JPH05283070A - Hydrogen storage alloy pole for battery - Google Patents

Hydrogen storage alloy pole for battery

Info

Publication number
JPH05283070A
JPH05283070A JP4076679A JP7667992A JPH05283070A JP H05283070 A JPH05283070 A JP H05283070A JP 4076679 A JP4076679 A JP 4076679A JP 7667992 A JP7667992 A JP 7667992A JP H05283070 A JPH05283070 A JP H05283070A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
electrode
battery
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4076679A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoichiro Tsuji
庸一郎 辻
Koji Yamamura
康治 山村
Hajime Seri
肇 世利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4076679A priority Critical patent/JPH05283070A/en
Publication of JPH05283070A publication Critical patent/JPH05283070A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the initial characteristic and the utilization factor of a hydrogen storage alloy pole, which is mainly composed of Zr-Ni and which includes AB2Laves phase, and achieve the long lifetime. CONSTITUTION:The material obtained by adding nickel powder, which is obtained by reducing nickel salt such as acetate, sulfate, and chloride in the alkali solution with the reduction agent such as hydrazine hydrate and sodium borohydride, to the hydrogen storage alloy powder and mixing them is used for the manufacture of hydrogen storage alloy pole. With this structure, the hydrogen storage alloy pole having the excellent initial characteristic of a charge and discharge cycle and the excellent negative electrode utilization factor and a long lifetime can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケル−水素蓄電池の
負極として用いる水素吸蔵合金極に関する。
FIELD OF THE INVENTION The present invention relates to a hydrogen storage alloy electrode used as a negative electrode of a nickel-hydrogen storage battery.

【0002】[0002]

【従来の技術】各種の電源として広く使われている蓄電
池には鉛蓄電池とアルカリ蓄電池がある。このうちアル
カリ蓄電池は高信頼性が期待でき、小形軽量化も可能な
どの理由で、小型電池は各種ポータブル電子機器用に、
大型電池は産業用電源として使われてきた。
2. Description of the Related Art Storage batteries widely used as various power sources include lead storage batteries and alkaline storage batteries. Of these, alkaline storage batteries can be expected to have high reliability and can be made smaller and lighter. For these reasons, small batteries are used for various portable electronic devices.
Large batteries have been used as an industrial power source.

【0003】このアルカリ蓄電池においては、正極とし
ては一部の用途で空気極や酸化銀極などが用いられてい
るが、ほとんどの場合ニッケル極が用いられる。さら
に、ポケット式から焼結式に替わって特性が向上し、密
閉化が可能になるとともに用途もさらに広がった。
In this alkaline storage battery, an air electrode, a silver oxide electrode or the like is used as a positive electrode for some applications, but in most cases, a nickel electrode is used. Furthermore, the characteristics were improved from the pocket type to the sintered type, enabling sealing and expanding the applications.

【0004】一方、負極としてはカドミウムの他に亜
鉛,鉄,水素などが用いられてきたが、現在のところカ
ドミウム極が用いられることが多い。ところが一層の高
エネルギー密度を達成するために、金属水素化物つまり
水素吸蔵合金極を使ったニッケル−水素蓄電池が注目さ
れ製法などに多くの提案がされている。
On the other hand, zinc, iron, hydrogen and the like have been used for the negative electrode in addition to cadmium, but at present, a cadmium electrode is often used. However, in order to achieve an even higher energy density, a nickel-hydrogen storage battery using a metal hydride, that is, a hydrogen storage alloy electrode has attracted attention, and many proposals have been made for its manufacturing method.

【0005】[0005]

【発明が解決しようとする課題】水素吸蔵合金極の製法
としては合金粉末を焼結する方式と、発泡状,繊維状,
パンチングメタルなどの2次元構造や3次元構造の多孔
体に水素吸蔵合金粉末を充填や塗着するペースト式があ
る。いずれの方式でもとくに充放電サイクルの初期での
放電特性に改良の余地がある。とくに水素吸蔵合金とし
てZr−NiをベースとするAB2Laves相を含む
合金を用いた場合は、高放電容量になるが充放電サイク
ル初期の活性化が問題である。充放電サイクル初期に充
電の受け入れ性が悪いと、密閉形電池では負極律則にな
り、高放電特性,自己放電特性,寿命などが低下すると
いう問題があった。
The hydrogen storage alloy electrode can be manufactured by sintering alloy powder, foaming, fibrous,
There is a paste method in which a hydrogen storage alloy powder is filled or applied to a porous body having a two-dimensional structure or a three-dimensional structure such as punching metal. In either method, there is room for improvement especially in the discharge characteristics at the beginning of the charge / discharge cycle. In particular, when an alloy containing a Zr-Ni-based AB 2 Laves phase is used as the hydrogen storage alloy, the discharge capacity becomes high, but activation at the beginning of the charge / discharge cycle is a problem. If the acceptability of charge is poor at the beginning of the charge / discharge cycle, there is a problem that the sealed battery becomes a negative electrode rule, and high discharge characteristics, self-discharge characteristics, life, etc. are deteriorated.

