JPH05279870A - Metallizing film and manufacture of metallizing film - Google Patents

Metallizing film and manufacture of metallizing film

Info

Publication number
JPH05279870A
JPH05279870A JP8120892A JP8120892A JPH05279870A JP H05279870 A JPH05279870 A JP H05279870A JP 8120892 A JP8120892 A JP 8120892A JP 8120892 A JP8120892 A JP 8120892A JP H05279870 A JPH05279870 A JP H05279870A
Authority
JP
Japan
Prior art keywords
film
thin film
metal
plastic substrate
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8120892A
Other languages
Japanese (ja)
Other versions
JP2990934B2 (en
Inventor
Akinori Ebe
明憲 江部
Kiyoshi Ogata
潔 緒方
Satoru Nishiyama
哲 西山
Naoto Kuratani
直人 鞍谷
Taizo Okazaki
泰三 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP4081208A priority Critical patent/JP2990934B2/en
Publication of JPH05279870A publication Critical patent/JPH05279870A/en
Application granted granted Critical
Publication of JP2990934B2 publication Critical patent/JP2990934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation
    • H05K3/146By vapour deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a metallic thin film high in adhesion also on a substrate low in heat resistance by forming compound layers on the grain boundaries of a plastic substrate film and metallic silicon as well as on the grain boundaries of metallic silicon and a metallic thin film. CONSTITUTION:A PP film 1 having 30mum thickness is fixed to a substrate holder 10 in a vacuum vessel, and the surface of the film 1 is cleaned by the irradiation of argon ions, which is deposited by evaporation with metallic silicon by a primary electron beam evaporating source 13 to form a silicon thin film of about 100Angstrom on the film 1. Furthermore, nitrogen ions are applied by a bucket type ion source 12, and successively, an electron beam is applied to Al by a secondary electron beam evaporating source 14 to form an Al thin film 3 having 100Angstrom thickness. Once again, nitrogen ions are applied, and after that, vacuum evaporation is executed to form a film having 1000Angstrom thickness on the Al thin film 3. By the process, compounds layers 4 and 5 are formed between the metallic thin films to improve its adhesion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はメタライジングフィルム
及びメタライジングフィルムの製造方法に関し、より詳
細にはプラスチック基体フィルムと金属薄膜との密着性
を改善するために金属珪素中間層を設けたメタライジン
グフィルム及びメタライジングフィルムの製造方法に関
する。本発明のメタライジングフィルムは、例えば、コ
ンデンサ用、プリント基板用又は包装用フィルムとして
用いることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metallizing film and a method for producing a metallizing film, and more particularly to a metallizing film provided with a metal silicon intermediate layer for improving adhesion between a plastic substrate film and a metal thin film. The present invention relates to a method for producing a film and a metalizing film. The metallizing film of the present invention can be used, for example, as a film for capacitors, printed boards, or packaging.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来よ
り、図3に示したような、ポリプロピレン(PP)フィ
ルム及びポリエチレンテレフタレート(PET)フィル
ムのようなプラスチックフィルム20にアルミニウム薄
膜21を蒸着したフィルムコンデンサ用フィルムが知ら
れており、アルミニウムのような金属薄膜を形成する手
法として、真空蒸着法等の各種PVD(Physical Vapor
Deposition:物理蒸着)法やCVD(Chemical Vapor D
eposition:化学気相成長)法等が挙げられる。
2. Description of the Related Art Conventionally, a film obtained by vapor deposition of an aluminum thin film 21 on a plastic film 20 such as a polypropylene (PP) film and a polyethylene terephthalate (PET) film as shown in FIG. Capacitor films are known, and various PVD (Physical Vapor) methods such as a vacuum deposition method are used as a method for forming a metal thin film such as aluminum.
Deposition: physical vapor deposition) and CVD (Chemical Vapor D)
eposition: chemical vapor deposition) method and the like.

【0003】CVD法は気相から原料を供給し、化学反
応によって基体上に膜を形成するものであり、基体表面
での反応速度が高温になるほど大きくなるので、一般に
基体の温度を高くすることによって成膜が行われてい
る。そのため、基体と薄膜の密着性が高いという利点を
有するが、例えば、基体がPPフィルムやPETフィル
ムのように耐熱温度が低いものに対しては使用できない
という問題があった。
In the CVD method, a raw material is supplied from a gas phase and a film is formed on a substrate by a chemical reaction. Since the reaction rate on the surface of the substrate increases as the temperature becomes higher, the temperature of the substrate is generally raised. The film is formed by. Therefore, there is an advantage that the adhesion between the substrate and the thin film is high, but there is a problem that it cannot be used for a substrate having a low heat resistance temperature such as a PP film or a PET film.

【0004】一方、PVD法はCVD法よりも低温下で
成膜できるため、耐熱温度が低い基体に対しても適用す
ることができるが、CVD法に比較して薄膜の密着性が
劣り、特に、プラスチックフィルム上にPVD法で金属
薄膜を成膜する場合、金属に対するプラスチックフィル
ムの濡れ性が悪く、通常の真空蒸着だけでは薄膜が剥離
してしまうという課題があった。
On the other hand, since the PVD method can form a film at a lower temperature than the CVD method, the PVD method can be applied to a substrate having a low heat resistance temperature. When a metal thin film is formed on a plastic film by the PVD method, the wettability of the plastic film with respect to the metal is poor, and there is a problem that the thin film is peeled off only by ordinary vacuum vapor deposition.

