JPH05281761A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH05281761A
JPH05281761A JP7717792A JP7717792A JPH05281761A JP H05281761 A JPH05281761 A JP H05281761A JP 7717792 A JP7717792 A JP 7717792A JP 7717792 A JP7717792 A JP 7717792A JP H05281761 A JPH05281761 A JP H05281761A
Authority
JP
Japan
Prior art keywords
layer
charge
light
charge transfer
transfer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7717792A
Other languages
Japanese (ja)
Inventor
Akiko Hirao
明子 平尾
Masami Sugiuchi
政美 杉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7717792A priority Critical patent/JPH05281761A/en
Publication of JPH05281761A publication Critical patent/JPH05281761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain an electrophotographic sensitive body having good repetition characteristics and long life by using a charge transfer layer showing absorption in the absorption wavelength region of a charge generating layer. CONSTITUTION:This electrophotographic sensitive body has a substantialy transparent base body, substantially transparent conductive layer formed on this base body, and photosensitive layer consisting of charge generating layer and charge transfer layer formed on the conductive layer. The charge transfer layer shows the max. absorption wavelength of 450-800nm visible light. Since the light in the wavelength range absorbed by the charge transfer layer is also absorbed by the charge generating layer, the light in this wavelength range is wholly absorbed by the charge generating layer and no light enters to the charge transfer layer for a back exposure method. Thereby, such problems that the electric conductivity in dark time is increasesd and the charge potential is decreased caused by absorption of light by the charge transfer layer can be avoided and the obtd. photosensitive body can be repeatedly used for image forming.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子写真感光体に係り、
特に、背面露光方式に用いられる電子写真感光体に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photoreceptor,
In particular, it relates to an electrophotographic photosensitive member used in a backside exposure system.

【0002】[0002]

【従来の技術】電子写真感光体は、基体と、この上に形
成された感光層とから構成される。電子写真感光体に
は、感光層が1層からなる単層型電子写真感光体と、感
光層が電荷発生層と電荷輸送層とから構成される積層型
電子写真感光体とが知られているが、現在では積層型電
子写真感光体がより広く用いられている。
2. Description of the Related Art An electrophotographic photosensitive member comprises a substrate and a photosensitive layer formed on the substrate. Known electrophotographic photoreceptors include a single-layer type electrophotographic photoreceptor having a single photosensitive layer and a laminated electrophotographic photoreceptor having a photosensitive layer including a charge generation layer and a charge transport layer. However, at present, the laminated electrophotographic photoconductor is more widely used.

【0003】また、電子写真感光体に露光を施し、潜像
を形成する過程には、感光層側から露光を行う方式と、
基体側から露光を行う背面露光方式が知られている。電
荷輸送層が電荷発生層の上に形成されている一般的な積
層型電子写真感光体の場合には、感光層側から露光を行
う方式では、照射光は電荷輸送層を透過し、電荷発生層
に達する必要がある。そのため、電荷輸送層としては、
電荷発生層とは最大吸収波長が異なり、使用波長におけ
る吸収が小さいものが選択されてきた。しかしながら、
このような積層型電子写真感光体においては、電荷輸送
層が電荷発生層とは異なる波長域の光をある程度吸収す
るため、帯電特性の低下や残電上昇等が生じるという問
題を避けられない。また、この積層型電子写真感光体を
背面露光方式に適用したとしても、上述したような電荷
輸送層と電荷発生層との吸収波長域の相違に起因して、
電荷発生層を透過した光が電荷輸送層に照射されてしま
う。従って、この場合もやはり、電荷輸送層は光を吸収
し、帯電特性の低下と残電の上昇等を引き起こしてしま
う。
In the process of exposing the electrophotographic photosensitive member to form a latent image, a method of exposing from the photosensitive layer side,
A backside exposure method in which exposure is performed from the substrate side is known. In the case of a general laminate type electrophotographic photoconductor in which the charge transport layer is formed on the charge generation layer, in the method of exposing from the photosensitive layer side, the irradiation light passes through the charge transport layer to generate the charge. Need to reach layers. Therefore, as the charge transport layer,
The maximum absorption wavelength is different from that of the charge generation layer, and one having small absorption at the used wavelength has been selected. However,
In such a multi-layer electrophotographic photoreceptor, the charge transport layer absorbs light in a wavelength range different from that of the charge generation layer to some extent, so that problems such as deterioration of charging characteristics and increase of residual charge are unavoidable. Even when this laminated electrophotographic photoreceptor is applied to the backside exposure method, due to the difference in the absorption wavelength range between the charge transport layer and the charge generation layer as described above,
The light transmitted through the charge generation layer is irradiated onto the charge transport layer. Therefore, also in this case, the charge transport layer also absorbs light and causes deterioration of charging characteristics and increase of residual charge.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
電荷輸送層における帯電特性の低下と残電の上昇を解消
し、繰り返し使用しても特性の変化しにくい電子写真感
光体を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides an electrophotographic photosensitive member which eliminates such a decrease in charging characteristics and an increase in residual charge in a charge transport layer, and whose characteristics hardly change even after repeated use. The purpose is to

