JPH052846Y2 - - Google Patents

Info

Publication number
JPH052846Y2
JPH052846Y2 JP1985025304U JP2530485U JPH052846Y2 JP H052846 Y2 JPH052846 Y2 JP H052846Y2 JP 1985025304 U JP1985025304 U JP 1985025304U JP 2530485 U JP2530485 U JP 2530485U JP H052846 Y2 JPH052846 Y2 JP H052846Y2
Authority
JP
Japan
Prior art keywords
gas
flow rate
control means
sample
rate control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985025304U
Other languages
Japanese (ja)
Other versions
JPS61140950U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985025304U priority Critical patent/JPH052846Y2/ja
Publication of JPS61140950U publication Critical patent/JPS61140950U/ja
Application granted granted Critical
Publication of JPH052846Y2 publication Critical patent/JPH052846Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 この考案は高周波プラズマ発光分析装置、特に
高周波誘導結合プラズマ発光分析装置(以下ICP
と略称する。)に関し、詳しくは気体試料に含ま
れる元素不純物を迅速かつ簡便に分析できるよう
改良したICPに関する。
[Detailed explanation of the invention] (a) Industrial application field This invention is a high-frequency plasma emission spectrometer, especially a high-frequency inductively coupled plasma emission spectrometer (hereinafter referred to as ICP).
It is abbreviated as. ), in detail, it relates to an improved ICP that enables quick and easy analysis of elemental impurities contained in gaseous samples.

(ロ) 従来の技術 従来のICPは、第3図に示すように溶液試料供
給路1とキヤリアガス供給路2からそれぞれ溶液
試料及びキヤリアガスをネブライザー3内に供給
して溶液試料を霧化し、この霧化試料を高周波プ
ラズマ生成部(以下生成部と略称する。)4に導
入してそれに含まれる元素不純物を分光測光部5
で分析するものである。
(b) Conventional technology As shown in Fig. 3, conventional ICP supplies a solution sample and a carrier gas into a nebulizer 3 from a solution sample supply path 1 and a carrier gas supply path 2, respectively, and atomizes the solution sample. A sample is introduced into a high-frequency plasma generation section (hereinafter abbreviated as generation section) 4, and elemental impurities contained therein are detected by a spectrophotometry section 5.
This is what we will analyze.

しかし、このICPでは、生成部4に導入される
霧化試料の量は、溶液試料の霧化の程度によつて
大きく変動し、プラズマの生成がきわめて不安定
になる。
However, in this ICP, the amount of atomized sample introduced into the generation section 4 varies greatly depending on the degree of atomization of the solution sample, making plasma generation extremely unstable.

(ハ) 目的 この考案は、以上の事情に鑑みなされたもの
で、その主要な目的は、気体試料を生成部に導入
可能に構成するとともにその導入量を制御可能に
構成し、気体試料の種類に関係なく気体試料に含
まれる元素不純物を迅速かつ簡便に定性・定量分
析することができるようにすることにある。
(c) Purpose This invention was developed in view of the above circumstances, and its main purpose is to configure the gas sample so that it can be introduced into the generation section, to control the amount introduced, and to change the type of gas sample. The object of the present invention is to enable quick and simple qualitative and quantitative analysis of elemental impurities contained in a gas sample, regardless of the situation.

