JPH05285144A - Ultrasonic device - Google Patents

Ultrasonic device

Info

Publication number
JPH05285144A
JPH05285144A JP4088574A JP8857492A JPH05285144A JP H05285144 A JPH05285144 A JP H05285144A JP 4088574 A JP4088574 A JP 4088574A JP 8857492 A JP8857492 A JP 8857492A JP H05285144 A JPH05285144 A JP H05285144A
Authority
JP
Japan
Prior art keywords
catheter
ultrasonic
probe
receiver
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4088574A
Other languages
Japanese (ja)
Inventor
Ryuichi Shinomura
隆一 篠村
Kageyoshi Katakura
景義 片倉
Chitose Nakatani
千歳 中谷
Sangubi Narendora
ナレンドラ・サングビ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4088574A priority Critical patent/JPH05285144A/en
Publication of JPH05285144A publication Critical patent/JPH05285144A/en
Pending legal-status Critical Current

Links

Landscapes

  • Media Introduction/Drainage Providing Device (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Endoscopes (AREA)

Abstract

PURPOSE:To detect the ultrasonic scanning direction of a transmitter/receiver for executing an image pickup by driving an ultrasonic transmitter/receiver installed in the tip of a catheter, and scanning electrically an ultrasonic beam. CONSTITUTION:An ultrasonic transmitter/receiver in which the transmitting and receiving directions are varied by a signal frequency is provided in a catheter 2, and from the body surface 3, a position and a direction of the catheter 2 are monitored by an ultrasonic probe 4. After photographing the catheter 2 by the probe 4, the probe 4 is subjected to scan such as a rotation, etc., in its direction and a signal is received, and from a distance to the tip of the catheter, a receiving caliber of the probe 4, and its receiving frequency range, a position of the ultrasonic scanning face from the catheter 2 is calculated. Also, in the opposed part in the diameter direction of a catheter tube, plural markers being parallel to the advance direction and having different length are provided. In such a way, the position and the direction of the transmitter/ receiver for obtaining an ultrasonic tomographic image can be known.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波装置に係り、特
に血管等の診断、治療に有効な装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic device, and more particularly to a device effective for diagnosis and treatment of blood vessels and the like.

【0002】[0002]

【従来の技術】信号周波数により超音波の送信および受
波の方向が変化する超音波送波器は、日本超音波医学会
講演論文集(昭和49年11月)に掲載された「高速2
次元撮像装置」と題する論文に報告されている。このよ
うな超音波送受波器の動作原理を図2により説明する。
図2に示すように超音波送受波器は、反転分極(交互に
方向の異なる矢印で分極の方向を示す)した反転分極振
動子アレー1と、その両面にそれぞれ設けられたグラン
ド電極9とホット電極10からなる。その電極間にバー
スト波を印加すると、その信号周波数に応じて異なる方
向θ(θは超音波の放射あるいは入射面、即ち振動子ア
レー面の法線方向と超音波の放射あるいは入射方向との
なす角度)に超音波ビームを放射及び入射できるもので
ある。図2に示す円弧の線が波面を示し、実線と破線で
位相が180度異なる。同時刻の隣あった波面の位相が
反転しているため法線方向では相殺され、超音波ビーム
の入放射は超音波の放射面の法線方向に対し対称な2つ
の方向(図2に示す実線と点線の方向)になされる。こ
の入放射角度θは、振動子ピッチdと駆動周波数f、そ
の波長λとして、数1で与えられる。
2. Description of the Related Art An ultrasonic wave transmitter in which the directions of transmission and reception of ultrasonic waves change depending on the signal frequency is described in "High Speed 2" published in the Proceedings of the Japan Society of Ultrasonics in Medicine (November 1974).
3D imager ". The operating principle of such an ultrasonic wave transmitter / receiver will be described with reference to FIG.
As shown in FIG. 2, the ultrasonic wave transmitter / receiver includes an inverted polarization oscillator array 1 which is inverted polarized (the directions of polarization are alternately shown by arrows having different directions), and a ground electrode 9 and a hot electrode provided on both sides of the array. It consists of electrodes 10. When a burst wave is applied between the electrodes, a different direction θ (θ represents the direction of the ultrasonic wave emission or incident surface, that is, the normal direction of the transducer array surface and the ultrasonic wave emission or incident direction) depending on the signal frequency. The ultrasonic beam can be emitted and incident at an angle. The arc line shown in FIG. 2 indicates the wavefront, and the phase differs by 180 degrees between the solid line and the broken line. Since the phases of adjacent wavefronts at the same time are reversed, they are canceled in the normal direction, and the incident radiation of the ultrasonic beam is two directions symmetrical to the normal direction of the emission surface of the ultrasonic wave (shown in FIG. 2). The direction of the solid line and the dotted line). This incident / radiation angle θ is given by Equation 1 as a vibrator pitch d, a driving frequency f, and its wavelength λ.