【0005】[0005]

【課題を解決するための手段および作用】本発明者は、
上記目的を達成するために種々の検討を行い、本発明を
なすに至った。すなわち、電荷発生層の吸収波長域に吸
収を有する電荷輸送層を用いることにより、繰り返し特
性の良好な電子写真感光体の開発に成功した。
Means and Actions for Solving the Problems
In order to achieve the above object, various investigations have been made and the present invention has been completed. That is, by using a charge transport layer having absorption in the absorption wavelength region of the charge generation layer, we succeeded in developing an electrophotographic photoreceptor having good repeating characteristics.

【0006】本発明は、実質的に透明な基体、この基体
上に設けられた実質的に透明な導電層、及びこの導電層
上に設けられた電荷発生層と電荷輸送層とからなる感光
層を具備し、前記電荷輸送層は、450nmから800
nmの範囲に可視光の最大吸収波長を有することを特徴
とする電子写真感光体を提供する。
The present invention is directed to a substantially transparent substrate, a substantially transparent conductive layer provided on the substrate, and a photosensitive layer comprising a charge generation layer and a charge transport layer provided on the conductive layer. And the charge transport layer has a thickness of 450 nm to 800 nm.
Provided is an electrophotographic photosensitive member having a maximum absorption wavelength of visible light in the range of nm.

【0007】本発明において使用される基体は、背面露
光方式で採用し得るように、使用する光源の波長域で透
明であれば良く、そのような光の波長は、例えば半導体
レ―ザでは780nm、LEDでは630nm、ELで
は580nmが多用されているが、これに限定されるも
のではない。通常の樹脂では、可視域である400〜6
00nmの範囲で透明であり、長波長領域である800
nm付近まで透明性を維持しているものも多い。従っ
て、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレ
ン、ポリカ―ボネ―ト、ポリエステル、ポリアミド、ア
クリル樹脂、ポリイミドなど、感光体の基体として十分
な機械的強度を有するものであれば良く、特に好ましく
はエンドレスのベルト状にしたとき、容易にシ―ムレス
化し得るものを選択すると良い。もちろん、シ―ト状の
ものを融着等の方法でつなぎ合わせても良い。
The substrate used in the present invention may be transparent in the wavelength range of the light source to be used so that it can be adopted in the backside exposure system, and the wavelength of such light is, for example, 780 nm in a semiconductor laser. , 630 nm is often used for LEDs and 580 nm is used for EL, but it is not limited to this. Normal resin has a visible range of 400-6
800, which is transparent in the range of 00 nm and is in the long wavelength region
Many of them maintain transparency up to around nm. Therefore, polyvinyl chloride, polyvinylidene chloride, polyethylene, polycarbonate, polyester, polyamide, acrylic resin, polyimide and the like may be used as long as they have sufficient mechanical strength as a substrate of the photoreceptor, and particularly preferably endless. It is recommended to select one that can be easily made seamless when formed into a belt. Of course, sheets may be joined together by a method such as fusion bonding.

【0008】本発明において、前記基体上に形成される
導電層、更に必要に応じ静電気による露光面へのホコ
リ、チリの付着防止などを目的として基体の露光面側に
形成される導電層は、基体同様、使用される光源の波長
域で透明であればよい。このような導電層としては一般
に、金属、金属酸化物の蒸着膜や、金属、金属酸化物を
何らかの形で塗布後焼成したもの、又は導電性を有する
微粉体をバインダに分散させ塗布後乾燥若しくは硬化さ
せたものなどが挙げられる。これらの導電層の導電面
は、電気的に導通がとられ、接地されていてもよいし、
別々に接地されていてもよい。なお、その上に感光層が
形成される導電層は必ず接地が必要であるが、露光面側
に形成される導電層は必ずしも接地が必要なわけではな
い。
In the present invention, the conductive layer formed on the substrate and, if necessary, the conductive layer formed on the exposed surface side of the substrate for the purpose of preventing adhesion of dust and dust to the exposed surface due to static electricity, As with the substrate, it may be transparent in the wavelength range of the light source used. As such a conductive layer, generally, a metal, a vapor-deposited film of a metal oxide, a metal or a metal oxide coated in some form and baked, or a conductive fine powder dispersed in a binder and dried or Examples include cured products. The conductive surfaces of these conductive layers are electrically conducted and may be grounded,
It may be grounded separately. The conductive layer on which the photosensitive layer is formed always needs to be grounded, but the conductive layer formed on the exposed surface side is not necessarily required to be grounded.