(ニ) 構成 この考案は、高周波プラズマ発光分析装置であ
つて、筒状の高周波プラズマ生成部と、このプラ
ズマ生成部から放射される光を測光する分光測光
部と、前記プラズマ生成部の筒内に気体試料及び
キヤリアガスを混合して導入するガス混合器を備
えた混合ガス導入路と、この導入路の導入側端部
に分岐接続されこの分岐接続側から順に流量検出
センサー及び流量制御手段をそれぞれ介設した1
組以上の気体試料供給路及びキヤリアガス供給路
と、前記流量制御手段を制御する制御手段とを備
え、前記制御手段が前記流量検出センサーの検出
信号に基づいてガス混合器に導入される気体試料
とキヤリアガスの合計の導入量が一定となるよう
に前記流量制御手段を制御するとともに、前記分
光測光部からの測光終了信号によつて気体試料の
導入を停止させることを特徴とするものである。
(D) Configuration This device is a high-frequency plasma emission spectrometer, which includes a cylindrical high-frequency plasma generation section, a spectrophotometry section that measures light emitted from the plasma generation section, and a cylindrical interior of the plasma generation section. A mixed gas introduction path equipped with a gas mixer that mixes and introduces a gas sample and a carrier gas, and a branch connection to the introduction side end of this introduction path, and a flow rate detection sensor and a flow rate control means in order from this branch connection side, respectively. 1 who intervened
a gas sample supply path and a carrier gas supply path, and a control means for controlling the flow rate control means, the control means controlling the gas sample introduced into the gas mixer based on the detection signal of the flow rate detection sensor The present invention is characterized in that the flow rate control means is controlled so that the total amount of carrier gas introduced is constant, and the introduction of the gas sample is stopped in response to a photometry end signal from the spectrophotometer.

すなわち、この考案は、気体試料供給路及びキ
ヤリアガス供給路からそれぞれ供給された気体試
料及びキヤリアガスをガス混合器で混合してこの
混合ガスを上記生成部に導入するもので、この
際、キヤリアガス及び気体試料の供給量及び供給
自体が流量制御手段によつて制御される。
That is, this device mixes the gas sample and carrier gas supplied from the gas sample supply path and the carrier gas supply path, respectively, in a gas mixer, and introduces this mixed gas into the generation section. The amount of sample supplied and the supply itself are controlled by a flow rate control means.

(ホ) 実施例 以下第1図及び第2図に示す実施例に基づいて
この考案を詳述する。
(E) Example This invention will be described in detail below based on the example shown in FIGS. 1 and 2.

なお、これによつてこの考案が限定されるもの
ではない。
Note that this invention is not limited to this.

第1図は高周波誘導結合プラズマ発光分析装置
8である。9は分光測光部、10は、高周波プラ
ズマ生成部、11は試料導入部である。上記生成
部10は筒状のトーチ部12と、このトーチ部の
筒壁に設けられた2つのプラズマ生成ガス導入路
13,13とからなり、14はトーチ部12の上
端に点灯されるプラズマである。まお、分光測光
部9の利用する波長領域は150nm〜900nm程度の
範囲である。
FIG. 1 shows a high frequency inductively coupled plasma emission spectrometer 8. As shown in FIG. 9 is a spectrophotometry section, 10 is a high frequency plasma generation section, and 11 is a sample introduction section. The generating section 10 consists of a cylindrical torch section 12 and two plasma generating gas introduction passages 13, 13 provided on the cylindrical wall of the torch section. be. The wavelength range used by the spectrophotometer 9 is approximately 150 nm to 900 nm.

試料導入部11は第2図に示すように前記生成
部10の筒内にその下端から気体試料及びキヤリ
アガスを導入する混合ガス導入路15と、この導
入路のガス導入側端部にガス混合器16を介して
分岐接続された1組の気体試料供給路17及びキ
ヤリアガス供給路18とから主として構成されて
いる。なお、上記両ガス供給路17,18は複数
組であつてもよい。気体試料供給路17とキヤリ
アガス供給路18には、それぞれのガス供給方向
に向かつて順に流路開閉弁19,20、流量制御
弁(フローコントローラ)21,22及び流量検
出センサー(フローメーター)23,24が介設
されており、混合ガス導入路15には流路開閉弁
25が介設されている。なお、3つの流路開閉弁
19,20,25は電磁弁から構成される。ま
た、2つの流路開閉弁19,20と流量制御弁2
1,22とによつて流量制御手段26,27が構
成される。
As shown in FIG. 2, the sample introduction section 11 includes a mixed gas introduction path 15 for introducing a gas sample and a carrier gas into the cylinder of the generation section 10 from its lower end, and a gas mixer at the gas introduction side end of this introduction path. It mainly consists of a pair of gas sample supply passages 17 and carrier gas supply passages 18 which are branched and connected via a gas sample supply passage 16 . Note that there may be a plurality of sets of both the gas supply paths 17 and 18. The gas sample supply path 17 and the carrier gas supply path 18 are provided with flow path opening/closing valves 19, 20, flow control valves (flow controllers) 21, 22, and flow rate detection sensors (flow meters) 23, in order in the respective gas supply directions. 24 is interposed, and a flow path opening/closing valve 25 is interposed in the mixed gas introduction path 15. Note that the three flow path opening/closing valves 19, 20, and 25 are composed of electromagnetic valves. In addition, two flow path opening/closing valves 19, 20 and a flow control valve 2 are provided.
1 and 22 constitute flow control means 26 and 27.