【0006】本発明はこのような課題を解決するもの
で、充放電サイクル初期の充放電特性が優れ、自己放電
が少なく、長寿命の水素吸蔵合金極を提供することを目
的とするものである。
The present invention is intended to solve such problems, and an object of the present invention is to provide a hydrogen storage alloy electrode having excellent charge / discharge characteristics at the beginning of a charge / discharge cycle, little self-discharge, and a long life. ..

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
に、本発明は硝酸塩,硫酸塩,塩化物などのニッケル塩
をヒドラジン水和物やナトリウムボロハイドライドなど
の還元剤とアルカリ溶液中で還元して得られたニッケル
粉末を水素吸蔵合金粉末に添加,混合して得られた材料
を用いて水素吸蔵合金極用を構成したものである。
In order to solve this problem, the present invention reduces nickel salts such as nitrates, sulfates and chlorides in a alkaline solution with a reducing agent such as hydrazine hydrate and sodium borohydride. The nickel powder thus obtained is added to and mixed with the hydrogen storage alloy powder to form a hydrogen storage alloy electrode.

【0008】また、水素吸蔵合金としてZr−Niをベ
ースとするAB2Laves相を含む合金を用い、ニッ
ケル粉末を水素吸蔵合金粉末に対して1〜10重量添加
するようにしたものである。
An alloy containing an AB 2 Laves phase based on Zr-Ni is used as the hydrogen storage alloy, and 1 to 10 parts by weight of nickel powder is added to the hydrogen storage alloy powder.

【0009】[0009]

【作用】この構成によれば、ニッケル塩をアルカリ溶液
中で還元して生成するニッケル粉末は、ブラック状,モ
ス状で表面積が大きく、きわめて活性である。一方、水
素吸蔵合金はそれ自身導電性があるので、電極を形成す
るのに別の導電性添加剤は必要ではないが、少量の導電
剤を加えた方が単位重量当りの放電容量は向上する。従
来この種の添加剤としては活性炭,黒鉛,カーボンブラ
ック,カーボニルニッケル粉末などが用いられ、カーボ
ニルニッケルが導電性の点で特に有効であった。本発明
のニッケル粉末はブラック状,モス状であるので、少量
の添加でも水素吸蔵合金粉末との接触は良好である。特
に擦り込むように混合することで接触状態はさらに良好
となり、電極の導電性の向上と表面の改質が可能とな
る。その結果、充放電サイクルの初期から水素吸蔵合金
の利用率を大きくし、充放電特性が向上することとな
る。
According to this structure, the nickel powder produced by reducing the nickel salt in the alkaline solution is black, moss-like, has a large surface area, and is extremely active. On the other hand, since the hydrogen storage alloy itself is conductive, it is not necessary to use another conductive additive to form the electrode, but adding a small amount of conductive agent improves the discharge capacity per unit weight. . Conventionally, activated carbon, graphite, carbon black, carbonyl nickel powder, etc. have been used as additives of this type, and carbonyl nickel has been particularly effective in terms of conductivity. Since the nickel powder of the present invention is black or moss-like, even if added in a small amount, the contact with the hydrogen storage alloy powder is good. In particular, by mixing by rubbing, the contact state is further improved, and the conductivity of the electrode can be improved and the surface can be modified. As a result, the utilization rate of the hydrogen storage alloy is increased from the beginning of the charge / discharge cycle, and the charge / discharge characteristics are improved.