【0005】そこで、フィルム表面の濡れ性を改善する
ために、フィルム表面にプラズマ処理やコロナ放電処理
を施すことによって、フィルム表面の濡れ性を改善し、
金属薄膜の密着性を向上させようとする方法が提案され
ている。しかし、上記手法では長期使用(例えば、ヒー
トサイクル)に対して、まだ十分な密着力が得られてい
ないという課題があった。
Therefore, in order to improve the wettability of the film surface, the wettability of the film surface is improved by subjecting the film surface to plasma treatment or corona discharge treatment,
A method for improving the adhesion of the metal thin film has been proposed. However, the above method has a problem that sufficient adhesion is not obtained yet for long-term use (for example, heat cycle).

【0006】また、このような方法によりフィルム表面
に金属薄膜を蒸着したメタライジングフィルムをフィル
ムコンデンサに用い、電圧を印加した際、電極となる金
属薄膜にフィルム内部からの酸素が拡散し、酸化物(例
えば Al2O3)となり、電極として働かなくなり、コンデ
ンサ容量が変化する等、金属薄膜の物性の変化や安定性
の劣化が生じたりすることは避けられないという課題が
あった。
Further, when a metallizing film having a metal thin film deposited on the film surface by such a method is used for a film capacitor, when a voltage is applied, oxygen from the inside of the film diffuses into the metal thin film serving as an electrode, and an oxide is formed. (For example, Al 2 O 3 ), it does not work as an electrode, and the capacitance of the capacitor changes, which causes a change in the physical properties of the metal thin film and a deterioration in stability.

【0007】本発明は上記記載の課題に鑑みなされたも
のであり、耐熱性の低い基体上にも密着性の高い金属薄
膜が形成されたメタライジングフィルム及びその製造方
法を提供することを目的としている。
The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a metallizing film in which a metal thin film having high adhesion is formed on a substrate having low heat resistance, and a method for producing the same. There is.

【0008】[0008]

【課題を解決するための手段】本発明によれば、プラス
チック基体フィルム上に金属珪素中間層と金属薄膜とが
順次形成されており、前記プラスチック基体フィルムと
前記中間層及び/又は該中間層と前記金属薄膜との界面
で、それぞれの構成元素と、窒素又は窒素と酸素との混
合物とからなる化合物層が形成されているメタライジン
グフィルムが提供される。
According to the present invention, a metal silicon intermediate layer and a metal thin film are sequentially formed on a plastic substrate film, and the plastic substrate film, the intermediate layer and / or the intermediate layer are There is provided a metallizing film having a compound layer formed of each constituent element and nitrogen or a mixture of nitrogen and oxygen at the interface with the metal thin film.

【0009】また、プラスチック基体フィルム上に金属
珪素中間層と金属薄膜とを順次形成する際、(i) 前記金
属珪素中間層の形成中または形成後、(ii)前記金属薄膜
の形成中または形成後、の少なくとも一つの工程で窒素
イオンまたは窒素イオンと酸素イオンのいずれかの照射
を行うメタライジングフィルムの製造方法が提供され
る。
When the metal silicon intermediate layer and the metal thin film are sequentially formed on the plastic substrate film, (i) during or after the formation of the metal silicon intermediate layer, and (ii) during or after the formation of the metal thin film. Then, a method for producing a metallizing film is provided, which comprises irradiating with nitrogen ions or nitrogen ions and oxygen ions in at least one of the following steps.

【0010】本発明において用いられるプラスチック基
体フィルムのプラスチックの材質は特に限定されない。
しかし、通常、フィルムコンデンサ用フィルムに用いら
れるポリプロピレン樹脂、ポリイミド樹脂、ポリエチレ
ンテレフタレート樹脂等が好ましい。プラスチック基体
フィルムの厚みは用途によって適宜選定されるが、例え
ば、フィルムコンデンサ用フィルムとしては5〜50μ
mが好ましい。
The plastic material of the plastic substrate film used in the present invention is not particularly limited.
However, polypropylene resin, polyimide resin, polyethylene terephthalate resin and the like which are usually used for film for film capacitors are preferable. The thickness of the plastic substrate film is appropriately selected depending on the application, but for example, the film for film capacitors has a thickness of 5 to 50 μm.
m is preferred.

【0011】本発明におけるプラスチック基体フィルム
上への金属珪素中間層と金属薄膜との形成にはイオン蒸
着薄膜形成装置を用いて行うことができる。このイオン
蒸着薄膜形成装置として、例えば、図2に示したよう
に、真空容器(図示せず)と、真空容器内の上部に配設
された基体ホルダ10と、第1及び第2の電子ビーム蒸
発源13、14と、イオン源12とを含んで構成されて
いる装置を用いることができ、イオン源12としてはバ
ケット型、カウマン型等を用いることができる。また、
金属珪素及び金属薄膜の膜厚はプラスチック基体フィル
ム近傍に配設された膜厚モニターを用いてプラスチック
基体フィルムに到達する蒸発元素の量を測定して調節す
ることができ、プラスチック基体フィルムに到達するイ
オンの個数はプラスチック基体フィルム近傍に配設され
たイオン電流測定器で計測することによって調節するこ
とができる。
The metal silicon intermediate layer and the metal thin film can be formed on the plastic substrate film in the present invention by using an ion deposition thin film forming apparatus. As this ion-deposited thin film forming apparatus, for example, as shown in FIG. 2, a vacuum container (not shown), a substrate holder 10 disposed in the upper part of the vacuum container, and first and second electron beams. A device including the evaporation sources 13 and 14 and the ion source 12 can be used, and the ion source 12 can be a bucket type, a Cowman type, or the like. Also,
The film thickness of the metallic silicon and the metal thin film can be adjusted by measuring the amount of evaporating elements reaching the plastic substrate film using a film thickness monitor arranged near the plastic substrate film, and reaching the plastic substrate film. The number of ions can be adjusted by measuring with an ion current measuring device arranged near the plastic substrate film.