【0009】本発明の電子写真感光体における電荷発生
層に使用される電荷発生材は、光を吸収して高い効率で
電荷を発生できるものならばどのようなものでもよい。
電荷発生材としては、例えば、セレンおよびセレン合
金、CdS、CdSe、AsSe、ZnO、アモルファ
スシリコン等の無機光導電体、金属フタロシアニン、無
金属フタロシアニン等のフタロシアニン顔料、モノア
ゾ、ジスアゾ等のアゾ系色素および顔料、ペリレン系顔
料、インジゴ系染顔料、キナクリドン系顔料、アントラ
キノン、アントアントロン等の多環キノン系顔料、シア
ニン色素、電子受容性物質と電子供与性物質とからなる
電荷移動錯体、ピリリウム染料とポリカ―ボネ―ト樹脂
とからなる共晶錯体、アズレニウム塩等を挙げることが
出来る。
The charge generating material used in the charge generating layer in the electrophotographic photosensitive member of the present invention may be any material as long as it can absorb light and generate charges with high efficiency.
Examples of the charge generating material include selenium and selenium alloys, inorganic photoconductors such as CdS, CdSe, AsSe, ZnO and amorphous silicon, phthalocyanine pigments such as metal phthalocyanine and metal-free phthalocyanine, azo dyes such as monoazo and disazo, and Pigments, perylene pigments, indigo dyes and pigments, quinacridone pigments, polycyclic quinone pigments such as anthraquinone and anthanthrone, cyanine dyes, charge transfer complexes consisting of electron accepting and electron donating substances, pyrylium dyes and polycarbonates. -A eutectic complex composed of a binder resin, an azurenium salt and the like can be mentioned.

【0010】電荷発生層の形成方法としては、使用する
電荷発生材の種類によっても異なるが、例えばスピンコ
―ティング法、浸漬塗布法、ロ―ラ塗布法、スプレ―塗
布法等の各種塗布法、真空蒸着法、スパッタリング法、
グロ―放電を利用した例えばプラズマCVD法等から適
宜選択して適用することができる。
The method for forming the charge generating layer varies depending on the type of charge generating material used, but various coating methods such as spin coating, dip coating, roller coating, spray coating, etc. Vacuum evaporation method, sputtering method,
For example, a plasma CVD method using glow discharge can be appropriately selected and applied.

【0011】このようにして得た電荷発生層は、450
nmから800nmの範囲に可視光の最大吸収波長を有
するものである。形成すべき電荷発生層の厚みは、電子
写真感光体として要求される静電特性により適宜決定さ
れるが、通常は0.1〜5μm程度であることが好まし
い。
The charge generation layer thus obtained is 450
It has a maximum absorption wavelength of visible light in the range of nm to 800 nm. The thickness of the charge generating layer to be formed is appropriately determined depending on the electrostatic characteristics required for the electrophotographic photosensitive member, but is usually preferably about 0.1 to 5 μm.