【0010】[0010]

【実施例】以下に本発明の一実施例の水素吸蔵合金電極
について説明する。まず、50℃で硫酸ニッケル飽和水
溶液をつくり、これに20重量%になるようにカセイカ
リ水溶液を加え十分混合後して水酸化ニッケルを沈澱さ
せる。還元反応を促進するために微量のカーボニルニッ
ケル粉末を加え、ヒドラジン一水和物を5重量%加え
る。カーボニルニッケル粉末に接した水酸化ニッケルか
ら還元が始まって黒色となり、ヒドラジンを分解しなが
ら還元が進み、全体がモス状のニッケル粉末になる。5
0℃で60分間還元後水洗と遠心分離法によりアルカリ
とヒドラジンを除去した。
EXAMPLE A hydrogen storage alloy electrode of one example of the present invention will be described below. First, a saturated aqueous solution of nickel sulfate is prepared at 50 ° C., and an aqueous solution of causticus potassium is added to the solution to 20% by weight, followed by thorough mixing to precipitate nickel hydroxide. A small amount of carbonyl nickel powder is added to accelerate the reduction reaction, and 5% by weight of hydrazine monohydrate is added. Reduction starts from nickel hydroxide in contact with the carbonyl nickel powder and turns black, and the reduction proceeds while decomposing hydrazine, and the whole becomes a moss-like nickel powder. 5
After reduction at 0 ° C. for 60 minutes, the alkali and hydrazine were removed by washing with water and centrifugation.

【0011】水素吸蔵合金としてAB2Laves相合
金の一つであるZrMn0.5Cr0.20.1Ni1.2を粉砕
して360メッシュ通過させた。この合金粉末に対して
ニッケル粉末を加え、擂潰機を用いて擦り込むように混
合する。1時間混合後1.5重量%のポリビニルアルコ
ール溶液を加えて作ったペーストを、多孔度95%で厚
さ1.0mmの発泡状ニッケル板に充填した。得られた電
極はローラプレス機を通して厚さ0.52mmに調整して
電極を得た。この水素吸蔵合金極を幅39mm,長さ25
0mmに裁断し、リード板をスポット溶接により取り付け
た。この電極をAとする。比較のためにカーボニルニッ
ケル粉末を添加剤とし、他はAと同じ工程で得られた電
極をBとして加えた。
As a hydrogen storage alloy, ZrMn 0.5 Cr 0.2 V 0.1 Ni 1.2 , which is one of the AB 2 Laves phase alloys, was crushed and passed through 360 mesh. Nickel powder is added to this alloy powder and mixed by rubbing with a crusher. After mixing for 1 hour, a paste made by adding a 1.5% by weight polyvinyl alcohol solution was filled in a foamed nickel plate having a porosity of 95% and a thickness of 1.0 mm. The obtained electrode was adjusted to a thickness of 0.52 mm through a roller press machine to obtain an electrode. This hydrogen storage alloy electrode has a width of 39 mm and a length of 25
It was cut to 0 mm and the lead plate was attached by spot welding. This electrode is designated as A. For comparison, carbonyl nickel powder was used as an additive, and the electrode obtained in the same step as A was added as B except for the above.

【0012】まず、両者の負極としての特性を調べるた
めに負極律則になるように、十分容量の大きい対極とし
て焼結式のニッケル極を用い、電解液として比重1.2
5の苛性カリ水溶液に25g/1リットルの水酸化リチ
ウムを溶解して用いた。電解液の豊富な開放形の電池を
構成した。
First, a sintered nickel electrode is used as a counter electrode having a sufficiently large capacity, and a specific gravity of 1.2 is used as an electrolytic solution so that the negative electrode law is established in order to investigate the characteristics of both negative electrodes.
25 g / 1 liter of lithium hydroxide was dissolved in the caustic potash aqueous solution of 5 and used. An open battery rich in electrolyte was constructed.

【0013】5時間率で負極容量の140%定電流充電
−0.5Aで9Vまでの定電流放電を行ったところ、電
極Aの放電容量密度は1サイクル目303mAh/g,
2サイクル目353mAh/gで以後ほぼ一定になっ
た。ところが電極Bでは、1サイクル目31mh/g,
3サイクル目192,5サイクル目235,10サイク
ル目以後はほぼ一定で310mAh/gであった。この
結果から電極では充放電サイクル初期の充放電特性が向
上し利用率も高いことがわかる。
When a constant current charge of 140% of the negative electrode capacity at a rate of 5 hours and a constant current discharge of up to 9 V was performed at 0.5 A, the discharge capacity density of the electrode A was 303 mAh / g in the first cycle.
At the second cycle of 353 mAh / g, it became almost constant thereafter. However, with electrode B, 31 mh / g in the first cycle,
After the third cycle 192, the fifth cycle 235 and the tenth cycle, it was almost constant and was 310 mAh / g. From these results, it can be seen that the electrode has improved charge / discharge characteristics at the beginning of the charge / discharge cycle and a high utilization rate.