上記開閉弁19,20,25、流量制御弁2
1,22、流量検出センサー23,24及び分光
測光部9に、流量制御弁21,22及び流路開閉
弁19,20,25の作動を制御する制御手段2
8が電気接続されている。この制御手段として
は、たとえばシーケンサーなどが好ましい例とし
て挙げられる。
The above-mentioned on-off valves 19, 20, 25, flow control valve 2
1, 22, a control means 2 for controlling the operation of the flow rate control valves 21, 22 and the flow path opening/closing valves 19, 20, 25 in the flow rate detection sensors 23, 24 and the spectrophotometer 9;
8 are electrically connected. A preferred example of this control means is a sequencer.

次に上記装置8の作動について説明する。 Next, the operation of the device 8 will be explained.

まず、使用するキヤリアガスの種類を気体試料
の特性を考慮して決定する。なお、気体試料とし
てはたとえば、アルゴン、窒素、シアンガスなど
の各種のガスが用いられる。
First, the type of carrier gas to be used is determined by taking into account the characteristics of the gas sample. Note that various gases such as argon, nitrogen, and cyan gas are used as the gas sample.

次に従来と同様にしてプラズマ14を点灯す
る。そして流路開閉弁20を開放作動させてキヤ
リアガス供給路18にキヤリアガスを、たとえば
1l/min導入する。次いで、制御手段28の制御
信号に基づいて流路開閉弁19を開放作動させる
と同時に流量制御弁21を制御作動させて、気体
試料を所定流量、たとえば0.1l/min気体試料供
給路17から混合ガス供給路15に導入すると、
制御手段28の制御信号に基づいて流量制御弁2
2が作動して混合ガス供給路15に導入されるキ
ヤリアガスの流量を0.9l/minに減少させて混合
ガス供給路15に導入される流量を当初のキヤリ
アガス導入量と一致させる。そして、この状態に
おいてプラズマ14を測光して気体試料を分析す
る。
Next, the plasma 14 is turned on in the same manner as in the prior art. Then, the flow path opening/closing valve 20 is opened and operated to supply carrier gas to the carrier gas supply path 18, for example.
Introduce 1l/min. Next, the flow path opening/closing valve 19 is opened based on the control signal from the control means 28, and at the same time the flow rate control valve 21 is controlled to mix the gas sample at a predetermined flow rate, for example, 0.1 l/min from the gas sample supply path 17. When introduced into the gas supply path 15,
Based on the control signal of the control means 28, the flow rate control valve 2
2 is activated to reduce the flow rate of the carrier gas introduced into the mixed gas supply path 15 to 0.9 l/min, thereby making the flow rate introduced into the mixed gas supply path 15 match the initial amount of carrier gas introduced. In this state, the plasma 14 is photometered and the gas sample is analyzed.

次に測光が終了すると、制御手段28の制御信
号に基づいて流路開閉弁19を閉作動させて気体
試料の導入を停止させると同時に流量制御弁22
を制御作動させてキヤリアガスの流量を当初の流
量に復帰させる。
Next, when photometry is completed, the flow path opening/closing valve 19 is closed based on the control signal from the control means 28 to stop the introduction of the gas sample, and at the same time the flow rate control valve 22
is operated in a controlled manner to restore the carrier gas flow rate to its original flow rate.