【0012】電荷発生層の上に設けられる電荷輸送層と
しては、電荷発生層が吸収する波長の光を最大吸収波長
とするもの、即ち、450nmから800nmの範囲に
可視光の最大吸収波長を有するものである。より好まし
くは、電荷発生層における可視光の最大吸収波長と電荷
輸送層における可視光の最大吸収波長との差が100n
m以内となるものである。電荷輸送層を構成する電荷輸
送材は、電荷を輸送するものであり、前記範囲に最大吸
収波長を有するものであればいかなるものでもよい。例
えば、主鎖又は側鎖にアントラセン、ピレン、フェナン
トレン、コロネンなどの多環芳香族化合物、又はインド
―ル、カルバゾ―ル、オキサゾ―ル、イオンキサゾ―
ル、チアゾ―ル、イミダゾ―ル、ピラゾ―ル、オキサジ
アゾ―ル、ピラゾリン、チアチアゾ―ル、トリアゾ―ル
などの含窒素環式化合物を有する化合物、ヒドラゾン化
合物等がある。また、このような電荷発生材のバインダ
となる高分子化合物としては、既知のさまざまなものが
使用可能である。例えばポリエチレン樹脂、ナイロン樹
脂、ポリエステル樹脂、ポリカ―ボネ―ト樹脂、ポリア
リレ―ト樹脂、ブチラ―ル樹脂、ポリスチレン樹脂、ス
チレン−ブタジエン共重合体樹脂、ポリビニルアセタ―
ル樹脂、ジアリルフタレ―ト樹脂、シリコ―ン樹脂、ポ
リスルホン樹脂、アクリル樹脂、酢酸ビニル、ポリフェ
ニレンオキシド樹脂、アルキド樹脂、スチレン−無水マ
レイン酸共重合体樹脂、フェノ―ル樹脂、パラフィンワ
ックス等が挙げられる。これらは単独で用いてもよいし
二種以上混合して用いてもよい。
The charge transport layer provided on the charge generation layer has a maximum absorption wavelength of light having a wavelength absorbed by the charge generation layer, that is, has a maximum absorption wavelength of visible light in the range of 450 nm to 800 nm. It is a thing. More preferably, the difference between the maximum absorption wavelength of visible light in the charge generation layer and the maximum absorption wavelength of visible light in the charge transport layer is 100 n.
It is within m. The charge-transporting material forming the charge-transporting layer transports charges and may be any material as long as it has a maximum absorption wavelength in the above range. For example, a polycyclic aromatic compound such as anthracene, pyrene, phenanthrene, coronene in the main chain or side chain, or indole, carbazole, oxazol, ionxazol
There are compounds having a nitrogen-containing cyclic compound such as thiol, thiazole, imidazole, pyrazol, oxadiazol, pyrazoline, thiathiazole and triazole, and hydrazone compounds. In addition, various known polymer compounds can be used as the binder of the charge generating material. For example, polyethylene resin, nylon resin, polyester resin, polycarbonate resin, polyarylate resin, butyral resin, polystyrene resin, styrene-butadiene copolymer resin, polyvinyl acetate
Resin, diallyl phthalate resin, silicone resin, polysulfone resin, acrylic resin, vinyl acetate, polyphenylene oxide resin, alkyd resin, styrene-maleic anhydride copolymer resin, phenol resin, paraffin wax, etc. .. These may be used alone or in combination of two or more.

【0013】電荷輸送層の形成方法は、電荷輸送材を所
定の割合で適当な高分子化合物とともに溶媒に溶解し均
一溶液とした後、一般的な方法、例えば浸漬塗布等で塗
布、乾燥を行い、好ましくは15〜25μmの膜厚とす
る方法が一般的である。高分子化合物自身に電荷輸送能
を有する物質を選択すれば、電荷輸送材の配合量を少な
くすることが出来る。また、電荷輸送材が十分な成膜性
を持っていれば、高分子化合物の配合を最小限に止める
ことができ、場合によっては電荷輸送材のみで電荷輸送
層を形成することも可能である。
The charge transport layer is formed by dissolving the charge transport material in a solvent together with a suitable polymer compound at a predetermined ratio to form a uniform solution, and then applying and drying by a general method such as dip coating. Generally, a method of forming a film thickness of 15 to 25 μm is generally used. By selecting a substance having a charge transporting ability for the polymer compound itself, the amount of the charge transporting material can be reduced. Further, if the charge transport material has a sufficient film-forming property, the blending of the polymer compound can be minimized, and in some cases, the charge transport layer can be formed only by the charge transport material. ..

【0014】本発明の電子写真感光体の表面を帯電させ
る場合、コロトロンあるいはスコロトロンによるコロナ
放電、接触帯電、摩擦帯電等、種々の方法があるが、本
発明の電子写真感光体は、何ら帯電方法には限定される
ものではない。
When the surface of the electrophotographic photosensitive member of the present invention is charged, there are various methods such as corona discharge by a corotron or scorotron, contact charging, friction charging, etc., but the electrophotographic photosensitive member of the present invention is not charged at all. Is not limited to.

【0015】本発明の電子写真感光体においては、必要
に応じて、中間層、保護層の少なくとも一方を形成して
も良い。中間層に用いられる物質としては、カゼイン、
ナイロン、ポリビニルアルコ―ル、ゼラチン、セルロ―
スおよびその誘導体等、一般的なものでよく、その膜厚
は0.1〜10μm、好ましくは0.2〜2μm程度が
良い。また、保護層に用いられる物質としては既知のア
クリル樹脂、フッ素樹脂、シリコ―ン樹脂などの熱可塑
性樹脂、フェノ―ル樹脂、メラミン樹脂などの熱硬化性
樹脂、光硬化、EB、X線、UV硬化樹脂などが挙げら
れる。
In the electrophotographic photosensitive member of the present invention, at least one of an intermediate layer and a protective layer may be formed, if necessary. Examples of substances used for the intermediate layer include casein,
Nylon, polyvinyl alcohol, gelatin, cellulose
It may be a common one such as a slag and its derivative, and its film thickness is about 0.1 to 10 μm, preferably about 0.2 to 2 μm. Known substances used for the protective layer include thermoplastic resins such as acrylic resins, fluororesins and silicone resins, thermosetting resins such as phenol resins and melamine resins, photocuring, EB, X-ray, UV curable resin and the like can be mentioned.