【0012】本発明において、プラスチック基体フィル
ム上に中間層を形成する前に予めプラスチック基体フィ
ルム表面を不活性ガスイオンでスパッタリングすること
により清浄化することが好ましい。その際の好ましい条
件は真空容器内圧力が2×10-4〜2×10-5Torr
程度、イオン照射エネルギーが2〜5keV程度、ヘリ
ウム、アルゴン等の不活性ガスイオンの全照射量が1〜
2×1015ions/cm2 程度である。またスパッタ
リングの際のイオン照射はプラスチック基体フィルムに
対し、イオンの入射角度が0〜90°まで、特に限定さ
れるものではない。
In the present invention, it is preferable to clean the surface of the plastic substrate film by sputtering with an inert gas ion before forming the intermediate layer on the plastic substrate film. The preferable condition at that time is that the pressure in the vacuum container is 2 × 10 −4 to 2 × 10 −5 Torr.
The ion irradiation energy is about 2 to 5 keV, and the total irradiation amount of inert gas ions such as helium and argon is 1 to
It is about 2 × 10 15 ions / cm 2 . Ion irradiation during sputtering is not particularly limited, and the angle of incidence of ions on the plastic substrate film is 0 to 90 °.

【0013】プラスチック基体フィルム上への金属珪素
中間層の形成は、例えば、金属珪素を蒸発源とし、これ
に電子ビームを照射して金属珪素を蒸発させる真空蒸着
で行うことができる。この際の金属珪素中間層の膜厚は
50〜300Å程度、好ましくは100〜200Å程度
である。次に、金属珪素中間層上に金属薄膜が形成され
る。この金属薄膜の形成も金属珪素中間層の形成と同様
に真空蒸着で行うことができる。この際の金属薄膜の膜
厚は用途によって選定されるが、一般に数千Å〜数μm
であり、蒸発源に用いる金属は特に限定されない。しか
し、一般にアルミニウム、亜鉛、銅、ニッケル、銀また
はこれらの合金等が用いられる。
The formation of the metallic silicon intermediate layer on the plastic substrate film can be carried out, for example, by vacuum evaporation in which metallic silicon is used as an evaporation source and the metallic silicon is evaporated by irradiating this with an electron beam. At this time, the thickness of the metallic silicon intermediate layer is about 50 to 300Å, preferably about 100 to 200Å. Next, a metal thin film is formed on the metal silicon intermediate layer. The formation of the metal thin film can be performed by vacuum vapor deposition as in the formation of the metal silicon intermediate layer. The thickness of the metal thin film at this time is selected depending on the application, but is generally several thousand Å to several μm.
The metal used for the evaporation source is not particularly limited. However, aluminum, zinc, copper, nickel, silver or alloys thereof are generally used.

【0014】本発明において、例えば、イオン蒸着薄膜
形成装置を用いてプラスチック基体フィルム上に金属珪
素中間層と金属薄膜とを順次形成する際、金属珪素中間
層の形成中または形成後、あるいは金属薄膜の形成中ま
たは形成後のいずれかの工程で窒素イオン、あるいは窒
素と酸素とからなる混合イオンを前記プラスチック基体
フィルム上に照射することができるが、金属珪素中間層
の形成中または形成後、及び金属薄膜の形成中形成後の
両工程で窒素イオン、あるいは窒素と酸素とからなる混
合イオンを前記プラスチック基体フィルム上に照射する
ことが好ましい。
In the present invention, for example, when a metal silicon intermediate layer and a metal thin film are sequentially formed on a plastic substrate film using an ion deposition thin film forming apparatus, during or after the formation of the metal silicon intermediate layer, or a metal thin film. The plastic substrate film can be irradiated with nitrogen ions or a mixed ion of nitrogen and oxygen in any step during or after the formation of the metal base. During the formation of the metal thin film, it is preferable to irradiate the plastic substrate film with nitrogen ions or a mixed ion of nitrogen and oxygen in both steps.

【0015】本発明におけるプラスチック基体フィルム
上に金属珪素中間層と金属薄膜とを順次形成し、窒素イ
オンまたは窒素イオンと酸素イオンのいずれかを照射す
る際の真空容器内圧力は2×10-4〜2×10-5Tor
r程度が好ましく、窒素イオン、あるいは窒素と酸素と
からなる混合イオンのイオン照射エネルギーは500e
V〜20keV程度、イオンの全照射量は1.0×10
15〜1.0×1017ions/cm2 程度が好ましい。
When a metal silicon intermediate layer and a metal thin film are sequentially formed on the plastic substrate film of the present invention, and a nitrogen ion or a nitrogen ion and an oxygen ion is irradiated, the pressure in the vacuum container is 2 × 10 -4. ~ 2 × 10 -5 Tor
It is preferably about r, and the ion irradiation energy of nitrogen ions or mixed ions of nitrogen and oxygen is 500e.
V to about 20 keV, total ion dose is 1.0 × 10
It is preferably about 15 to 1.0 × 10 17 ions / cm 2 .