【0003】 θ=sin-1(λ/(2d)) …(数1) また、この時の遠距離音場指向特性R(θ)は、数2で
与えられる。 R(θ)=sin(0.5n(φ−γ))/sin(0.5(φ−γ)) φ=π、γ=2πdsin(θ)/λ …(数2) これらの関係を利用して超音波ビームを走査するもので
あり、1本の信号線で周波数掃引することにより超音波
ビームをセクタ走査できる。また、特開平2−2646
48に単一の部材からなる超音波探触子を電極ピッチ及
び、幅を連続的に替えて形成し、挿入方向にたいし傾斜
させて保持し、ビーム掃引する方法が記されている。
又、従来の血管内視鏡は、血管内視鏡の軸にほぼ直角を
なす側方を撮影する側方式のみであり、超音波探触子を
回転する回転方式、あるいは、超音波探触子を円環状に
素子を並べて形成し素子を切り替える方式のみが存在す
る。
Θ = sin −1 (λ / (2d)) (Equation 1) Further, the far-field acoustic field directivity characteristic R (θ) at this time is given by Equation 2. R (θ) = sin (0.5n (φ−γ)) / sin (0.5 (φ−γ)) φ = π, γ = 2πd sin (θ) / λ (Equation 2) Utilizing these relationships Then, the ultrasonic beam is scanned, and the ultrasonic beam can be sector-scanned by frequency sweeping with one signal line. In addition, JP-A-2-2646
48 describes a method in which an ultrasonic probe made of a single member is formed by continuously changing the electrode pitch and the width, and is held while being inclined with respect to the insertion direction and the beam is swept.
Further, the conventional angioscope is only a side method for taking a picture of a side which is substantially perpendicular to the axis of the angioscope, and a rotation method for rotating the ultrasonic probe or an ultrasonic probe. There is only a method in which elements are arranged in an annular shape and the elements are switched.

【0004】[0004]

【発明が解決しようとする課題】前記従来技術の血管内
視鏡では、撮像面の方向を決定するのに問題があった。
本発明の目的は、血管等に本システムを用いた場合、断
層像の血管の実際の方向を検出するとともに、治療前後
(カテーテルを一旦抜き又挿入するような場合など)の
撮像面の方向を簡単に知り、一致させ、治療前後の比較
を容易にすることにある。
However, the above-mentioned conventional blood vessel endoscope has a problem in determining the direction of the image pickup surface.
An object of the present invention is to detect the actual direction of a blood vessel in a tomographic image when the system is used for a blood vessel, etc. It should be easy to know, match, and facilitate pre- and post-treatment comparisons.

【0005】[0005]

【課題を解決するための手段】上記目的は、信号周波数
により、送信あるいは受信方向が変化する超音波送受波
器をカテーテルに装着し体表から探触子によりモニタす
ることあるいは、信号周波数により送信あるいは受信方
向が変化する超音波送受波器を具備したカテーテルにお
いて、カテーテルチューブの直径方向で対向する部位に
進行方向に平行な長さの異なるマーカーを複数設けるこ
とで達成される。
The above-mentioned object is to mount an ultrasonic wave transmitter / receiver whose transmitting or receiving direction changes depending on the signal frequency on a catheter and monitor it from the body surface with a probe, or to transmit by the signal frequency. Alternatively, in a catheter provided with an ultrasonic wave transmitter / receiver whose receiving direction changes, a plurality of markers having different lengths parallel to the traveling direction are provided at the diametrically opposed portions of the catheter tube.

【0006】[0006]

【作用】信号周波数により、送信あるいは受信方向が変
化する超音波送受波器をカテーテルに装着することによ
り、前記振動子は、信号周波数により、超音波ビームの
方向が変化するため、体表から探触子によりその信号を
受信することにより周波数と体表からの探触子による撮
像とによりその位置と向きを確認できる。又、振動子が
固定されて、しかも回転によらず撮像できる場合、カテ
ーテルチューブの直径方向で対向する部位に進行方向に
平行な長さの異なるマーカーを複数設けることにより、
X線透視をした場合、マーカーの間隔と長さから、その
向きを検出できる。
By attaching an ultrasonic wave transmitter / receiver whose transmission or reception direction changes depending on the signal frequency to the catheter, the transducer changes the direction of the ultrasonic beam depending on the signal frequency. By receiving the signal by the probe, its position and orientation can be confirmed by the frequency and the image picked up by the probe from the body surface. When the transducer is fixed and can be imaged regardless of rotation, by providing a plurality of markers having different lengths parallel to the traveling direction at the diametrically opposed portions of the catheter tube,
When fluoroscopy is performed, the direction can be detected from the distance and the length of the markers.