【0016】本発明では、感光層の少なくとも1層に、
酸化防止剤、紫外線吸収剤、老化防止剤等の添加剤が少
量添加されてもよい。このような添加剤としては、例え
ば、ヒンダ―ド・フェノ―ル類、芳香族アミン類、有機
硫黄化合物、亜リン酸エステル、キレ―ト化剤、ベンゾ
フェノン系、ベンゾトリアゾ―ル系、ニッケル錯体など
がある。
In the present invention, at least one of the photosensitive layers comprises
A small amount of additives such as an antioxidant, an ultraviolet absorber and an anti-aging agent may be added. Examples of such additives include hindered phenols, aromatic amines, organic sulfur compounds, phosphites, chelating agents, benzophenones, benzotriazoles, nickel complexes, etc. There is.

【0017】また、電荷輸送層形成時などに用いる溶媒
としては、さまざまな有機溶剤が使用できる。具体的な
有機溶剤としては、アルコ―ル類、ケトン類、アミド
類、スルホキシド類、エ―テル類、エステル類、芳香族
ハロゲン化炭化水素類、芳香族類などを用いることが出
来る。
Various organic solvents can be used as the solvent used when forming the charge transport layer. As specific organic solvents, alcohols, ketones, amides, sulfoxides, ethers, esters, aromatic halogenated hydrocarbons, aromatics and the like can be used.

【0018】本発明の電子写真感光体において、浸漬塗
布により感光層を設けるとき特に、基体の下端部に感光
層が付着する場合は、この付着した感光層は、例えば感
光層を溶解する溶媒で払拭するか、又は感光層を溶解す
る溶媒に浸漬して取り除くことが出来る。また、用いる
基体が樹脂製フィルムの場合、基体は実質的に中空な構
造であり、このような基体に浸漬塗布方式により感光層
を形成すると、下端部の感光層が厚肉となってしまう。
このような場合、例えば下端部の形状に合ったスポン
ジ、発泡ポリエチレン、発泡ポリウレタンなどに付着物
を溶解する溶媒を含浸させ、押し当てて回転などさせな
がら、払拭すれば良い。また、直接それらを溶解する溶
媒に浸漬し、上下運動、回転運動などを行い、付着物を
溶出させる方法もある。なお、これらの運動を行う時、
溶媒槽から出し入れしても良く、この場合、溶媒槽は1
槽ではなく、2槽あるいはそれ以上の複数槽設けたほう
が効果的である。また、溶媒槽に超音波を印加し、超音
波洗浄を行っても効果がある。このような樹脂製フィル
ムとしては、つなぎ目のあるシ―ムドフィルムが用いら
れても良いが、シ―ムレスフィルムを用いると、つなぎ
目を考慮せずにプロセスを設計できるので、より好まし
い結果を与える。
In the electrophotographic photoreceptor of the present invention, when the photosensitive layer is provided by dip coating, especially when the photosensitive layer is attached to the lower end of the substrate, the attached photosensitive layer is, for example, a solvent that dissolves the photosensitive layer. It can be wiped off or removed by dipping in a solvent that dissolves the photosensitive layer. When the substrate used is a resin film, the substrate has a substantially hollow structure, and when a photosensitive layer is formed on such a substrate by a dip coating method, the photosensitive layer at the lower end becomes thick.
In such a case, for example, sponge, foamed polyethylene, foamed polyurethane or the like having a shape corresponding to the lower end portion may be impregnated with a solvent that dissolves an adhering substance, and may be wiped while being pressed and rotated. In addition, there is also a method of directly immersing them in a solvent that dissolves them and performing vertical movement, rotation movement, etc. to elute the adhered substances. When performing these exercises,
It may be taken in and out of the solvent tank, in which case the solvent tank
It is more effective to provide two or more tanks instead of tanks. It is also effective to apply ultrasonic waves to the solvent bath and perform ultrasonic cleaning. A seamed film having joints may be used as such a resin film, but a seamless film gives a more preferable result because the process can be designed without considering the joints.