【0016】なお、金属薄膜の形成中または形成後に窒
素イオンまたは窒素イオンと酸素イオンのいずれかを照
射する際の膜厚は50〜200Å程度が好ましく、20
0Å以上の膜厚を必要とする場合は、さらにイオン照射
をせずに数千Å〜数μmまで成膜してもよい。また、窒
素と酸素とからなる混合イオンを照射する場合の窒素と
酸素の混合割合は1:1から1:0.5程度が好まし
い。
The film thickness during irradiation of nitrogen ions or any of nitrogen ions and oxygen ions during or after the formation of the metal thin film is preferably about 50 to 200Å.
When a film thickness of 0 Å or more is required, the film may be formed up to several thousand Å to several μm without further ion irradiation. Further, when the mixed ions of nitrogen and oxygen are irradiated, the mixing ratio of nitrogen and oxygen is preferably about 1: 1 to 1: 0.5.

【0017】本発明においては、上記の処理によって化
合物層が形成されると考えられる。化合物層とはプラス
チック基体フィルムと中間層との界面ではプラスチック
基体フィルムを構成する元素、例えば、炭素、酸素、水
素等と珪素原子との結合を有する層、中間層と金属薄膜
との界面では珪素と金属原子との結合を有する層であ
る。
In the present invention, it is considered that the compound layer is formed by the above treatment. The compound layer is a layer having a bond between a silicon atom and an element constituting the plastic substrate film at the interface between the plastic substrate film and the intermediate layer, and silicon at the interface between the intermediate layer and the metal thin film. Is a layer having a bond between and a metal atom.

【0018】なお、イオン照射エネルギー及びイオンの
全照射量は用いるプラスチック基体フィルムの種類、成
膜速度、成膜の膜厚等によって異なるので、その都度、
プラスチック基体フィルム、中間層及び金属薄膜の密着
力がもっとも良好となる条件を選択するのが好ましい。
また、上記の方法を用いてコンデンサ用フィルムを形成
した場合、フィルムコンデンサ用フィルムと金属薄膜と
の間に少なくとも一層の金属珪素からなる中間層を有す
ることとなり、さらに、コンデンサ用フィルムと金属珪
素からなる中間層との間、及び中間層と金属薄膜との間
に珪素と窒素とからなる化合物層、あるいは珪素と窒素
及び酸素とからなる化合物層が形成されることとなる。
Since the ion irradiation energy and the total ion irradiation amount differ depending on the type of the plastic substrate film used, the film formation rate, the film thickness of the film formation, etc.,
It is preferable to select the conditions that give the best adhesion between the plastic substrate film, the intermediate layer and the metal thin film.
Further, when the capacitor film is formed by using the above method, at least one intermediate layer made of metal silicon is provided between the film capacitor film and the metal thin film, and further the capacitor film and the metal silicon are used. A compound layer made of silicon and nitrogen, or a compound layer made of silicon, nitrogen and oxygen is formed between the intermediate layer and the intermediate layer.

【0019】[0019]

【作用】本発明において、プラスチック基体フィルム上
に金属珪素中間層と金属薄膜とを形成する際、前記金属
珪素中間層の形成中または形成した後、及び前記金属薄
膜の形成中または形成した後の少なくとも一つの工程
で、窒素イオン、あるいは窒素と酸素とからなる前記混
合イオンを照射するので、図1に示したように、プラス
チック基体フィルム1と金属珪素中間層2、及び金属珪
素中間層2と金属薄膜3との界面で、プラスチック基体
フィルム1を構成する元素、例えば、炭素と珪素原子ま
たは珪素と金属原子との化合物層5、4が形成され、両
者間でC−SiまたはSi−金属等の結合が生じ、プラ
スチック基体フィルム1と金属珪素中間層2、及び金属
珪素中間層2と金属薄膜3との密着力が向上する。
In the present invention, when the metal silicon intermediate layer and the metal thin film are formed on the plastic substrate film, during or after the formation of the metal silicon intermediate layer, and during or after the formation of the metal thin film. Since nitrogen ions or the mixed ions of nitrogen and oxygen are irradiated in at least one step, as shown in FIG. 1, the plastic substrate film 1, the metal silicon intermediate layer 2, and the metal silicon intermediate layer 2 are irradiated. At the interface with the metal thin film 3, an element constituting the plastic base film 1, for example, compound layers 5 and 4 of carbon and silicon atoms or silicon and metal atoms are formed, and C-Si or Si-metal or the like is formed between them. And the adhesion between the plastic substrate film 1 and the metal silicon intermediate layer 2 and between the metal silicon intermediate layer 2 and the metal thin film 3 is improved.

【0020】また、照射するイオンが窒素イオン、ある
いは窒素と酸素とからなる混合イオンであるので、プラ
スチック基体フィルムと金属珪素、及び金属珪素と金属
薄膜との界面で、Si−NやSi−ON等の結合を有す
る元素を多く含むミキシング層が形成されることとな
る。このSi−NやSi−ON等の結合を有する元素を
多く含むミキシング層は化学的に非常に安定であり、酸
素拡散に対する高いバリア効果を有しているので、プラ
スチック基体フィルム内部から金属薄膜への酸素の拡散
を抑制し、金属薄膜の酸化を防止する。
Since the ions to be irradiated are nitrogen ions or mixed ions composed of nitrogen and oxygen, Si-N and Si-ON are formed at the interfaces between the plastic substrate film and the metal silicon, and between the metal silicon and the metal thin film. As a result, a mixing layer containing a large number of elements having a bond such as is formed. Since the mixing layer containing a large number of elements having a bond such as Si-N or Si-ON is chemically very stable and has a high barrier effect against oxygen diffusion, from the inside of the plastic substrate film to the metal thin film. It suppresses the diffusion of oxygen and prevents the oxidation of the metal thin film.