【0014】つぎに、従来通り正極律則の密閉形ニッケ
ル−水素蓄電池を構成した。相手極として公知の発泡状
ニッケル極を用い、セパレータとして親水化処理ポリプ
ロピレン不織布を用いた。電解液としては比重1.25
の苛性カリ水溶液に25g/1の水酸化リチウムを溶解
して用いた。電池は単2型とした。正極に対する負極の
容量を150%とした。この電極Aを用いた電池を電池
Aとする。また、比較の例の電極Bを用いた電池を電池
Bとする。
Next, a sealed nickel-hydrogen storage battery having a positive electrode regulation was constructed as in the past. A known foamed nickel electrode was used as the counter electrode, and a hydrophilized polypropylene nonwoven fabric was used as the separator. Specific gravity of the electrolyte is 1.25
25 g / l of lithium hydroxide was dissolved in the caustic potash solution. The battery was of the AA type. The capacity of the negative electrode with respect to the positive electrode was 150%. A battery using this electrode A is referred to as a battery A. A battery using the electrode B of the comparative example is referred to as a battery B.

【0015】電池Aおよび電池Bについて、まず、初期
の放電電圧と放電容量を比較した。5時間率で容量の1
50%定電流充電−1.0Aで0.9Vまでの定電流放
電を行ったところ、電池Aは平均電圧は1.23Vであ
り、放電容量は1サイクル以後ほぼ一定で2.8〜2.
9Ahであった。ところが電池Bでは、充放電特性が向
上してほぼ一定になるまでに4サイクルを必要とした。
Regarding the batteries A and B, first, the initial discharge voltage and discharge capacity were compared. 5 hours capacity 1
When constant current discharge of 50% constant current charge -1.0 A to 0.9 V was performed, the average voltage of Battery A was 1.23 V, and the discharge capacity was almost constant after 1 cycle of 2.8 to 2.
It was 9 Ah. However, in Battery B, four cycles were required until the charge / discharge characteristics improved and became almost constant.

【0016】つぎに両電池それぞれ10セル用い、上記
の充放電条件で充放電し、寿命特性を比較した。その結
果、放電容量は250サイクルでは、電池Aは正極律則
で95%以上を保持していたが、電池Bは負極律則で8
1%であり、500サイクルでは電池Aはまだ正極律則
で初期の90%を示しているのに対して、電池Bでは負
極律則で初期容量の69%であった。この結果から明ら
かなように電池Aが長寿命であった。
Next, 10 cells of each battery were used and charged and discharged under the above-mentioned charging and discharging conditions, and the life characteristics were compared. As a result, in the discharge capacity of 250 cycles, the battery A retained 95% or more according to the positive electrode rule, while the battery B had a negative electrode rule of 8%.
It was 1%, and at 500 cycles, Battery A still showed the initial 90% according to the positive electrode rule, while Battery B had 69% of the initial capacity according to the negative electrode rule. As is clear from this result, Battery A had a long life.

【0017】なお、ニッケル粉末の添加量に特別の限定
はないが、10%程度までは効果があり、特に1〜5%
の範囲の添加が電極として優れ、放電容量も大きかっ
た。
There is no particular limitation on the amount of nickel powder added, but it is effective up to about 10%, especially 1-5%.
Addition in the range was excellent as an electrode and the discharge capacity was large.

【0018】[0018]

