the present invention.

【図2】 本発明の実施例1における脱硫装置の排ガス
入口ダクト部の詳細図である。
FIG. 2 is a detailed view of an exhaust gas inlet duct portion of the desulfurization device according to the first embodiment of the present invention.

【図3】 本発明の実施例1における脱硫装置の排ガス
入口ダクト部における吸収液の落下部の詳細図である。
[Fig. 3] Fig. 3 is a detailed view of a falling portion of an absorbing liquid in the exhaust gas inlet duct portion of the desulfurization device in the first embodiment of the present invention.

【図4】 従来技術の脱硫装置の排ガス入口ダクト部の
詳細図である。
FIG. 4 is a detailed view of an exhaust gas inlet duct section of a conventional desulfurization apparatus.

【図5】 従来技術の脱硫装置の吸収塔の概略構造図で
ある。
FIG. 5 is a schematic structural diagram of an absorption tower of a desulfurization apparatus of the related art.

【符号の説明】[Explanation of symbols]

1…排ガス、2…吸収塔、3…ミストエリミネータ、4
…排ガス入口ダクト、5…スプレヘッダ、6…スプレノ
ズル、7…吸収液供給管、8…吸収液排出管、 9…吸
収液ポンプ、10…処理済ガス、11…空気吹き込み
管、12…撹拌機、 20…酸化タンク、22…スケー
1 ... Exhaust gas, 2 ... Absorption tower, 3 ... Mist eliminator, 4
... Exhaust gas inlet duct, 5 ... Spray header, 6 ... Spray nozzle, 7 ... Absorbing liquid supply pipe, 8 ... Absorbing liquid discharge pipe, 9 ... Absorbing liquid pump, 10 ... Treated gas, 11 ... Air blowing pipe, 12 ... Stirrer, 20 ... Oxidation tank, 22 ... Scale

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石坂 浩 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 野沢 滋 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Ishizaka No. 36 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Ltd. Kure Research Institute (72) Inventor Shigeru Nozawa 6-9 Takaracho, Kure City Hiroshima Prefecture Babcock Hitachi Ltd. Kure Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化石燃料等の燃焼排ガスを吸収液に接触
させ、排ガス中の硫黄酸化物を除去するスプレ方式吸収
塔および該吸収塔下部に酸化タンクを備え、該酸化タン
ク内の吸収液を吸収塔に循環供給する湿式排煙脱硫装置
において、 吸収塔の排ガス入口部の上方の吸収塔の内径より排ガス
入口部の下方の酸化タンクの内径を大きくしたことを特
徴とする湿式排煙脱硫装置。
1. A spray type absorption tower for contacting a combustion exhaust gas such as fossil fuel with an absorption liquid to remove sulfur oxides in the exhaust gas, and an oxidation tank below the absorption tower. In a wet flue gas desulfurization apparatus for circulating supply to an absorption tower, the inner diameter of an oxidation tank below the exhaust gas inlet is made larger than the inner diameter of the absorption tower above the exhaust gas inlet of the absorption tower. ..
【請求項2】 排ガス入口部を構成するダクトの上方壁
面と吸収塔の側壁面との交点と、排ガス入口部を構成す
るダクトの下方壁面と酸化タンクの側壁面との交点を結
んだ線と水平線とがなす角度Xと吸収塔内の吸収液スプ
レノズルの噴霧角度θの間に次式 X=90−θ/2 の関係式が成立することを特徴とする請求項1記載の湿
式排煙脱硫装置。
2. A line connecting the intersection of the upper wall surface of the duct forming the exhaust gas inlet and the side wall of the absorption tower, and the intersection of the lower wall of the duct forming the exhaust gas inlet and the side wall of the oxidation tank. 2. The wet flue gas desulfurization according to claim 1, wherein the following relational expression X = 90−θ / 2 is established between the angle X formed by the horizontal line and the spray angle θ of the absorbing liquid spray nozzle in the absorption tower. apparatus.
JP4090684A 1992-04-10 1992-04-10 Wet desulfurizer for flue gas Pending JPH05285339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4090684A JPH05285339A (en) 1992-04-10 1992-04-10 Wet desulfurizer for flue gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4090684A JPH05285339A (en) 1992-04-10 1992-04-10 Wet desulfurizer for flue gas

Publications (1)

Publication Number Publication Date
JPH05285339A true JPH05285339A (en) 1993-11-02

Family

ID=14005368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4090684A Pending JPH05285339A (en) 1992-04-10 1992-04-10 Wet desulfurizer for flue gas

Country Status (1)

Country Link
JP (1) JPH05285339A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174391A (en) * 2002-11-27 2004-06-24 Central Res Inst Of Electric Power Ind Method of selectively removing fluorine component from exhaust gas
US8906141B2 (en) 2012-08-09 2014-12-09 Mitsubishi Heavy Industries, Ltd. Carbon dioxide recovery apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174391A (en) * 2002-11-27 2004-06-24 Central Res Inst Of Electric Power Ind Method of selectively removing fluorine component from exhaust gas
JP4518460B2 (en) * 2002-11-27 2010-08-04 財団法人電力中央研究所 Method for selectively recovering fluorine components from exhaust gas
US8906141B2 (en) 2012-08-09 2014-12-09 Mitsubishi Heavy Industries, Ltd. Carbon dioxide recovery apparatus and method

Similar Documents

Publication Publication Date Title
US3948608A (en) Apparatus for treating stack gases
US4369167A (en) Process for treating stack gases
US5565180A (en) Method of treating gases
KR100382444B1 (en) Flue gas cleaning device
US6126910A (en) Method for removing acid gases from flue gas
KR920002062B1 (en) Waste gas disposal method
US20020110511A1 (en) Horizontal scrubber system
US6531104B1 (en) Process for the absorption of sulfur oxides and the production of ammonium sulfate
JPH06254345A (en) Horizontal wet type cleaning device and method for removing sulfur dioxide from gaseous stream
CN101306317A (en) Tower top discharge type flue gas desulfurization method
JPWO2008087769A1 (en) Wet flue gas desulfurization equipment
CN101543724A (en) Ammonia desulphurization method suitable for sintering flue gas treatment
CN101306319A (en) Direct discharging flue gas treatment method
CN101306316A (en) Boiler flue gas countercurrent direct purification method
JPH0780243A (en) Desulfurization method and apparatus by desulfurizing agent slurry with high concentration
US4481170A (en) Apparatus for treating stack gases
JPH07155536A (en) Wet type flue gas desulfurization apparatus
JPH05285339A (en) Wet desulfurizer for flue gas
JP2007050334A (en) Exhaust gas purification method and facility
JP2003103139A (en) Wet process flue gas desulfurizer
CN203244911U (en) Desulfurizing and demisting combined tower
CN101279190A (en) Directly ventilated type flue gas processing method using bubbling segment and equipment thereof
JPH0663353A (en) Wet flue gas desulfurizer and its method
JPH0929059A (en) Flue gas desulfurization and device therefor
JPH0819726A (en) Method and apparatus for wet type exhaust gas desulfuration

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term