【0021】[0021]

【実施例】本発明に係るメタライジングフィルムの製造
方法で用いられるイオン蒸着薄膜形成装置を図面に基づ
いて説明する。イオン蒸着薄膜形成装置は、図2に示し
たように、真空容器(図示せず)と、真空容器内の上部
に配設された基体ホルダ10と、第1及び第2の電子ビ
ーム蒸発源13、14と、バケット型イオン源12とを
含んで構成されている。
EXAMPLE An ion-deposited thin film forming apparatus used in the method for producing a metalizing film according to the present invention will be described with reference to the drawings. As shown in FIG. 2, the ion vapor deposition thin film forming apparatus includes a vacuum container (not shown), a substrate holder 10 disposed on the upper part of the vacuum container, a first electron beam evaporation source 13 and a second electron beam evaporation source 13. , 14 and a bucket type ion source 12.

【0022】真空容器に内装された基体ホルダ10はプ
ラスチック基体フィルム1に対するイオン照射に伴う熱
的ダメージを少なくするように、フィルム基体を冷却す
るための冷却管(図示せず)が埋設されており、基体ホ
ルダ10近傍には蒸着膜の膜厚をモニターする膜厚モニ
ター11が配設されており、さらに、イオン源12によ
るプラスチック基体フィルム1へのイオン照射量を測定
するためのイオン電流計測器15が配設されている。ま
た、基体ホルダ10に配置されたプラスチック基体フィ
ルム1に対して対向する位置に第1及び第2の電子ビー
ム蒸発源13、14が配設されており、さらに、所望の
イオンを供給するためのガス導入管(図示せず)に接続
されたバケット型イオン源12が配設されている。そし
て、真空容器は真空排気を行うために真空ポンプ(図示
せず)に接続されている。
The substrate holder 10 installed in the vacuum container is embedded with a cooling pipe (not shown) for cooling the film substrate so as to reduce thermal damage caused by ion irradiation to the plastic substrate film 1. A film thickness monitor 11 for monitoring the film thickness of the vapor-deposited film is provided near the substrate holder 10, and an ion current measuring device for measuring the amount of ion irradiation of the plastic substrate film 1 by the ion source 12 is further provided. 15 are provided. Further, first and second electron beam evaporation sources 13 and 14 are arranged at positions facing the plastic substrate film 1 arranged on the substrate holder 10, and further, for supplying desired ions. A bucket type ion source 12 connected to a gas introduction pipe (not shown) is provided. The vacuum container is connected to a vacuum pump (not shown) to perform vacuum exhaust.

【0023】次に、上記のイオン蒸着薄膜形成装置を用
いてプラスチック基体フィルム上にAlの金属薄膜を形
成する場合について図1及び図2に基づいて説明する。 実施例1 プラスチック基体フィルム1として厚さ30μmのPP
フィルムを用い、このPPフィルムを基体ホルダ10に
固定し、真空容器内圧力を2×10-5Torr、イオン
照射エネルギー2keV、イオン照射角度45°で、ア
ルゴンイオンの全照射量2×1015ions/cm2
照射し、プラスチック基体フィルム1の表面の清浄化を
行った。
Next, a case where an Al metal thin film is formed on a plastic substrate film using the above-mentioned ion vapor deposition thin film forming apparatus will be described with reference to FIGS. 1 and 2. Example 1 PP having a thickness of 30 μm as the plastic substrate film 1
Using a film, this PP film was fixed to the substrate holder 10, the pressure in the vacuum vessel was 2 × 10 −5 Torr, the ion irradiation energy was 2 keV, the ion irradiation angle was 45 °, and the total irradiation amount of argon ions was 2 × 10 15 ions. / Cm 2 was irradiated to clean the surface of the plastic substrate film 1.

【0024】そして、表面の清浄化を行ったPPフィル
ム上に、第1の電子ビーム蒸発源13で金属珪素に電子
ビームを照射して、約100Åの珪素薄膜2を形成し
た。次いで、珪素薄膜2を形成したPPフィルムに、バ
ケット型イオン源12より窒素イオンをイオン照射エネ
ルギー5keVで、窒素イオンの全照射量3×10 15
ons/cm2 を照射した。この窒素イオン照射により
PPフィルムと金属珪素との密着性が向上することとな
る。
Then, the PP film having its surface cleaned
The first electron beam evaporation source 13
Irradiate the beam to form a silicon thin film 2 of about 100 liters.
It was Then, the PP film on which the silicon thin film 2 is formed is
Ion irradiation with nitrogen ions from the ket type ion source 12
Lugie 5 keV, total dose of nitrogen ions 3 × 10 15i
ons / cm2Was irradiated. By this nitrogen ion irradiation
Adhesion between the PP film and metallic silicon is improved.
It