【発明の効果】上記の実施例の説明から明らかなように
本発明によれば、ニッケル塩に苛性アルカリとヒドラジ
ン水和物などの還元剤を加えて還元して得られたニッケ
ル粉末を、水素吸蔵合金粉末に対して1〜10重量%添
加,混合して得られた水素吸蔵合金を電極に用いること
により充放電サイクルの初期特性,負極の利用率が向上
し、長寿命の水素吸蔵合金極を実現することができる。
As is apparent from the description of the above embodiments, according to the present invention, a nickel powder obtained by adding a reducing agent such as caustic alkali and hydrazine hydrate to a nickel salt is reduced to hydrogen. By using the hydrogen storage alloy obtained by adding and mixing 1 to 10% by weight to the storage alloy powder for the electrode, the initial characteristics of the charge and discharge cycle and the utilization factor of the negative electrode are improved, and the hydrogen storage alloy electrode has a long life. Can be realized.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 世利 肇 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hajime Seri, 1006, Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル塩を還元剤とアルカリ溶液で還
元して得られたニッケル粉末を水素吸蔵合金粉末に添
加,混合して得られた材料を用いてなる電池用水素吸蔵
合金極。
1. A hydrogen storage alloy electrode for a battery, which is made of a material obtained by adding and mixing nickel powder obtained by reducing a nickel salt with a reducing agent and an alkaline solution to a hydrogen storage alloy powder.
【請求項2】 ニッケル塩が硝酸塩,硫酸塩または塩化
物である請求項1記載の電池用水素吸蔵合金極。
2. The hydrogen storage alloy electrode for a battery according to claim 1, wherein the nickel salt is a nitrate, a sulfate or a chloride.
【請求項3】 還元剤がヒドラジン水和物またはナトリ
ウムボロハイドライドである請求項1記載の電池用水素
吸蔵合金極。
3. The hydrogen storage alloy electrode for a battery according to claim 1, wherein the reducing agent is hydrazine hydrate or sodium borohydride.
【請求項4】 ニッケル粉末の添加量が水素吸蔵合金粉
末に対して1〜10重量%である請求項1記載の電池用
水素吸蔵合金極。
4. The hydrogen storage alloy electrode for a battery according to claim 1, wherein the addition amount of the nickel powder is 1 to 10% by weight with respect to the hydrogen storage alloy powder.
【請求項5】 水素吸蔵合金がZr−Niをベースとす
るAB2Laves相を含む請求項1記載の電池用水素
吸蔵合金極。
5. The hydrogen storage alloy electrode for a battery according to claim 1, wherein the hydrogen storage alloy contains an AB 2 Laves phase based on Zr—Ni.
JP4076679A 1992-03-31 1992-03-31 Hydrogen storage alloy pole for battery Pending JPH05283070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4076679A JPH05283070A (en) 1992-03-31 1992-03-31 Hydrogen storage alloy pole for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4076679A JPH05283070A (en) 1992-03-31 1992-03-31 Hydrogen storage alloy pole for battery

Publications (1)

Publication Number Publication Date
JPH05283070A true JPH05283070A (en) 1993-10-29

Family

ID=13612122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4076679A Pending JPH05283070A (en) 1992-03-31 1992-03-31 Hydrogen storage alloy pole for battery

Country Status (1)

Country Link
JP (1) JPH05283070A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038926A2 (en) * 2001-10-31 2003-05-08 Energy Conversion Devices, Inc. Active material for fuel cell anodes incorporating an additive for precharging/activation thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613471B2 (en) 2000-03-13 2003-09-02 Energy Conversion Devices, Inc. Active material for fuel cell anodes incorporating an additive for precharging/activation thereof
WO2003038926A2 (en) * 2001-10-31 2003-05-08 Energy Conversion Devices, Inc. Active material for fuel cell anodes incorporating an additive for precharging/activation thereof
WO2003038926A3 (en) * 2001-10-31 2003-08-14 Energy Conversion Devices Inc Active material for fuel cell anodes incorporating an additive for precharging/activation thereof

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JPH05283070A (en) Hydrogen storage alloy pole for battery
JP2548431B2 (en) Nickel-metal hydride battery conversion method
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JPH0729569A (en) Manufacture of hydrogen storage alloy electrode
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JP2574542B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP3094618B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery
JP3316687B2 (en) Nickel-metal hydride storage battery
JP3136688B2 (en) Nickel-hydrogen storage battery
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2932711B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline battery
JPH03285270A (en) Alkaline storage battery
JP3370111B2 (en) Hydrogen storage alloy electrode
JPH09293501A (en) Manufacture of hydrogen storage alloy electrode
JP3482478B2 (en) Nickel-metal hydride storage battery
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0668874A (en) Manufacture of alkaline storage battery provided with hydrogen storage alloy electrode
JPH0668875A (en) Manufacture of hydrogen storage alloy electrode for battery
JP2007234440A (en) Nickel-hydrogen battery and its manufacturing method
JPH0737582A (en) Hydrogen storage alloy electrode and manufacture thereof
JPS60172166A (en) Metal hydride negative electrode for alkaline battery