【0019】[0019]

【作用】電子写真感光体において、電荷輸送層に吸収さ
れる波長の光を照射すると、ESRで検出可能な不対電
子が生じる。この不対電子はキャリアと関係があり、電
気特性として電荷輸送層の暗時の電気伝導度を増加させ
てしまう。従って、このような光誘起不対電子の発生を
防ぐためには、電荷輸送層に吸収されるような光が照射
されないようにすればよく、背面露光方式の場合は、電
荷発生層を透過した光が電荷輸送層に照射されるので、
電荷発生層で吸収されてしまう波長の光を吸収する電荷
輸送層を用いれば良い。
When an electrophotographic photosensitive member is irradiated with light having a wavelength absorbed by the charge transport layer, unpaired electrons detectable by ESR are generated. This unpaired electron has a relationship with the carrier, and increases the electric conductivity of the charge transport layer in the dark as an electric property. Therefore, in order to prevent the generation of such photo-induced unpaired electrons, it suffices not to irradiate the light that is absorbed by the charge transport layer. Is irradiated on the charge transport layer,
A charge transport layer that absorbs light having a wavelength that is absorbed by the charge generation layer may be used.

【0020】即ち、本発明の電子写真感光体では、電荷
輸送層として、450nmから800nmの範囲に可視
光の最大吸収波長を有するものを用いている。この電荷
輸送層が吸収する波長の光は、電荷発生層で吸収される
波長の光であるので、背面露光方式の場合、この波長域
の光は電荷発生層ですべて吸収され、電荷輸送層に到達
することがない。そのため、電荷輸送層に光が吸収され
て暗時の電気伝導度が増加し、帯電電位が低下すること
がない。
That is, in the electrophotographic photoreceptor of the present invention, a charge transport layer having a maximum absorption wavelength of visible light in the range of 450 nm to 800 nm is used. The light of the wavelength absorbed by this charge transport layer is the light of the wavelength absorbed by the charge generation layer. Therefore, in the case of the backside exposure method, all the light in this wavelength range is absorbed by the charge generation layer, and the Never reach Therefore, light is not absorbed by the charge transport layer, the electric conductivity in the dark is increased, and the charging potential is not lowered.

【0021】[0021]

【実施例】以下、本発明の具体例を説明するが、これら
の具体例によって、本発明は何ら限定されるものではな
い。
EXAMPLES Hereinafter, specific examples of the present invention will be described, but the present invention is not limited to these specific examples.

【0022】実施例1 基体としての厚さ100μmのポリエステルフィルム
(240mm×200mm)の両面に、表面抵抗が50
0Ωになるように、ITO(インジウム−スズ酸化物)
の被膜を形成して導電層とした。このフィルムの長辺を
融着し、240mml×60mmφの円筒を形成した。
この円筒の外側表面に、アルコ―ル溶性ナイロン(東レ
製k−80)をメタノ―ルに溶解したものを、乾燥後の
膜厚が0.6μmになるよう浸漬塗布して下引き層を形
成し、次に、電荷発生層形成用の塗液を、乾燥後の膜厚
が0.2μmとなるよう塗布し、電荷発生層を形成し
た。電荷発生層形成用の塗液としては、電荷発生材とし
てのτ型無金属フタロシアニン(東洋インキ製)と、ビ
ヒクルとしてのポリビニルブチラ―ル(積水化学製SL
EC BM−1)の50wt%シクロヘキサノン溶液を
ボ―ルミルにて24時間混合したものを用いた。
Example 1 A polyester film (240 mm × 200 mm) having a thickness of 100 μm as a substrate had a surface resistance of 50.
ITO (indium-tin oxide) so that it becomes 0Ω
Was formed into a conductive layer. The long side of this film was fused to form a cylinder of 240 mm × 60 mmφ.
On the outer surface of this cylinder, an alcohol-soluble nylon (K-80 manufactured by Toray) dissolved in methanol was applied by dip coating so that the film thickness after drying would be 0.6 μm to form an undercoat layer. Then, the coating liquid for forming the charge generation layer was applied so that the film thickness after drying would be 0.2 μm to form the charge generation layer. As the coating liquid for forming the charge generation layer, τ type metal-free phthalocyanine (manufactured by Toyo Ink) as a charge generation material and polyvinyl butyral (vehicle manufactured by Sekisui Chemical Co., Ltd.) as a vehicle are used.
A 50 wt% cyclohexanone solution of EC BM-1) mixed with a ball mill for 24 hours was used.