以上を繰り返して各分析対象の気体試料の分析
を行う。この際、プラズマ14の分光時に従来の
ように溶液試料を用いたときのような不安定なプ
ラズマの生成が防止できるだけではなく、更に気
体試料とキヤリアガスの合計の導入量を一定に制
御しているので、安定したプラズマの生成が可能
になると共にその安定化を更に高めて精度の高い
定性・定量分析が可能になる。また、この装置8
はオフラインでも製造工程のプロセス制御のよう
なオンラインでも分析を行うことができ、さらに
試料導入部11のガス供給側にガスクロマトグラ
フを設置してガスクロマトグラフから排出される
排出ガスの分別・分析用としても使用することが
できる。
The above steps are repeated to analyze each gas sample to be analyzed. In this case, not only is it possible to prevent the generation of unstable plasma that occurs when a solution sample is used in the conventional method during spectroscopy of the plasma 14, but also the total amount of introduced gas sample and carrier gas can be controlled at a constant level. Therefore, it is possible to generate stable plasma, and the stabilization is further improved to enable highly accurate qualitative and quantitative analysis. In addition, this device 8
Analysis can be performed both off-line and online, such as during process control in manufacturing processes.In addition, a gas chromatograph can be installed on the gas supply side of the sample introduction section 11 to separate and analyze the exhaust gas discharged from the gas chromatograph. can also be used.

(ヘ) 効果 この考案は、キヤリアガスと気体試料とを混合
してその混合ガスを高周波プラズマ生成部に導入
するとともにその導入時及びプラズマ点灯時に上
記両ガスの導入量を合計で一定に制御するよう構
成したものであるから、気体試料の使用によるプ
ラズマの安定化を更に高めて、高精度の定性・定
量分析を可能にします。
(f) Effect This device mixes a carrier gas and a gas sample, introduces the mixed gas into the high-frequency plasma generation section, and controls the total amount of both gases to be introduced at a constant level during the introduction and when the plasma is turned on. This structure further improves the stabilization of plasma through the use of gas samples, enabling highly accurate qualitative and quantitative analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案に係る高周波プラズマ発光分
析装置の一実施例を示す構成説明図、第2図は、
この要部構成説明図、第3図は従来例の第1図相
当図である。 8……高周波プラズマ誘導結合発光分析装置
(ICP)、9……分光測光部、10……高周波プラ
ズマ生成部、15……混合ガス導入路、16……
ガス混合器、17……気体試料供給路、18……
キヤリアガス供給路、26,27……流量制御手
段、28……制御手段。
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the high-frequency plasma emission spectrometer according to this invention, and FIG.
This explanatory diagram of the main part configuration, FIG. 3, is a diagram corresponding to FIG. 1 of the conventional example. 8... High frequency plasma inductively coupled optical emission spectrometer (ICP), 9... Spectrophotometry section, 10... High frequency plasma generation section, 15... Mixed gas introduction path, 16...
Gas mixer, 17... Gas sample supply path, 18...
Carrier gas supply path, 26, 27...Flow rate control means, 28...Control means.

Claims (1)