【0025】さらに、珪素薄膜2を形成し窒素イオンを
照射したPPフィルムに、第2の電子ビーム蒸発源14
でアルミニウムに電子ビームを照射して、約100Åの
金属薄膜であるアルミニウム薄膜3を形成し、バケット
型イオン源12より窒素イオンをイオン照射エネルギー
10keVで、窒素イオンの全照射量2×1015ion
s/cm2 を照射した。その後、再度アルミニウム薄膜
3を、例えば、1000Å程度の膜厚まで真空蒸着によ
り成膜した。
Further, a second electron beam evaporation source 14 is formed on the PP film on which the silicon thin film 2 is formed and which is irradiated with nitrogen ions.
Aluminum is irradiated with an electron beam to form an aluminum thin film 3 which is a metal thin film of about 100 Å. Nitrogen ions are supplied from the bucket type ion source 12 at an ion irradiation energy of 10 keV and the total irradiation amount of nitrogen ions is 2 × 10 15 ion.
It was irradiated with s / cm 2 . After that, the aluminum thin film 3 was formed again by vacuum vapor deposition to a film thickness of, for example, about 1000 Å.

【0026】このように、PPフィルム上に形成したア
ルミニウム薄膜3は、窒素イオンの照射を行わないでア
ルミニウム薄膜を形成した場合と比較して、約10倍以
上の密着力を有し、このPPフィルムをコンデンサ用フ
ィルムとして用いた場合には、長時間通電時に生じる金
属薄膜酸化による電極の消失面積が約1/2となる結果
が得られた。
As described above, the aluminum thin film 3 formed on the PP film has an adhesion force of about 10 times or more as compared with the case where the aluminum thin film is formed without irradiating the nitrogen ions. When the film was used as a film for capacitors, it was found that the disappeared area of the electrode due to the oxidation of the metal thin film caused by long-time energization was about 1/2.

【0027】実施例2 プラスチック基体フィルム1として厚さ30μmのPE
Tフィルムを用い、上記と同様の方法でプラスチック基
体フィルム1の表面の清浄化を行った。そして、上記と
同様に、表面の清浄化を行ったPETフィルム上に約1
00Åの珪素薄膜2を形成し、窒素イオンを照射した。
Example 2 PE as the plastic substrate film 1 having a thickness of 30 μm
Using the T film, the surface of the plastic substrate film 1 was cleaned in the same manner as above. Then, in the same manner as above, about 1 is put on the PET film whose surface has been cleaned.
A silicon thin film 2 of 00 Å was formed and irradiated with nitrogen ions.

【0028】次いで、珪素薄膜2を形成し、窒素イオン
を照射したPPフィルムに第2の電子ビーム蒸発源14
でアルミニウムに電子ビームを照射して、アルミニウム
薄膜3を形成すると同時に、バケット型イオン源12よ
り窒素イオンをイオン照射エネルギー10keVで、窒
素イオンの全照射量2×1015ions/cm2 を照射
し、約200Åのアルミニウム薄膜3を形成した。その
後、再度アルミニウム薄膜3を、例えば、1000Å程
度の膜厚まで真空蒸着により成膜した。
Next, a silicon thin film 2 is formed and a second electron beam evaporation source 14 is formed on the PP film irradiated with nitrogen ions.
Aluminum is irradiated with an electron beam to form an aluminum thin film 3, and at the same time, the bucket type ion source 12 is irradiated with nitrogen ions at an ion irradiation energy of 10 keV and a total irradiation amount of nitrogen ions of 2 × 10 15 ions / cm 2. An aluminum thin film 3 having a thickness of about 200Å was formed. After that, the aluminum thin film 3 was formed again by vacuum vapor deposition to a film thickness of, for example, about 1000 Å.

【0029】このように、PETフィルム上に形成した
アルミニウム薄膜3は、窒素イオンの照射を行わないで
アルミニウム薄膜3を形成した場合と比較して、約15
倍以上の密着力を有していた。 実施例3 プラスチック基体フィルム1として厚さ10μm、幅1
00mm程度のPPフィルムの表面に、実施例1と同様
の方法で1000Å程度のアルミニウムを真空蒸着した
金属蒸着フィルムを用いてコンデンサを形成した。な
お、この金属蒸着フィルムの一方の縁部にはアルミニウ
ムが蒸着されていないマージン部が形成されている。
As described above, the aluminum thin film 3 formed on the PET film is about 15 times thicker than the case where the aluminum thin film 3 is formed without irradiation of nitrogen ions.
It had more than double the adhesion. Example 3 A plastic substrate film 1 having a thickness of 10 μm and a width of 1
A capacitor was formed on the surface of a PP film having a thickness of about 00 mm in the same manner as in Example 1 by using a metal deposition film obtained by vacuum-depositing aluminum having a thickness of about 1000 Å. A margin portion where aluminum is not vapor-deposited is formed on one edge portion of the metal vapor deposition film.

【0030】FRPからなる長さ120mm、外径寸法
13mmの丸棒に、厚さ15μmの帯状PPフィルムを
50g/cmのテンションを加えながら、厚さ5mmに
なるまで巻回されて形成された緩衝層上に上記の金属蒸
着フィルムをマージン部が互いに反対方向の縁部に位置
するようにして2枚重ね合わせたのち、緩衝層上に約6
00ターン巻回されたコンデンサ素体を形成した。そし
て、コンデンサ素体の両端部に金属溶射にて引き出し電
極を接続した。
A buffer formed by winding a band-shaped PP film having a thickness of 15 μm to a thickness of 5 mm while applying a tension of 50 g / cm to a round bar made of FRP having a length of 120 mm and an outer diameter of 13 mm. After laminating two of the above metal vapor deposition films on the layers so that the margin portions are located at the edges in the opposite directions, about 6 layers are formed on the buffer layer.
A capacitor body wound with 00 turns was formed. Then, the extraction electrodes were connected to both ends of the capacitor body by metal spraying.