【0007】[0007]

【実施例】以下本発明の実施例を図1、及び図3から図
6を用いて説明する。図1に第1の実施例を示す。信号
周波数により、送信及び受信方向が変化する超音波送受
波器をカテーテル2に装着し血管6に挿入し体表3から
探触子4によりモニタする。探触子4の周波数帯域を前
記送受波器の信号周波数範囲をカバーするものとする
と、カテーテル2を探触子4の送受信により超音波診断
装置5で撮像し、さらにその送受波のシーケンスの間に
受信のみの期間を設け受信信号をスペクトル解析する。
カテーテルの送受波器からの超音波走査面7が図1のよ
うであり上側の周波数が高いとする。探触子4のH側か
らL側に向かって解析すると、高周波から低周波に変位
していくことになる。カテーテル2を探触子4で撮像し
てからその方向に探触子4を回転等の走査をして信号を
受信し、カテーテル先端までの距離と探触子4の受信口
径とその受信周波数範囲からカテーテル2からの超音波
走査面の位置を計算することができる。また、図3に示
す第2の実施例のように、カテーテルの側面に反転分極
振動子アレー1’をもうけて位置検出に使うこともでき
る。位置モニタリングは、超音波診断装置5により、探
触子4を、体表3に当てて実施例1と同様に行う。カテ
ーテルの前方の撮像は、反転分極振動子アレー1により
行う。位置検出用反転分極振動子アレー1’をカテーテ
ルの軸とほぼ直角をなす側面の撮像に使用してもよい。
両者は、音響制動材8により固定され、カテーテル2の
内壁に固定されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a first embodiment. An ultrasonic wave transmitter / receiver whose transmission and reception directions change depending on the signal frequency is attached to the catheter 2, inserted into the blood vessel 6, and monitored by the probe 4 from the body surface 3. Assuming that the frequency band of the probe 4 covers the signal frequency range of the transmitter / receiver, the catheter 2 is imaged by the ultrasonic diagnostic apparatus 5 by transmission / reception of the probe 4, and during the transmission / reception sequence. The received signal is spectrum-analyzed by providing a period for reception only.
It is assumed that the ultrasonic scanning surface 7 from the transducer of the catheter is as shown in FIG. 1 and the upper frequency is high. When the probe 4 is analyzed from the H side toward the L side, it is displaced from a high frequency to a low frequency. The image of the catheter 2 is picked up by the probe 4, and then the probe 4 is scanned in that direction such as rotation to receive a signal, the distance to the tip of the catheter, the receiving aperture of the probe 4 and its receiving frequency range. From this, the position of the ultrasonic scanning plane from the catheter 2 can be calculated. Further, as in the second embodiment shown in FIG. 3, an inverted polarization oscillator array 1'may be provided on the side surface of the catheter for use in position detection. The position monitoring is performed by the ultrasonic diagnostic apparatus 5 with the probe 4 applied to the body surface 3 in the same manner as in the first embodiment. Imaging in front of the catheter is performed by the inverted polarization oscillator array 1. The position-detecting inverted polarization oscillator array 1'may be used for imaging a side surface that is substantially perpendicular to the axis of the catheter.
Both are fixed by an acoustic damping material 8 and fixed to the inner wall of the catheter 2.

【0008】図4に第3の実施例を示す。通常カテーテ
ルは血管造影等のX線透視により導かれる。したがっ
て、マーカーとしてはX線透視により良く画像化される
物質を用いる。カテーテル2の径方向で対向する部位に
進行方向に平行な長さの異なるマーカーを複数設ける構
成とする。この例では、図の反転分極振動子アレー1の
音響制動材8の上部と下部に長さのことなるマーカーを
設けた。このマーカー11、12の距離Dは既知であ
り、さらに最大となるとき超音波の走査面はマーカー1
1、12を結ぶ面と同一となる。したがって、透視像の
マーカーの長さ、間隔により超音波の走査面をしること
ができる。例えば図5(a)に示すように、矢印方向か
ら透視し、超音波走査面が透視方向と同じ向きの場合、
(b)のように透視像13でマーカーは太い線のように
見える。従って、この像の長さから、実際の傾きθが求
まり、走査面の中心方向14が透視方向にたいし、π/
2−θである。例えば、マーカーの長さがL1,L2,透
視像の長さが、L1’,L2’とすると、θ=arccos(L
1’/L1)となる。また、図6のようにマーカー間に段
差が生じて透視された場合は、上下間隔eより図6
(b)の透視像13に示すように進行方向から見た場
合、マーカーは白丸のように見えその傾きθ’はarcsin
(e/D)傾いていることがわかる。さらに図5の例同様に
長さから透視方向とのなす角θがわかる。よって超音波
走査面の中心方向14は透視方向とθの角度で走査面は
上下方向にたいしθ’傾くことがわかる。複雑な方向を
向いている場合でも座標計算をすることで、超音波走査
面を求めることができる。
FIG. 4 shows a third embodiment. Usually, the catheter is guided by fluoroscopy such as angiography. Therefore, a substance that is well imaged by fluoroscopy is used as the marker. A plurality of markers having different lengths, which are parallel to the traveling direction, are provided at the portions facing each other in the radial direction of the catheter 2. In this example, markers having different lengths are provided above and below the acoustic damping material 8 of the inverted polarization oscillator array 1 shown in the figure. The distance D between the markers 11 and 12 is known, and when the distance D becomes maximum, the scanning plane of the ultrasonic wave is the marker 1.
It is the same as the surface connecting 1 and 12. Therefore, the scanning plane of ultrasonic waves can be determined by the length and interval of the markers in the fluoroscopic image. For example, as shown in FIG. 5A, when seeing through in the direction of the arrow and the ultrasonic scanning surface is in the same direction as the see-through direction,
As in (b), the marker looks like a thick line in the perspective image 13. Therefore, the actual inclination θ is obtained from the length of this image, and the central direction 14 of the scanning surface is π /
2-θ. For example, if the lengths of the markers are L 1 and L 2 and the lengths of the perspective image are L 1 ′ and L 2 ′, θ = arccos (L
1 '/ L 1 ). Further, when there is a step between the markers as seen in FIG.
When viewed from the traveling direction as shown in the perspective image 13 in (b), the marker looks like a white circle and its inclination θ ′ is arcsin.
(e / D) It can be seen that it is tilted. Further, as in the example of FIG. 5, the angle θ formed by the perspective direction can be known from the length. Therefore, it is understood that the central direction 14 of the ultrasonic scanning plane is inclined by θ ′ with respect to the vertical direction at an angle of θ with the perspective direction. Even when facing the complicated direction, the ultrasonic scanning plane can be obtained by calculating the coordinates.

【0009】また、送受波器として等間隔アレーにつき
説明したが、この他にもM系列、バーカー系列他種々の
不規則配列への変形が可能である。また、配列振動子を
用いたものや、回転走査により血管断面を表示している
カテーテルにも応用できる。また、信号周波数により送
信あるいは受信方向が変化する超音波送受波器が、異な
る一連の電極周期及び電極幅より形成されたことを特徴
とする超音波送受波器構成であっても構わない。
Further, although the equal-spaced array has been described as the transmitter / receiver, various irregular arrangements such as M series, Barker series, etc. can be made. Further, it can be applied to a device using an array transducer and a catheter displaying a blood vessel cross section by rotational scanning. Further, an ultrasonic wave transmitter / receiver configuration may be used in which the ultrasonic wave transmitter / receiver whose transmission or reception direction changes depending on the signal frequency is formed by a series of different electrode periods and electrode widths.

【0010】[0010]

【発明の効果】以上説明した如く本発明によれば、少な
い信号線で電気的に超音波を走査し、断層像を得ること
ができる送受波器においてそのオリエンテーション(位
置及び方向)を知ることができる。
As described above, according to the present invention, it is possible to know the orientation (position and direction) of a transducer that can electrically scan an ultrasonic wave with a small number of signal lines and obtain a tomographic image. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す図。FIG. 1 is a diagram showing a first embodiment of the present invention.

【図2】信号周波数により超音波の送受波方向が変化す
る超音波送波器の動作原理の説明図。
FIG. 2 is an explanatory diagram of an operation principle of an ultrasonic wave transmitter in which the transmitting and receiving directions of ultrasonic waves are changed depending on a signal frequency.

【図3】本発明の第2の実施例を示す図。FIG. 3 is a diagram showing a second embodiment of the present invention.

【図4】本発明の第3の実施例を示す図。FIG. 4 is a diagram showing a third embodiment of the present invention.

【図5】マーカーの透視像の例を示す図。FIG. 5 is a diagram showing an example of a perspective image of a marker.

【図6】マーカーの透視像の例を示す図。FIG. 6 is a diagram showing an example of a perspective image of a marker.

【符号の説明】[Explanation of symbols]

1…反転分極振動子アレー、2…カテーテル、3…体
表、4……探触子、5…超音波診断装置、6…血管、7
…超音波走査面、8…音響制動材、9…グランド電極、
10…ホット電極、11、12…マーカー、13…透視
像、14…超音波走査面中心方向。
1 ... Inverted polarization oscillator array, 2 ... Catheter, 3 ... Body surface, 4 ... Probe, 5 ... Ultrasonic diagnostic device, 6 ... Blood vessel, 7
... ultrasonic scanning plane, 8 ... acoustic damping material, 9 ... ground electrode,
10 ... Hot electrode, 11, 12 ... Marker, 13 ... Perspective image, 14 ... Ultrasonic scanning plane center direction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ナレンドラ・サングビ 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Narendra Sangbi 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】信号周波数により送信及び受信方向が変化
する超音波送受波器をカテーテルに具備し、体表より超
音波探触子によりカテーテルの位置および方向をモニタ
ーすることを特徴とする超音波装置。
1. An ultrasonic wave characterized in that a catheter is provided with an ultrasonic wave transmitter / receiver whose transmission and reception directions change depending on a signal frequency, and the position and direction of the catheter are monitored by an ultrasonic probe from the body surface. apparatus.
【請求項2】信号周波数により送信及び受信方向が変化
する超音波送受波器を具備したカテーテルにおいて、カ
テーテルチューブの径方向の対向する部位に、進行方向
に平行な長さの異なるマーカーを複数設けたことを特徴
とする超音波装置。
2. A catheter equipped with an ultrasonic wave transmitter / receiver whose transmitting and receiving directions change depending on a signal frequency, wherein a plurality of markers having different lengths parallel to the advancing direction are provided at opposing portions in the radial direction of the catheter tube. An ultrasonic device characterized in that
JP4088574A 1992-04-09 1992-04-09 Ultrasonic device Pending JPH05285144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4088574A JPH05285144A (en) 1992-04-09 1992-04-09 Ultrasonic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4088574A JPH05285144A (en) 1992-04-09 1992-04-09 Ultrasonic device

Publications (1)

Publication Number Publication Date
JPH05285144A true JPH05285144A (en) 1993-11-02

Family

ID=13946630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4088574A Pending JPH05285144A (en) 1992-04-09 1992-04-09 Ultrasonic device

Country Status (1)

Country Link
JP (1) JPH05285144A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016511644A (en) * 2012-12-21 2016-04-21 ジェイソン スペンサー, Catheter orientation marker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016511644A (en) * 2012-12-21 2016-04-21 ジェイソン スペンサー, Catheter orientation marker

Similar Documents

Publication Publication Date Title
EP1033937B1 (en) Methods and apparatus for non-uniform rotation distorsion detection in an intravascular ultrasound imaging system
US5309914A (en) Ultrasonic imaging apparatus
US6866632B1 (en) Adaptive receive aperture for ultrasound image reconstruction
JP4582827B2 (en) Ultrasonic diagnostic equipment
JPH0419860B2 (en)
JP2007512068A (en) Three-dimensional ultrasound imaging using mechanical probe with beam scanning reversal
JP2003501195A (en) Improved volumetric ultrasound imaging with coarse arrays
JPH0852151A (en) Lithiasis crushing device and lithiasis position determiningdevice
US11766241B2 (en) Ultrasound system in which an ultrasound probe and a display device are wirelessly connected with each other and method for controlling ultrasound system in which an ultrasound probe and a display device are wirelessly connected with each other
EP1698281B1 (en) Ultrasonic probe
JPH074040B2 (en) Ultrasonic probe
WO2010040170A1 (en) Ultrasound imaging modality improvement
JPH05285144A (en) Ultrasonic device
EP0927539A1 (en) Hand-held ultrasonic probe
JPH05285140A (en) Ultrasonic device
US8118745B2 (en) Ultrasound imaging apparatus
JPH05285145A (en) Ultrasonic device
JPH1068702A (en) Computed tomography device
JPH05285131A (en) Ultrasonic device
JPH05285134A (en) Ultrasonic transmitter/receiver
JP3101301B2 (en) Ultrasound diagnostic equipment
JPH01250226A (en) Ultrasonic diagnostic apparatus
JPH0542148A (en) Utrasonic diagnostic device
JPH05154148A (en) Ultrasonic probe
JPH08280691A (en) Fine caliber probe and ultrasonic diagnostic apparatus