【実用新案登録請求の範囲】 1 筒状の高周波プラズマ生成部と、このプラズ
マ生成部から放射される光を測光する分光測光
部と、前記プラズマ生成部の筒内に気体試料及
びキヤリアガスを混合して導入するガス混合器
を備えた混合ガス導入路と、この導入路の導入
側端部に分岐接続されこの分岐接続側から順に
流量検出センサー及び流量制御手段をそれぞれ
介設した1組以上の気体試料供給路及びキヤリ
アガス供給路と、前記流量制御手段を制御する
制御手段とを備え、前記制御手段が前記流量検
出センサーの検出信号に基づいてガス混合器に
導入される気体試料とキヤリアガスの合計の導
入量が一定となるように前記流量制御手段を制
御するとともに、前記分光測光部からの測光終
了信号によつて気体試料の導入を停止させるこ
とを特徴とする高周波プラズマ発光分析装置。 2 流量制御手段が、流量検出センサー側の流量
制御弁とこの流量制御弁より前記両ガス供給側
の流路開閉弁とからなる請求の範囲第1項記載
の高周波プラズマ発光分析装置。
[Claims for Utility Model Registration] 1. A cylindrical high-frequency plasma generation section, a spectrophotometry section that measures light emitted from the plasma generation section, and a gas sample and carrier gas mixed in the cylinder of the plasma generation section. A mixed gas introduction path equipped with a gas mixer for introducing gas into the gas mixture, and one or more sets of gases connected in a branch to the introduction side end of this introduction path and each having a flow rate detection sensor and a flow rate control means interposed in order from this branch connection side. The control means includes a sample supply path, a carrier gas supply path, and a control means for controlling the flow rate control means, and the control means controls the total amount of the gas sample and carrier gas introduced into the gas mixer based on the detection signal of the flow rate detection sensor. A high-frequency plasma emission spectrometer, characterized in that the flow rate control means is controlled so that the amount introduced is constant, and the introduction of the gas sample is stopped in response to a photometry end signal from the spectrophotometer. 2. The high-frequency plasma emission spectrometer according to claim 1, wherein the flow rate control means comprises a flow rate control valve on the side of the flow rate detection sensor and a flow path opening/closing valve on the both gas supply sides from the flow rate control valve.
JP1985025304U 1985-02-22 1985-02-22 Expired - Lifetime JPH052846Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985025304U JPH052846Y2 (en) 1985-02-22 1985-02-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985025304U JPH052846Y2 (en) 1985-02-22 1985-02-22

Publications (2)

Publication Number Publication Date
JPS61140950U JPS61140950U (en) 1986-09-01
JPH052846Y2 true JPH052846Y2 (en) 1993-01-25

Family

ID=30520255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985025304U Expired - Lifetime JPH052846Y2 (en) 1985-02-22 1985-02-22

Country Status (1)

Country Link
JP (1) JPH052846Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129513A1 (en) * 2006-05-09 2007-11-15 Sumitomo Seika Chemicals Co., Ltd. Sample introduction system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660334A (en) * 1979-10-20 1981-05-25 Shimadzu Corp Spectral analyzer for plasma light source light emission

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167450U (en) * 1982-04-30 1983-11-08 株式会社島津製作所 High frequency plasma analyzer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660334A (en) * 1979-10-20 1981-05-25 Shimadzu Corp Spectral analyzer for plasma light source light emission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129513A1 (en) * 2006-05-09 2007-11-15 Sumitomo Seika Chemicals Co., Ltd. Sample introduction system

Also Published As

Publication number Publication date
JPS61140950U (en) 1986-09-01

Similar Documents

Publication Publication Date Title
EP0475636A2 (en) Method and apparatus for analysis of gases using plasma
JPH052846Y2 (en)
US4220413A (en) Automatic gas flow control apparatus for an atomic absorption spectrometer burner
JPH0640074B2 (en) ICP analysis method
US5130537A (en) Plasma analyzer for trace element analysis
US5045196A (en) Apparatus for pre-concentration of a sample for spectroscopical reasons
JPH06222005A (en) Icp emission spectroscopic analysis
Molinero et al. Gaseous sample introduction for the determination of silicon by ICP-AES
JPS6128293B2 (en)
US5579104A (en) Apparatus applied to spectroscopy
GB2304189A (en) Preparing samples for analysis
JPH09159610A (en) Plasma analyzing device with sample introduction stabilization mechanism
JPH0886755A (en) Method for using plasma gas
JPH0619084Y2 (en) Inductively coupled plasma optical emission spectrometer
JPH09199076A (en) Inductively coupled plasma mass spectrograph
JP2001281138A (en) Flame atomic absorption spectrophotometer
JPS6135962Y2 (en)
US4773755A (en) Method and apparatus for determining the zero line in atomic absorption spectrometers
JPH10321182A (en) Induction coupling plasma mass and spectral analysis device
JPH0431759A (en) Method for analyzing component to be measured
JPH0789102B2 (en) ICP emission spectrometer
JPH05142151A (en) Analyzer utilizing plasma excitation
JPS59137845A (en) Combustion apparatus for atomic absorption analysis
JP2005030908A (en) Flame type atomic absorption spectro photometer
JPH06289001A (en) Gas chromatograph