【0031】[0031]

【発明の効果】本発明に係るメタライジングフィルム及
びメタライジングフィルムの製造方法によれば、プラス
チック基体フィルム上に金属珪素中間層と金属薄膜とを
形成する際、前記金属珪素中間層の形成中または形成し
た後、及び前記金属薄膜の形成中または形成した後の少
なくとも一つの工程で、窒素イオン、あるいは窒素と酸
素とからなる前記混合イオンを照射するので、プラスチ
ック基体フィルムと金属珪素、及び金属珪素と金属薄膜
との界面で、プラスチック基体フィルムを構成する元
素、例えば、炭素と珪素原子または珪素と金属原子との
化合物層が形成され、両者間でC−SiまたはSi−金
属等の結合が生じ、プラスチック基体フィルムと金属珪
素、及び金属珪素と金属薄膜との密着力を向上させるこ
とができる。
According to the metallizing film and the method for producing a metallizing film according to the present invention, when the metal silicon intermediate layer and the metal thin film are formed on the plastic substrate film, the metal silicon intermediate layer is formed or After the formation, and in at least one step during or after the formation of the metal thin film, the nitrogen ions or the mixed ions of nitrogen and oxygen are irradiated, so that the plastic substrate film, the metal silicon, and the metal silicon. At the interface between the metal thin film and the metal thin film, an element constituting the plastic substrate film, for example, a compound layer of carbon and silicon atoms or silicon and metal atoms is formed, and a bond such as C-Si or Si-metal occurs between them. It is possible to improve the adhesion between the plastic substrate film and the metal silicon, and between the metal silicon and the metal thin film.

【0032】また、照射するイオンが窒素イオン、ある
いは窒素と酸素とからなる混合イオンであるので、プラ
スチック基体フィルムと金属珪素、及び金属珪素と金属
薄膜との界面で、Si−NやSi−ON等の結合を有す
る元素を多く含むミキシング層が形成されることとな
る。このSi−NやSi−ON等の結合を有する元素を
多く含むミキシング層は化学的に非常に安定であり、酸
素拡散に対する高いバリア効果を有しているので、例え
ば、このメタライジングフィルムを用いてコンデンサを
製造し、電圧を印加した際には、金属薄膜が外部やプラ
スチック基体フィルム内部からの酸素の混入により酸化
して電極としての性質が劣化したり、コンデンサ自身の
容量が低下してしまうなどの金属薄膜の物性の変化や安
定性の劣化を防止することができ、製品の安定性を大き
く向上させることができる。
Since the ions to be irradiated are nitrogen ions or mixed ions composed of nitrogen and oxygen, Si-N or Si-ON is formed at the interface between the plastic substrate film and the metal silicon, or between the metal silicon and the metal thin film. As a result, a mixing layer containing a large number of elements having a bond such as is formed. Since this mixing layer containing many elements having a bond such as Si-N or Si-ON is chemically very stable and has a high barrier effect against oxygen diffusion, for example, this metallizing film is used. When a capacitor is manufactured and a voltage is applied, the metal thin film oxidizes due to the mixing of oxygen from the outside or the plastic substrate film, deteriorating the properties as an electrode, and the capacity of the capacitor itself decreases. It is possible to prevent changes in the physical properties and deterioration of stability of the metal thin film such as, and to greatly improve the stability of the product.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるメタライジングフィルムの断面
図である。
FIG. 1 is a cross-sectional view of a metallizing film according to the present invention.

【図2】本発明に係わるメタライジングフィルムの製造
方法で用いるイオン蒸着薄膜形成装置を示す概略断面図
である。
FIG. 2 is a schematic cross-sectional view showing an ion vapor deposition thin film forming apparatus used in the method for producing a metalizing film according to the present invention.

【図3】従来のコンデンサ用フィルムの断面図である。FIG. 3 is a cross-sectional view of a conventional capacitor film.

【符号の説明】[Explanation of symbols]

1 プラスチック基体フィルム 2 珪素薄膜(中間層) 3 アルミニウム薄膜(金属薄膜) 4 化合物層 5 化合物層 1 Plastic Substrate Film 2 Silicon Thin Film (Intermediate Layer) 3 Aluminum Thin Film (Metal Thin Film) 4 Compound Layer 5 Compound Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鞍谷 直人 京都市右京区梅津高畝町47番地 日新電機 株式会社内 (72)発明者 岡崎 泰三 京都市右京区梅津高畝町47番地 日新電機 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Naoto Kuraya, 47 Umezu Takaunecho, Ukyo-ku, Kyoto City Nissin Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 プラスチック基体フィルム上に金属珪素
中間層と金属薄膜とが順次形成されており、前記プラス
チック基体フィルムと前記中間層及び/又は該中間層と
前記金属薄膜との界面で、それぞれの構成元素と、窒素
又は窒素と酸素との混合物とからなる化合物層が形成さ
れていることを特徴とするメタライジングフィルム。
1. A metal silicon intermediate layer and a metal thin film are sequentially formed on a plastic substrate film, and at the interface between the plastic substrate film and the intermediate layer and / or the intermediate layer and the metal thin film, respectively. A metallizing film having a compound layer formed of constituent elements and nitrogen or a mixture of nitrogen and oxygen.
【請求項2】 プラスチック基体フィルム上に金属珪素
中間層と金属薄膜とを順次形成する際、(i) 前記金属珪
素中間層の形成中または形成後、(ii)前記金属薄膜の形
成中または形成後、の少なくとも一つの工程で窒素イオ
ンまたは窒素イオンと酸素イオンのいずれかの照射を行
う請求項1記載のメタライジングフィルムの製造方法。
2. When sequentially forming a metal silicon intermediate layer and a metal thin film on a plastic substrate film, (i) during or after the formation of the metal silicon intermediate layer, and (ii) during or after the formation of the metal thin film. The method for producing a metallizing film according to claim 1, wherein irradiation with nitrogen ions or nitrogen ions and oxygen ions is performed in at least one of the following steps.
JP4081208A 1992-04-03 1992-04-03 Metallizing film and method for producing metallizing film Expired - Fee Related JP2990934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4081208A JP2990934B2 (en) 1992-04-03 1992-04-03 Metallizing film and method for producing metallizing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4081208A JP2990934B2 (en) 1992-04-03 1992-04-03 Metallizing film and method for producing metallizing film