【0023】次に、電荷輸送材として表1に示す化合物
1とポリカ―ボネ―ト(帝人化成製K−1300w)を
重量比1対1で1,1.2−トリクロロエタンに均一に
溶解して得た溶液を、乾燥後の膜厚が20μmになるよ
う浸漬塗布し、電荷輸送層を形成した。
Next, as a charge transport material, Compound 1 shown in Table 1 and polycarbonate (K-1300w manufactured by Teijin Chemicals) were uniformly dissolved in 1,1.2-trichloroethane at a weight ratio of 1: 1. The resulting solution was applied by dip coating so that the film thickness after drying was 20 μm, to form a charge transport layer.

【0024】このようにして作製した3層構成の電子写
真感光体を、背面露光方式の電子写真プリンタに組み込
んだ。これは、感光体円筒の内側に光源としてLEDを
組み込んだものであり、帯電、現像、転写の各装置は、
従来通り感光体の外側に配置されている。この電子写真
プリンタを連続して作動させ、表面電位を測定した。
The three-layered electrophotographic photoconductor thus produced was incorporated into a back exposure type electrophotographic printer. This is one in which an LED is incorporated as a light source inside the photoconductor cylinder, and the charging, developing, and transfer devices are
It is arranged on the outside of the photoconductor as usual. The electrophotographic printer was continuously operated and the surface potential was measured.

【0025】実施例2 電荷発生材としてジブロモアントアントロンを用い、電
荷輸送材として表1に示した化合物2を用いた以外は、
実施例1と同様にして電子写真感光体を作製し、同様の
プリンタに組み込み、実施例1と同様にして表面電位を
測定した。
Example 2 Dibromoanthanthrone was used as the charge generating material, and Compound 2 shown in Table 1 was used as the charge transporting material.
An electrophotographic photosensitive member was produced in the same manner as in Example 1, incorporated into the same printer, and the surface potential was measured in the same manner as in Example 1.

【0026】実施例3 電荷発生材としてテトラクロロチオインジゴを用い、電
荷輸送材として表1に示した化合物3を用いた以外は、
実施例1と同様にして電子写真感光体を作製し、同様の
プリンタに組み込み、実施例1と同様にして表面電位を
測定した。
Example 3 Tetrachlorothioindigo was used as the charge-generating material, and Compound 3 shown in Table 1 was used as the charge-transporting material.
An electrophotographic photosensitive member was produced in the same manner as in Example 1, incorporated into the same printer, and the surface potential was measured in the same manner as in Example 1.

【0027】実施例4 電荷発生材としてテトラクロロチオインジゴを用い、電
荷輸送材として表1に示した化合物4を用いた以外は、
実施例1と同様にして電子写真感光体を作製し、同様の
プリンタに組み込み、実施例1と同様にして表面電位を
測定した。
Example 4 Except that tetrachlorothioindigo was used as the charge generating material and Compound 4 shown in Table 1 was used as the charge transporting material.
An electrophotographic photosensitive member was produced in the same manner as in Example 1, incorporated into the same printer, and the surface potential was measured in the same manner as in Example 1.

【0028】比較例1〜4 電荷輸送材として345nmに可視光の最大吸収波長を
有するN−エチルカルバゾ―ル−3−カルボキシアルデ
ヒド−メチルフェニルヒドラゾンを用いた以外は、実施
例1〜4と同様にして電子写真感光体を作製し、同様の
プリンタに組み込み、実施例1と同様にして表面電位を
測定した。表2に実施例1〜4および比較例1〜4の表
面電位の測定結果をまとめた。
Comparative Examples 1 to 4 Similar to Examples 1 to 4 except that N-ethylcarbazol-3-carboxaldehyde-methylphenylhydrazone having a maximum absorption wavelength of visible light at 345 nm was used as the charge transport material. Then, an electrophotographic photosensitive member was produced, incorporated into the same printer, and the surface potential was measured in the same manner as in Example 1. Table 2 summarizes the measurement results of the surface potentials of Examples 1 to 4 and Comparative Examples 1 to 4.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表2から明らかなように、比較例1〜4の
電子写真感光体では、1万枚の印字後の帯電電位の低下
が大きいのに対し、実施例1〜4の電子写真感光体で
は、1万枚の印字後であっても、帯電電位の低下がわず
かであることがわかる。
As is clear from Table 2, the electrophotographic photoreceptors of Comparative Examples 1 to 4 show a large decrease in the charging potential after printing 10,000 sheets, whereas the electrophotographic photoreceptors of Examples 1 to 4 have a large decrease. Then, it can be seen that the decrease in the charging potential is slight even after printing 10,000 sheets.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
多数回の画像形成後においても帯電電位の低下が少な
く、寿命が長い電子写真感光体が得られる。
As described above, according to the present invention,
Even after a large number of times of image formation, the electrophotographic photosensitive member is obtained in which the charging potential is not lowered so much and the life is long.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 実質的に透明な基体、この基体上に設け
られた実質的に透明な導電層、及びこの導電層上に順次
設けられた電荷発生層と電荷輸送層とからなる感光層を
具備し、前記電荷輸送層は450nmから800nmの
範囲に可視光の最大吸収波長を有することを特徴とする
電子写真感光体。
1. A substantially transparent substrate, a substantially transparent conductive layer provided on the substrate, and a photosensitive layer comprising a charge generation layer and a charge transport layer sequentially provided on the conductive layer. The electrophotographic photoreceptor, wherein the charge transport layer has a maximum absorption wavelength of visible light in the range of 450 nm to 800 nm.
JP7717792A 1992-03-31 1992-03-31 Electrophotographic sensitive body Pending JPH05281761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7717792A JPH05281761A (en) 1992-03-31 1992-03-31 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7717792A JPH05281761A (en) 1992-03-31 1992-03-31 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH05281761A true JPH05281761A (en) 1993-10-29

Family

ID=13626526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7717792A Pending JPH05281761A (en) 1992-03-31 1992-03-31 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH05281761A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0795791A1 (en) * 1996-03-11 1997-09-17 Mitsubishi Chemical Corporation Electrophotographic photoreceptor
US5722009A (en) * 1995-12-06 1998-02-24 Konica Corporation Color image forming apparatus having a transparent image forming drum with detectors inside of the drum
US6030734A (en) * 1996-03-11 2000-02-29 Mitsubishi Chemical Corporation Electrophotographic photoreceptor containing charge-transporting material with butadiene structure
US7402343B2 (en) * 2003-01-29 2008-07-22 Samsung Sdi Co., Ltd. Molecular chemical compounds with structures allowing electron displacement and capable of emitting photoluminescent radiation, and photoluminescence quenching device employing the same
US7563548B2 (en) * 2003-12-01 2009-07-21 Sharp Kabushiki Kaisha Amine compound, manufacturing method thereof, electrophotographic photoreceptor using amine compound and image forming apparatus having the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722009A (en) * 1995-12-06 1998-02-24 Konica Corporation Color image forming apparatus having a transparent image forming drum with detectors inside of the drum
EP0795791A1 (en) * 1996-03-11 1997-09-17 Mitsubishi Chemical Corporation Electrophotographic photoreceptor
US5804344A (en) * 1996-03-11 1998-09-08 Mitsubishi Chemical Corporation Electrophotographic photoreceptor containing an arylamine type compound
US6030734A (en) * 1996-03-11 2000-02-29 Mitsubishi Chemical Corporation Electrophotographic photoreceptor containing charge-transporting material with butadiene structure
US7402343B2 (en) * 2003-01-29 2008-07-22 Samsung Sdi Co., Ltd. Molecular chemical compounds with structures allowing electron displacement and capable of emitting photoluminescent radiation, and photoluminescence quenching device employing the same
US7563548B2 (en) * 2003-12-01 2009-07-21 Sharp Kabushiki Kaisha Amine compound, manufacturing method thereof, electrophotographic photoreceptor using amine compound and image forming apparatus having the same

Similar Documents

Publication Publication Date Title
JP2009122513A (en) Electrophotographic photoreceptor and image forming apparatus
JP2548837B2 (en) Charge transport layer containing different aromatic diamine active charge transport compounds
US20030049551A1 (en) Blue diode laser sensitive photoreceptor
JP2004045996A (en) Method of electrophotography and electrophotographic image forming device
JP2007171955A (en) Imaging member
JPH05281761A (en) Electrophotographic sensitive body
JPH0547822B2 (en)
JP2001175007A (en) Photosensitive body, image forming method and image forming device
JP2004118195A (en) Image forming member
JPH04195062A (en) Photosensitive body
JP2003270812A (en) Electrophotographic photoreceptor
JPS63271355A (en) Electrophotographic sensitive body
JP3154832B2 (en) Photoconductor
JPH02212854A (en) Photosensitive body
JPH0567232B2 (en)
JP5297700B2 (en) Single layer type electrophotographic photoreceptor and image forming apparatus having the same
JPH03118547A (en) Electrophotographic sensitive body and electrophotographic device loaded with the body
CN101371200B (en) Photoreceptor for electrophotography
JPH02212853A (en) Photosensitive body
JP6072140B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JPH0823710B2 (en) Electrophotographic photoreceptor
JPH0317656A (en) Electrophotographic sensitive body
JP4132509B2 (en) Electrophotographic photoreceptor
JP2013246307A (en) Electrophotographic photoreceptor, and image forming apparatus using the same
JPH08262759A (en) Electrophotographic photoreceptor