Publications (2)

Publication Number Publication Date
JPH05279870A true JPH05279870A (en) 1993-10-26
JP2990934B2 JP2990934B2 (en) 1999-12-13

Family

ID=13740073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4081208A Expired - Fee Related JP2990934B2 (en) 1992-04-03 1992-04-03 Metallizing film and method for producing metallizing film

Country Status (1)

Country Link
JP (1) JP2990934B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043058A1 (en) * 2014-09-19 2016-03-24 三井金属鉱業株式会社 Surface-treated copper foil, method for producing same, copper-clad laminate for printed wiring board, and printed wiring board
WO2016174970A1 (en) * 2015-04-28 2016-11-03 三井金属鉱業株式会社 Surface-treated copper foil, manufacturing method therefor, printed circuit board copper-clad laminate, and printed circuit board

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016043058A1 (en) * 2014-09-19 2016-03-24 三井金属鉱業株式会社 Surface-treated copper foil, method for producing same, copper-clad laminate for printed wiring board, and printed wiring board
JP5925981B1 (en) * 2014-09-19 2016-05-25 三井金属鉱業株式会社 Surface-treated copper foil and method for producing the same, copper-clad laminate for printed wiring board, and printed wiring board
KR20170046147A (en) * 2014-09-19 2017-04-28 미쓰이금속광업주식회사 Surface-treated copper foil, method for producing same, copper-clad laminate for printed wiring board, and printed wiring board
US10645809B2 (en) 2014-09-19 2020-05-05 Mitsui Mining & Smelting Co., Ltd. Surface-treated copper foil, method for producing same, copper-clad laminate for printed wiring board, and printed wiring board
WO2016174970A1 (en) * 2015-04-28 2016-11-03 三井金属鉱業株式会社 Surface-treated copper foil, manufacturing method therefor, printed circuit board copper-clad laminate, and printed circuit board
JP6030815B1 (en) * 2015-04-28 2016-11-24 三井金属鉱業株式会社 Surface-treated copper foil and method for producing the same, copper-clad laminate for printed wiring board, and printed wiring board
US10763002B2 (en) 2015-04-28 2020-09-01 Mitsui Mining & Smelting Co., Ltd. Surface-treated copper foil, manufacturing method therefor, printed circuit board copper-clad laminate, and printed circuit board

Also Published As

Publication number Publication date
JP2990934B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
US6033471A (en) Metallic thin flim and method of manufacturing the same, and surface acoustic wave device using the metallic thin film and the method thereof
US5738917A (en) Process for in-situ deposition of a Ti/TiN/Ti aluminum underlayer
JP3318186B2 (en) Gas cluster forming method and thin film forming method
EP0738002A3 (en) Stabilization of sheet resistance of electrical conductors
US3397084A (en) Method for producing superconductive layers
JPH05279870A (en) Metallizing film and manufacture of metallizing film
JP2778091B2 (en) Metallized film for capacitor and method of manufacturing the same
Maier-Komor et al. Reproducibility and simplification of the preparation procedure for carbon stripper foils by laser plasma ablation deposition
JP2003158138A (en) Forming method of multi-ply layer for thin film transistor and device formed thereby
JPH02280310A (en) Manufacture of electrode material for electrolytic capacitor
JP3396943B2 (en) Manufacturing method of gas barrier metal vapor deposited film
JP3314405B2 (en) Film capacitor
JP2870003B2 (en) Manufacturing method of vapor-deposited film
EP0181681B1 (en) Ohmic contacts for hydrogenated amorphous silicon
EP0385007A2 (en) Sealing of polymeric web surfaces
JPH0746646B2 (en) Method for producing surface-treated magnetic material
JPH05132754A (en) Formation of titanium carbide thin film
US3649356A (en) Electrical insulating-layer process
JPH05209262A (en) Manufacture of film coating
US5523166A (en) Process for forming thin film having excellent insulating property and metallic substrate coated with insulating material formed by said process
JPH03196510A (en) Electrode foil for electrolytic capacitor
JPH05320865A (en) Film forming method
JPH09143684A (en) Metallic film coated high molecular article and its manufacture
JP2000273620A (en) Formation of transparent electrically conductive thin film-coated film
JPH11185544A (en) Evaporating method and evaporating device for orientation-controlled polycrystalline thin film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees