JPH05279028A - Rare-earth superconducting composition and its production - Google Patents

Rare-earth superconducting composition and its production

Info

Publication number
JPH05279028A
JPH05279028A JP4075077A JP7507792A JPH05279028A JP H05279028 A JPH05279028 A JP H05279028A JP 4075077 A JP4075077 A JP 4075077A JP 7507792 A JP7507792 A JP 7507792A JP H05279028 A JPH05279028 A JP H05279028A
Authority
JP
Japan
Prior art keywords
rare earth
crystal
crystals
superconducting
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4075077A
Other languages
Japanese (ja)
Inventor
Hideki Shimizu
清水  秀樹
Makoto Tani
信 谷
Toru Hayase
徹 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4075077A priority Critical patent/JPH05279028A/en
Publication of JPH05279028A publication Critical patent/JPH05279028A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To improve superconductivity by arranging plural crystals consisting essentially of rare-earth oxide in contact with one another while making the orientation of the adjacent crystals uniform, heating the joined parts to a half-melted state and then slowly cooling the heated parts to join the crystals. CONSTITUTION:A raw powder contg. rare-earth oxides is calcined, the compact is heated, melted, then cooled to the solidifying point and slowly cooled to obtain the pseudo single crystal of the rare-earth oxide. A regular parallelopiped of specified size is cut out of the single crystal in parallel with the bc and ca faces of the crystal lattice. Meanwhile, a specified amt. of Ag powder is mixed into the calcined powder of the rare-earth oxide to form the calcined body of an Ag-contg. rare-earth oxide with the m.p. about 20 deg.C lower than that of the rare-earth oxide, and a solvent is added to the calcined body to prepare a paste for a bonding member. Nine pseudo single crystals of the regular parallelopiped are arranged in contact with one another while making the crystal orientation uniform, the paste is applied on the side face of the pseudo single crystal, the assembly is heated in the atmosphere to melt and then slowly cool the bonding material, a large-sized rare-earth oxide superconducting composition uniform crystal orientation is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類系超電導性組成
物及びその製造方法に関し、更に詳しくは、超電導特性
を発現し得る希土類系酸化物を主成分とする二以上の結
晶が、隣合う結晶の結晶方位を揃えて接合されている希
土類系超電導性組成物、及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-based superconducting composition and a method for producing the same, and more specifically, two or more crystals mainly containing a rare earth-based oxide capable of exhibiting superconducting properties are adjacent to each other. The present invention relates to a rare earth-based superconducting composition in which crystals are joined in the same crystal orientation, and a method for producing the same.

【0002】[0002]

【従来の技術】酸化物超電導体は、臨界磁場に達すると
磁束が侵入して常伝導に相転移する第一種超電導体と異
なり、第一臨界磁場で磁束の侵入が始まっても第二臨界
磁場に達するまでは常伝導に相転移をしない第二種超電
導体に属している。しかも超電導特性を有するNb-Ti等
の合金、Nb3Sn等の金属間化合物等と比べて臨界温度が
遥かに高いことから、臨界磁場及び臨界電流値を向上さ
せることで実用化を図ることができるのではという目的
で活発に研究が行われている。ここで、超電導が注目を
浴びているのは、超電導体が完全反磁性を示すというマ
イスナー効果のためである。マイスナー効果とは、超電
導体に臨界磁場(第二種超電導体では第一臨界磁場)を
越えない外部磁場を加えられても、超電導体の表面に環
状に超電導電流が外部磁場を打ち消すように流れ、磁力
線は超電導体内部に入れず、超電導体は完全反磁性を示
すという超電導の最も基本的な性質である。この超電導
体が完全反磁性を示すというマイスナー効果を利用し
て、超電導体を磁場遮蔽材又は磁気浮上材へに応用でき
るのではないかという目的があるわけである。当然、超
電導電流値が大きいことが実用化では所望される。
2. Description of the Related Art Oxide superconductors, unlike first-class superconductors in which magnetic flux penetrates when a critical magnetic field is reached and undergoes a normal-transition phase transition, have a second criticality even if magnetic flux intrusion begins in the first critical magnetic field. It belongs to a type II superconductor that does not undergo a phase transition to normal conduction until it reaches a magnetic field. Moreover, since the critical temperature is much higher than that of superconducting alloys such as Nb-Ti and intermetallic compounds such as Nb 3 Sn, practical application can be achieved by improving the critical magnetic field and the critical current value. Research is being actively conducted with the aim of being able to do it. Here, the superconductivity is drawing attention because of the Meissner effect that the superconductor exhibits perfect diamagnetism. The Meissner effect is that even if an external magnetic field that does not exceed the critical magnetic field (the first critical magnetic field in the second type superconductor) is applied to the superconductor, the superconducting current flows annularly on the surface of the superconductor so as to cancel the external magnetic field. , The magnetic field lines are not put inside the superconductor, and the superconductor shows perfect diamagnetism, which is the most basic property of superconductivity. The purpose is that the superconductor can be applied to a magnetic field shielding material or a magnetic levitation material by utilizing the Meissner effect that the superconductor exhibits complete diamagnetism. Naturally, a large superconducting current value is desired for practical use.

【0003】このように超電導体の内部に磁束線が入り
込むことは、本質的に超電導と相反するのだが、第二種
超電導体は、第一臨界磁場で磁束の侵入が始まっても第
二臨界磁場に達するまでは常伝導に相転移をしないとい
う性質を有している。そこで、第一臨界磁場以上の磁場
中で超電導体中に磁束の侵入が始まってもローレンツ力
による磁束線の移動を妨げることができるいわゆるピン
中心が大量に存在すれば、超電導電流値を向上すること
ができる。なお、格子欠陥がピン中心として作用するの
が知られている。
The fact that the magnetic flux lines enter the inside of the superconductor as described above essentially contradicts the superconductivity. However, in the second type superconductor, even if the penetration of the magnetic flux begins in the first critical magnetic field, the second critical It has the property that it does not undergo a phase transition to normal conduction until it reaches a magnetic field. Therefore, if there are a large number of so-called pin centers that can prevent the movement of magnetic flux lines due to the Lorentz force even if the magnetic flux begins to penetrate into the superconductor in a magnetic field above the first critical magnetic field, the superconducting current value will be improved. be able to. It is known that lattice defects act as pin centers.

【0004】ところが、最近は意図的にピン中心として
作用する微細粒子を酸化物超電導体中に分散させること
により超電導電流密度の向上を図る試みも盛んである。
例えば、小川、吉田、平林 ISTEC ジャーナル
Vol.4 No.3 1991:p 30には、希土
類系酸化物超電導体において、YBa2Cu3O7-xの仮焼体粉
末と白金粉末とを1100℃まで加熱してY2BaCuO5の固
相と液相とが共存する半溶融状態にした後に徐冷すると
いう溶融法の一種の白金属添加法が発表されている。す
ると、結晶粒に未反応のY2BaCuO5の微粒子が分散し、そ
してこの微粒子がピン中心として作用することで酸化物
超電導体が磁場中でも高い臨界電流密度を示すことが報
告されている。同様に、出願人は、微量の白金若しくは
ロジウム又は何れかの化合物を添加してRE2BaCuO5(R
Eは、Y,Gd、Dy、Ho、Er及びYbを表す)の
微粒子をREBa2Cu3O7-xからなる結晶粒中に細かく分散す
ることでこれらの微粒子がピン中心と作用する希土類系
酸化物超電導体及びその製造方法を提案した(特願平2
ー412529)。なお、ピン中心として作用するもの
の体積率が一定ならピン中心はできるだけ微細かつ均一
に分散しているのが望ましい。
However, recently, attempts have been made to improve the superconducting current density by intentionally dispersing fine particles acting as pin centers in the oxide superconductor.
For example, Ogawa, Yoshida, Hirabayashi ISEC journal
Vol. 4 No. 3 1991: p30, in a rare earth oxide superconductor, a calcined powder of YBa 2 Cu 3 O 7-x and a platinum powder are heated to 1100 ° C. to obtain a solid phase and a liquid phase of Y 2 BaCuO 5. A method of adding a white metal, which is a kind of melting method, in which a semi-molten state in which and coexist, and then gradually cooling has been announced. Then, it has been reported that unreacted Y 2 BaCuO 5 fine particles are dispersed in the crystal grains, and these fine particles act as pin centers, so that the oxide superconductor exhibits a high critical current density even in a magnetic field. Similarly, Applicants have added RE 2 BaCuO 5 (R
(E represents Y, Gd, Dy, Ho, Er and Yb) Fine particles are finely dispersed in a crystal grain composed of REBa 2 Cu 3 O 7-x, so that these fine particles act as a pin center. Proposed oxide superconductor and its manufacturing method (Japanese Patent Application No. 2)
-412529). If the volume ratio of the pin centers is constant, it is desirable that the pin centers be dispersed as finely and uniformly as possible.

【0005】一方、マイスナー効果においては、外部磁
場を打ち消すように超電導体の表面に流れる超電導電流
の電流値が増大することが実用化にあたって必要であ
る。この超電導電流は超電導体の表面を環状に流れ、こ
の環の半径、ループ半径が大きい程、超電導電流密度は
増加する。ところが、酸化物超電導体はセラミックスで
あるので、一般には多数の結晶粒が粒界で遮られてい
る。超電導電流が粒界や結晶粒内部のクラック等に遮ら
れると、結晶粒毎に別個に流れることになり、ループ半
径も結晶粒の大きさ以上には大きくなれない。そこで、
結晶粒の大きさを増大すること、あるいは酸化物超電導
体のより大きな単結晶を得ることがループ半径を増大す
ることにつながる。また、隣接する結晶粒の配向がほぼ
一致している場合には、超電導電流は粒界に遮られるこ
となく、粒界を乗り越えてより長いパスをとることがで
きるので、粒界の大きさにループ半径は限定されなくな
る。結晶粒の配向を揃えることは高い臨界電流密度を得
るには効果的である。これらのことから、結晶粒の大き
さを増大すること、より大きな単結晶を成長させるこ
と、及び結晶粒の配向を揃えることは、超電導電流密度
を向上し、そして超電導特性を向上し、究極には、超電
導性酸化物の実現化に大変、重要となる。
On the other hand, in the Meissner effect, it is necessary for practical use that the current value of the superconducting current flowing on the surface of the superconductor increases so as to cancel the external magnetic field. The superconducting current flows annularly on the surface of the superconductor, and the larger the radius of the ring and the loop radius, the higher the density of the superconducting current. However, since oxide superconductors are ceramics, a large number of crystal grains are generally blocked by grain boundaries. When the superconducting current is blocked by grain boundaries or cracks inside the crystal grains, the superconducting current flows separately for each crystal grain, and the loop radius cannot be larger than the size of the crystal grain. Therefore,
Increasing the size of crystal grains or obtaining a larger single crystal of an oxide superconductor leads to increasing the loop radius. In addition, when the orientations of adjacent crystal grains are almost the same, the superconducting current can pass over the grain boundary and take a longer path without being blocked by the grain boundary. The loop radius is no longer limited. Aligning the crystal grains is effective for obtaining a high critical current density. From these facts, increasing the size of the crystal grains, growing a larger single crystal, and aligning the orientation of the crystal grains improve the superconducting current density, and improve the superconducting properties, and ultimately Is very important for realizing a superconducting oxide.

【0006】従来、溶融法で希土類系酸化物超電導体を
製造する際に、方向性を保って凝固させることによって
配向性が高く、大型の結晶粒を得る方法にはいわゆる温
度勾配法があった。温度勾配法では、均質な希土類系酸
化物超電導体を成形した後、加熱して溶融し、成形体に
一方向に温度勾配をつけてその温度勾配を保ったまま徐
冷する。すると、成形体は均質であると成形体内部のど
の部分でも凝固点は等しいので、温度勾配の中でも最も
温度が低い部分から結晶化が始まり、成形体が温度勾配
を保ったまま徐冷されるにつれてその結晶化が始まった
部分より、結晶粒が低温から高温にと温度勾配が設定さ
れている方向に成長していく。ここで、結晶粒の成長方
向が制御される機構は、徐冷中のいかなる温度において
も、一方向に温度勾配をつけることにより結晶成長が始
まった部分からの距離と相関をもって凝固点との温度差
が生じることであり、いわば結晶しやすさとでもいうも
のが特定方向に制御されていることである。
Conventionally, there has been a so-called temperature gradient method as a method for obtaining large crystal grains having a high orientation by solidifying while maintaining the directionality when a rare earth oxide superconductor is manufactured by a melting method. .. In the temperature gradient method, a homogeneous rare earth oxide superconductor is molded, then heated and melted, and the molded body is subjected to a temperature gradient in one direction and gradually cooled while maintaining the temperature gradient. Then, if the molded body is homogeneous, the freezing point is the same in all parts inside the molded body, so crystallization starts from the lowest temperature part of the temperature gradient, and as the molded body is gradually cooled while maintaining the temperature gradient. From the part where the crystallization has started, the crystal grains grow in the direction in which the temperature gradient is set from low temperature to high temperature. Here, the mechanism by which the growth direction of crystal grains is controlled is that, at any temperature during slow cooling, a temperature difference from the freezing point is generated by correlating with the distance from the portion where crystal growth has started by providing a temperature gradient in one direction. In other words, the so-called crystallinity is controlled in a specific direction.

【0007】ところが、温度勾配法のように、徐冷の際
に成形体内部で凝固点との温度差をある特定方向に制御
することは、必ずしも成形体内部の温度分布を制御しな
ければならないということではない。逆に、徐冷時に成
形体の温度をどの部分でも等しく分布させ、成形体内部
の凝固点を特定方向に変化するように成形体の組成分布
を制御しても同じ目的は達成される。
However, controlling the temperature difference between the freezing point and the freezing point inside the compact during gradual cooling as in the temperature gradient method requires that the temperature distribution inside the compact must be controlled. Not that. On the contrary, the same object can be achieved by evenly distributing the temperature of the molded body at any portion during slow cooling and controlling the composition distribution of the molded body so as to change the freezing point inside the molded body in a specific direction.

【0008】そこで、他の希土類元素で置換した融点の
異なる希土類系超電導酸化物を融点に従って順次、層状
に積層した成形体を加熱し、半溶融状態にした後に徐冷
する溶融法の一種である凝固点分布法によっても、配向
性の高い希土類系酸化物超電導体を得ることが報告され
ている (M. Morita; S. Takebayashi; M. Tanaka; K.
Kimura; K. Miyamoto; K. Sawano in ”Advances in Su
perconductivity III;Proceedings of the 3rd Interna
tional Symposium on Superconductivity (ISS '90)"
K. Kajimura; H. Hayakawa (Eds.), Spring-Verlag: To
kyo;1991, p. 733-736)。例えば、HoBa2Cu3O7-x(m.p.
990℃)、YBa2Cu3O7-x(m.p. 1000℃)及びDyB
a2Cu3O7-x(m.p. 1010℃)の各々の希土類系酸化物
超電導体より各層がなり、これら三層が積層した成形体
から溶融法で結晶成長させ、配向性と結晶性の高い希土
類系酸化物超電導体が得られている。即ち、この場合で
は融点の最も高いDyBa2Cu3O7-xからなる層で結晶化が始
まり、次に、この層と接していて2番目に融点が高いYB
a2Cu3O7-xからなる層に結晶が成長していき、最後にこ
の層に接していて最も融点が低いYBa2Cu3O7-xからなる
層へと、順次結晶は成長していく。 同様に、組成式がY
yYb1-yBa2Cu3O7-xと表せ、yが0より1まで0.1刻み
となる、合計11種類の希土類系酸化物超電導体の各々
より各層がなり、これら融点が順次、単調減少する11
層で構成される積層体からも凝固点分布法でも、同様な
手法で配向性の高い結晶性の希土類系酸化物超電導体が
得られている。
Therefore, this is a kind of melting method in which a rare earth-based superconducting oxide having a different melting point substituted with another rare earth element is sequentially laminated in accordance with the melting point to heat a molded body into a semi-molten state, followed by slow cooling. It has been reported that rare-earth oxide superconductors with high orientation can also be obtained by the freezing point distribution method (M. Morita; S. Takebayashi; M. Tanaka; K.
Kimura; K. Miyamoto; K. Sawano in ”Advances in Su
perconductivity III; Proceedings of the 3rd Interna
tional Symposium on Superconductivity (ISS '90) "
K. Kajimura; H. Hayakawa (Eds.), Spring-Verlag: To
kyo; 1991, p. 733-736). For example, HoBa 2 Cu 3 O 7-x (mp
990 ℃), YBa 2 Cu 3 O 7-x (mp 1000 ℃) and DyB
a 2 Cu 3 O 7-x (mp 1010 ° C.) each layer is made of each rare earth oxide superconductor, and crystal growth is performed by a melting method from a molded body in which these three layers are laminated, and the orientation and crystallinity are high. A rare earth oxide superconductor has been obtained. That is, in this case, crystallization starts in the layer made of DyBa 2 Cu 3 O 7-x having the highest melting point, and then YB which has the second highest melting point in contact with this layer.
The crystal grows in the layer consisting of a 2 Cu 3 O 7-x , and finally the crystal grows to the layer consisting of YBa 2 Cu 3 O 7-x with the lowest melting point in contact with this layer. To go. Similarly, the composition formula is Y
It can be expressed as y Yb 1-y Ba 2 Cu 3 O 7-x, and each layer is composed of 11 kinds of rare-earth oxide superconductors in which y is from 0.1 to 0.1 in increments of 0.1. , Monotonically decreasing 11
A crystalline rare-earth oxide superconductor with high orientation is obtained by a similar method from the laminated body composed of layers and the freezing point distribution method.

【0009】また、配向性の高い希土類系酸化物超電導
体を所望の結晶方位で得る溶融法として、種結晶を用い
るいわゆる単結晶種付け法がある。単結晶種付け法で
は、他の希土類元素で置換した融点がより高い希土類系
超電導酸化物を種結晶として希土類系超電導酸化物の成
形体に接触配置した後に、種結晶及び均一な成形体を両
酸化物超電導体の融点の中間の温度にまで加熱し、融点
がより低い該成形体のみを半溶融状態にし、次いで徐冷
することで種結晶より結晶成長をさせることで、配向性
の高い結晶性の希土類系酸化物超電導体を得る(同
上)。この手法で、融点が1030℃であるGdBa2Cu3O
7-xを種結晶として用い、融点が1000℃であるYBa2C
u3O7-xからなる配向性の高い希土類系酸化物超電導体が
得られている。また、出願人は、種結晶としてSrTiO3
MgO、 LaAlO3、 LaGaO3、 NdGaO3、PrGaO3等の格子定
数がREBa2Cu3O7-xの格子定数と近似することを利用し、
これらの化合物を種結晶に用いる種付け法を提案した
(特願平4−35028)。これらの化合物の融点は1
500℃以上であり、希土類系酸化物超電導体の融点よ
り遥かに高い為、溶融処理の際の温度設定の自由度が大
きくなる。
A so-called single crystal seeding method using a seed crystal is known as a melting method for obtaining a rare-earth oxide superconductor having a high orientation in a desired crystal orientation. In the single crystal seeding method, a rare earth-based superconducting oxide having a higher melting point substituted by another rare earth element is placed as a seed crystal in contact with the rare earth-based superconducting oxide compact, and then the seed crystal and a uniform compact are both oxidized. It is heated to a temperature in the middle of the melting point of the superconductor, and only the molded body with a lower melting point is put into a semi-molten state, and then gradually cooled to grow crystals from the seed crystal, thereby increasing the crystallinity with high orientation. To obtain a rare earth oxide superconductor (see above). With this method, GdBa 2 Cu 3 O having a melting point of 1030 ° C.
YBa 2 C with a melting point of 1000 ° C using 7-x as a seed crystal
A highly oriented rare earth oxide superconductor composed of u 3 O 7-x has been obtained. In addition, the applicant has used SrTiO 3 as a seed crystal,
Utilizing the fact that the lattice constants of MgO, LaAlO 3 , LaGaO 3 , NdGaO 3 , PrGaO 3, etc. are similar to the lattice constants of REBa 2 Cu 3 O 7-x ,
A seeding method using these compounds for seed crystals was proposed (Japanese Patent Application No. 4-35028). The melting point of these compounds is 1
Since it is 500 ° C. or higher, which is much higher than the melting point of the rare earth oxide superconductor, the degree of freedom in temperature setting during the melting process becomes large.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0010】ところが、これら3種類の希土類系超電導
酸化物の溶融法で結晶の大型化を試みると結晶が大きく
なるにつれ、設備が必然的に大型化、複雑化するので工
業上の問題があった。そして何よりも、結晶成長の制御
が困難になり疑似単結晶の大きさを2倍又は3倍にする
だけでも工業的に不可能ではないであろうが困難であっ
た。まず、温度制御法では、特殊な加熱装置が必要とな
る上、常に温度勾配を保ちつつ徐冷をするので、特殊か
つ高度な温度制御も必要となるので、工業上好ましくな
い。更に、温度制御の必要性より、製造しうる希土類系
酸化物超電導体の形状も単純なものに制限される。
However, when attempting to increase the size of the crystal by the melting method of these three types of rare earth-based superconducting oxides, as the size of the crystal becomes larger, the equipment inevitably becomes larger and complicated, which is an industrial problem. .. Above all, it is difficult to control the crystal growth, and it is not industrially impossible even if the size of the pseudo single crystal is doubled or tripled, but it was difficult. First, the temperature control method requires a special heating device and gradually cools while always maintaining a temperature gradient, which requires special and advanced temperature control, which is not industrially preferable. Further, the need for temperature control limits the shape of the rare earth oxide superconductor that can be manufactured to a simple shape.

【0011】また希土類元素を置換する又は貴金属を添
加する凝固点分布法でも結晶が大きくなるにつれ、結晶
成長に必要な熱処理時間も増加し、凝固点分布の制御、
温度制御等もより高度なものが要求されることになり、
一般的に工業的に困難が増す。更に、単結晶種付け法で
は、種結晶は結晶成長の開始点を与え、結晶成長の初期
の段階のみで結晶方位を制御するだけである。従って、
種結晶と接触している部位だけでなく、種結晶と接触し
ていない部位からもランダムに結晶が成長し易く、種結
晶と接触している部位のみから結晶を成長させ、大型の
酸化物超電導体を配向性を保ったまま得るのは困難であ
った。
Further, in the freezing point distribution method in which a rare earth element is replaced or a noble metal is added, as the crystal becomes larger, the heat treatment time required for crystal growth also increases, and the freezing point distribution is controlled.
More sophisticated temperature control will be required,
Generally, industrial difficulty increases. Further, in the single crystal seeding method, the seed crystal provides a starting point for crystal growth, and only controls the crystal orientation only in the initial stage of crystal growth. Therefore,
Random crystals easily grow not only in the part that is in contact with the seed crystal but also in the part that is not in contact with the seed crystal. It was difficult to obtain the body while maintaining its orientation.

【0012】ところが、配向性の高い大型の希土類系酸
化物超電導体を得るためには、必ずしもこれらの既存技
術のように、一度に大型の超電導酸化物の結晶を得るこ
とに限られないことに気が付き、鋭意研究に励み本発明
に至ったものである。
However, in order to obtain a large-sized highly rare-earth oxide superconductor having a high orientation, it is not always necessary to obtain a large-sized superconducting oxide crystal at a time as in these existing techniques. I noticed it and worked hard to research the present invention.

【0013】[0013]

【課題を解決するための手段】本発明によれば、超電導
特性を発現し得る希土類系酸化物を主成分とする二以上
の結晶が、隣合う結晶の結晶方位を揃えて接合されてい
ることを特徴とする希土類系超電導性組成物が提供され
る。
According to the present invention, two or more crystals containing a rare earth oxide capable of exhibiting superconducting properties as a main component are bonded so that adjacent crystals have the same crystal orientation. A rare earth-based superconducting composition is provided.

【0014】また、二以上の結晶が、超電導特性を発現
し得る希土類系酸化物を介して接合されていることも好
ましい。また、本発明によれば、二以上の結晶が、隣合
う結晶の主成分の超電導特性を発現し得る希土類系酸化
物の半溶融状態となる温度より半溶融状態となる温度が
低い超電導特性を発現し得る希土類系酸化物を介して接
合されていることも好ましい。
It is also preferable that two or more crystals are bonded via a rare earth oxide capable of exhibiting superconducting properties. Further, according to the present invention, two or more crystals have a superconducting property that a temperature in a semi-molten state is lower than a temperature in a semi-molten state of a rare earth oxide capable of expressing the superconducting properties of adjacent crystals. It is also preferable that they are bonded via a rare earth oxide that can be expressed.

【0015】更に本発明によれば、超電導特性を発現し
得る希土類系酸化物を主成分とする二以上の結晶を、隣
合う結晶の結晶方位を揃えて接触配置して、接触部分を
加熱して半溶融状態にした後に徐冷することにより接合
することを特徴とする希土類系超電導性組成物の製造方
法が提供される。
Further, according to the present invention, two or more crystals containing a rare earth oxide capable of exhibiting superconducting properties as a main component are arranged in contact with the adjacent crystals in the same crystal orientation, and the contact portion is heated. There is provided a method for producing a rare earth-based superconducting composition, characterized by joining by gradually cooling after being made into a semi-molten state.

【0016】[0016]

【作用】本発明によれば、超電導特性を発現し得る希土
類系酸化物を主成分とする二以上の結晶を、隣合う結晶
の結晶方位を揃えて接触配置して、接触部分を加熱して
半溶融状態にした後に徐冷することにより接合すること
で、大型の結晶方位が揃った希土類系超電導性組成物が
提供される。
According to the present invention, two or more crystals containing a rare earth oxide capable of exhibiting superconducting characteristics as a main component are arranged in contact with each other so that the crystal orientations of adjacent crystals are aligned, and the contact portions are heated. A large-scale rare earth-based superconducting composition having uniform crystallographic orientation is provided by joining the materials in a semi-molten state and then slowly cooling them.

【0017】本発明に係る製造方法に用いられる超電導
特性を発現し得る希土類系酸化物を主成分とする二以上
の結晶は、必ずしも単結晶に限られず、いわゆる疑似単
結晶も好適に用いられる。また、多結晶を用いることを
妨げるものでもない。本発明の一の目的は、接合部材中
でも接合で生じた接合面でも、粒界等によって超電導電
流パスが妨げられなければよいので、疑似単結晶、多結
晶等の場合は、超電導電流パスが妨げらにくい程度に結
晶粒の配向性が揃っていることが所望される。
The two or more crystals containing a rare earth oxide capable of exhibiting superconducting properties as the main component used in the manufacturing method according to the present invention are not necessarily limited to single crystals, and so-called pseudo single crystals are also preferably used. Nor does it prevent the use of polycrystals. An object of the present invention is to prevent the superconducting current flow path from being hindered by grain boundaries or the like even in the joining member or the joining surface generated by joining. It is desirable that the crystal grains have a uniform orientation to the extent that they are difficult to see.

【0018】本発明に係る製造方法では、隣合う結晶の
結晶方位を揃えて接触配置するわけであるが、結晶方位
はX線回折等、適当な方法によって求める。結晶方位を
揃えるのは、接合後に超電導電流パスが接合面で遮られ
ないように配向性を揃えるものであり、厳密である必要
は必ずしもない。
In the manufacturing method according to the present invention, the crystal orientations of adjacent crystals are aligned and arranged in contact, and the crystal orientation is determined by an appropriate method such as X-ray diffraction. Aligning the crystal orientations is to align the orientations so that the superconducting current flow paths are not blocked by the joint surface after joining, and is not necessarily strict.

【0019】接合部材として用いられる超電導特性を発
現し得る希土類系酸化物を主成分とする二以上の結晶の
接合面に、超電導特性を発現し得る希土類系酸化物をペ
ースト状等にして、塗布することも接合剤として作用す
るので好ましい。しかし、この接合剤となる酸化物は、
必ずしも必要ではなく、接合部材として用いられる結晶
の接合面を加熱し溶融又は半溶融状態とすることで直接
接合することもできる。また、接合剤に用いられる超電
導特性を発現し得る希土類系酸化物は、接合部材に用い
られる結晶の主成分である超電導特性を発現し得る希土
類系酸化物と同種でもよいが、異種でもよい。接合剤に
用いられる超電導特性を発現し得る希土類系酸化物の溶
融温度又は半溶融状態となる温度は、接合部材の主成分
となる超電導特性を発現し得る希土類系酸化物よりも溶
融温度又は半溶融状態となる温度が20℃以上低いこと
が好ましい。接合剤に用いられる超電導特性を発現し得
る希土類系酸化物の溶融温度又は半溶融状態となる温度
は、該酸化物に貴金属又は貴金属元素酸化物を添加する
ことによる凝固点降下で適宜調節することができる。ま
た、希土類元素の一部又は全部を他の希土類元素に置換
することでも調節できる。
A rare earth-based oxide capable of exhibiting superconducting properties is applied in a paste form to a joint surface of two or more crystals containing a rare-earth-based oxide capable of exerting superconducting properties as a main component and used as a joining member. Doing so is also preferable because it acts as a bonding agent. However, the oxide that serves as this bonding agent is
It is not always necessary, and the bonding surface of the crystal used as the bonding member may be heated and brought into a molten or semi-molten state so as to be directly bonded. Further, the rare earth-based oxide used for the bonding agent and capable of exhibiting the superconducting property may be the same kind as the rare earth-based oxide capable of expressing the superconducting property which is the main component of the crystal used for the bonding member, or may be different. The melting temperature or the semi-molten temperature of the rare earth oxide capable of exhibiting the superconducting properties used in the bonding agent is higher than the melting temperature or the semi-melting temperature of the rare earth oxide capable of exhibiting the superconducting properties as the main component of the joining member. It is preferable that the temperature of the molten state is 20 ° C. or higher. The melting temperature or the semi-molten temperature of the rare earth oxide capable of exhibiting superconducting properties used for the bonding agent may be appropriately adjusted by freezing point depression by adding a noble metal or a noble metal element oxide to the oxide. it can. It can also be adjusted by substituting a part or all of the rare earth element with another rare earth element.

【0020】このように接合部材となる超電導特性を発
現し得る希土類系酸化物を主成分とする結晶は、希土類
元素置換による若しくは貴金属等の添加による凝固点分
布法又は単結晶種付け法等で好適に作製されるが、これ
らの手法で作製されなければならないわけではない。
As described above, the crystal containing a rare earth-based oxide as a main component capable of exhibiting superconducting characteristics, which serves as a joining member, is preferably used by a freezing point distribution method by rare earth element substitution or addition of a noble metal or a single crystal seeding method. It is made, but it does not have to be made by these techniques.

【0021】希土類元素置換による凝固点分布法は、公
知技術であり、希土類元素の置換率の異なる超電導特性
を発現し得る希土類系酸化物を融点に従って順次、層状
に積層した成形体を形成し、この成形体を加熱し、半溶
融状態にした後に徐冷することで、配向性の高い希土類
系超電導酸化物を得ることができる。
The freezing point distribution method by rare earth element substitution is a known technique, and a molded body is formed by sequentially laminating rare earth oxides capable of exhibiting superconducting properties having different substitution rates of rare earth elements in layers according to the melting point. A rare-earth superconducting oxide having a high degree of orientation can be obtained by heating the molded body to bring it into a semi-molten state and then gradually cooling it.

【0022】添加物による凝固点分布法とは、超電導特
性を発現し得る希土類系酸化物の成形体中に貴金属又は
貴金属酸化物が制御された濃度分布をするようにして成
形体中の凝固点分布を制御し、次いでこのような成形体
を加熱し、半溶融状態にした後に徐冷することで、凝固
点の最も高い部分に結晶化が開始しより凝固点の低い方
向へ結晶を成長させて、配向性の高い希土類系超電導酸
化物を得る方法である。ここで、成形体の凝固点分布を
制御するにあたって、貴金属又は貴金属酸化物を含有す
ると超電導特性を発現し得る希土類系酸化物の凝固点は
低下するという性質を利用し、凝固点の最も高い部分に
結晶化が開始し、より凝固点の低い方向へ結晶が成長し
易いように、成形体の凝固点分布を制御する。
The freezing point distribution method using an additive is a method in which a noble metal or a noble metal oxide is controlled to have a controlled concentration distribution in a molded body of a rare earth oxide capable of exhibiting superconducting properties, and a freezing point distribution in the molded body is obtained. By controlling, then heating such a molded body, making it a semi-molten state, and then gradually cooling, crystallization starts at the part with the highest freezing point and crystals grow in the direction of the lower freezing point, and the orientation It is a method for obtaining a rare earth-based superconducting oxide having high conductivity. Here, in controlling the freezing point distribution of the molded body, by utilizing the property that the inclusion of a noble metal or a noble metal oxide lowers the freezing point of the rare earth-based oxide that can develop superconducting properties, crystallization occurs at the highest freezing point. Starts, and the freezing point distribution of the compact is controlled so that the crystal easily grows in the direction of the lower freezing point.

【0023】単結晶種付け法において、希土類元素を置
換することで成形体の主成分である超電導特性を発現し
得る希土類系酸化物よりも融点の高い超電導特性を発現
しうる希土類系酸化物を種結晶に用いることは、公知技
術である。この手法では、このような種結晶を成形体に
接触配置した後に、種結晶及び成形体をそれらの融点の
中間の温度にまで加熱して成形体のみを半溶融状態に
し、次いで徐冷することによって種結晶から結晶を成長
させることで、配向性の高い希土類系超電導酸化物を所
望の結晶方位で得ることができる。添加物による単結晶
種付け法では、貴金属又は貴金属化合物を含有して凝固
点が低下した希土類系酸化物超電導体の成形体より融点
が高い希土類系酸化物超電導体の単結晶小片をこの成形
体の上面中心部に置いてから好ましい公知方法で種結晶
の融点と成形体の融点の中間の温度にまで加熱し、種結
晶を半溶融状態にすることなく、成形体のみを半溶融状
態にする。なお、希土類系酸化物超電導体の成形体に貴
金属又は貴金属化合物が制御された濃度分布をしていて
成形体中の融点が一定でない場合は、種結晶として用い
られる単結晶の希土類系酸化物超電導体の融点が成形体
中で最も高い融点よりも更に高い必要がある。この場
合、種結晶を配置する部位は、成形体中の最も凝固点の
高い領域の中心部とする。種結晶として、SrTiO3、 Mg
O、 LaAlO3、 LaGaO3、 NdGaO3、 PrGaO3等の酸化物端
結晶を用いることもできる。この方法では、これらの酸
化物単結晶の(100)研摩面を成形体に接触配置し、
加熱して成形体を半溶融状態とした後、成形体の凝固点
以下に徐冷して結晶成長させる。酸化物単結晶の(10
0)面が希土類系酸化物超電導体のab面と格子定数が近
似していることから、この方法によって、酸化物単結晶
の(100)面上に希土類系酸化物超電導体のab面を選
択的に結晶成長させることができる。また、これらの酸
化物単結晶の融点は1500℃以上であり、希土類系酸
化物超電導体の融点より遥かに高い為、種結晶を配置す
ることによって半溶融温度に制限が生じることはない。
なお、この場合、接触面において成形体よりも面積の大
きい酸化物単結晶を種結晶に用いることが望ましい。こ
れは、希土類系酸化物超電導体が正方晶系であるのに対
して、酸化物単結晶は立方晶系であり、酸化物単結晶の
(100)(010)(001)面が同等であるため、
接触面において面積の小さい酸化物単結晶を種結晶に用
いると、酸化物単結晶の(100)(010)(00
1)面それぞれに希土類系酸化物超電導体のab面が形成
されて、異なる配向の結晶が複数成長し、結果として配
向の揃った超電導酸化物が得られないからである。
In the single crystal seeding method, a rare earth-based oxide having a melting point higher than that of the rare earth-based oxide capable of exhibiting the superconducting characteristics, which is the main component of the compact by substituting the rare earth element, is used as the seed. It is a known technique to use it for crystallization. In this method, after placing such a seed crystal in contact with the molded body, the seed crystal and the molded body are heated to a temperature midway between their melting points to bring only the molded body into a semi-molten state, and then slowly cooling. By growing a crystal from a seed crystal by means of, a highly-oriented rare earth-based superconducting oxide can be obtained in a desired crystal orientation. In the single crystal seeding method using an additive, a single crystal piece of a rare earth oxide superconductor having a melting point higher than that of a molded body of a rare earth oxide superconductor containing a noble metal or a noble metal compound and having a lower freezing point is formed on the upper surface of this molded body. After it is placed in the center, it is heated by a known method to a temperature between the melting point of the seed crystal and the melting point of the molded body, and the molded body alone is brought into the semi-molten state without making the seed crystal into the semi-molten state. If the noble metal or noble metal compound has a controlled concentration distribution in the compact of the rare earth oxide superconductor and the melting point in the compact is not constant, the single crystal rare earth oxide superconductor used as a seed crystal is used. The melting point of the body must be higher than the highest melting point in the shaped body. In this case, the portion where the seed crystal is arranged is the center of the region having the highest freezing point in the compact. SrTiO 3 , Mg as seed crystal
Oxide edge crystals such as O, LaAlO 3 , LaGaO 3 , NdGaO 3 , and PrGaO 3 can also be used. In this method, the (100) polished surface of these oxide single crystals is placed in contact with a compact,
After heating the molded body to a semi-molten state, it is gradually cooled to a temperature below the freezing point of the molded body to grow crystals. Oxide single crystal (10
Since the 0) plane is similar in lattice constant to the ab plane of the rare earth oxide superconductor, the ab plane of the rare earth oxide superconductor is selected on the (100) plane of the oxide single crystal by this method. Crystal growth can be achieved. Further, since the melting point of these oxide single crystals is 1500 ° C. or higher, which is much higher than the melting point of the rare earth oxide superconductor, the placement of the seed crystal does not limit the semi-melting temperature.
In this case, it is desirable to use, as a seed crystal, an oxide single crystal having a larger area on the contact surface than the molded body. This is because the rare earth oxide superconductor is a tetragonal system, whereas the oxide single crystal is a cubic system, and the (100) (010) (001) planes of the oxide single crystal are the same. For,
When an oxide single crystal having a small area on the contact surface is used as a seed crystal, (100) (010) (00) of the oxide single crystal is used.
1) The ab plane of the rare earth oxide superconductor is formed on each of the planes, a plurality of crystals having different orientations grow, and as a result, a superconducting oxide having a uniform orientation cannot be obtained.

【0024】以下、接合される部材に用いられる超電導
特性を発現し得る希土類系酸化物の作製方法及びその接
合方法について更に詳しく説明する。本発明に係る希土
類系超電導性組成物は、組成式でREBa2Cu3O7-xと表せ、
REは希土類元素でY、Gd、Dy、Ho、Er及びYb
からなる群のなかの少なくとも一元素からなる希土類系
超電導酸化物を主成分として含有する。ここで、xはこ
れらの化合物中の酸素組成が非化学量論的なので0以上
1以下という不定比を示し、この値が超電導特性の発現
に直接影響を与える。REと表す希土類元素は、必ずしも
一元素のみに限られるわけではなく、Y、Gd、Dy、
Ho、Er及びYbからなる群より任意の二以上の元素
を混在させてもよく、希土類系超電導酸化物の好ましい
融点を選択する自由度が増加する。このような例として
は、REがYyYb1-y(yは0以上1以下の実数)と表せる
場合等がある。また、これら化合物の結晶構造は共通の
特徴があり、多層ペロブスカイト構造を有する。
Hereinafter, a method for producing a rare earth oxide capable of exhibiting superconducting properties used for members to be joined and a joining method thereof will be described in more detail. The rare earth-based superconducting composition according to the present invention can be represented by the composition formula: REBa 2 Cu 3 O 7-x ,
RE is a rare earth element, Y, Gd, Dy, Ho, Er, and Yb.
It contains, as a main component, a rare earth-based superconducting oxide containing at least one element in the group consisting of. Here, x represents a nonstoichiometric ratio of 0 or more and 1 or less because the oxygen composition in these compounds is non-stoichiometric, and this value directly affects the expression of superconducting properties. The rare earth element represented by RE is not necessarily limited to only one element, but Y, Gd, Dy,
Any two or more elements selected from the group consisting of Ho, Er and Yb may be mixed, and the degree of freedom in selecting a preferable melting point of the rare earth-based superconducting oxide increases. As such an example, there is a case where RE can be expressed as Y y Yb 1-y (y is a real number of 0 or more and 1 or less). Further, the crystal structures of these compounds have common characteristics, and have a multi-layer perovskite structure.

【0025】接合部材として用いる結晶の主成分又は接
合剤として用いる超電導特性を発現し得る希土類系酸化
物は、組成式でREBa2Cu3O7-xと表せ、REは希土類元素で
Y、Gd、Dy、Ho、Er及びYbからなる群のなか
の少なくとも一元素からなるものを広義に意味し、酸素
組成が超電導特性を発現する範囲となっているのは当然
含まれるが、必ずしもその範囲になっている必要はな
い。つまり、これらの酸化物中の酸素組成は400〜8
00℃での好適な雰囲気中の熱処理で可逆的に変化し得
るので、酸素組成が超電導特性の範囲外の酸化物を本発
明に係る製造方法で接合した後に、このような適切な熱
処理をすれば最終的に超電導特性を発現する希土類系酸
化物が得られるからである。接合部材に用いられる超電
導特性を発現し得る希土類系酸化物の例としては、YBa2
Cu3O7-xが挙げられる。
The rare earth-based oxide that can express the superconducting property used as the main component of the crystal used as the bonding member or the bonding agent can be represented by the composition formula as REBa 2 Cu 3 O 7-x, and RE is a rare earth element Y or Gd. , Dy, Ho, Er, and Yb are meant to include at least one element in a broad sense, and it is naturally included that the oxygen composition is in a range in which superconductivity is exhibited, but it is not always included in the range. It doesn't have to be. That is, the oxygen composition in these oxides is 400 to 8
Since it can be reversibly changed by heat treatment in a suitable atmosphere at 00 ° C., such an appropriate heat treatment may be performed after joining oxides whose oxygen composition is out of the range of superconducting properties by the manufacturing method according to the present invention. This is because, for example, a rare earth oxide that finally exhibits superconducting properties can be obtained. As an example of a rare earth oxide that can exhibit superconducting properties used for a joining member, YBa 2
Cu 3 O 7-x can be mentioned.

【0026】上記のREBa2Cu3O7-xという組成式で表せる
接合部材用及び接合剤用の超電導特性を発現し得る希土
類系酸化物を作製する原料粉末は、RE即ちY、Gd、D
y、Ho、Er若しくはYbの酸化物、炭酸塩若しくは
その他の化合物、Baの炭酸塩、酸化物、過酸化物、そ
の他のバリウム塩若しくはバリウム化合物、若しくは
銅、酸化銅(II)、酸化銅(I)若しくは銅化合物、
又はこれら何れかの化合物を混合した混合粉末、仮焼粉
末、若しくはフリット粉末等を、焼成後REBa2Cu3O7-x
RE2BaCuO5を構成するように配合されたものであればよ
く、特に限定されるものでない。また、原料粉末の粒径
も特に制限されるものでないが、一般的には、2〜20
μmの粒径のものが用いられる。
The raw material powder for producing the rare earth oxide capable of exhibiting superconducting properties for the joining member and the joining agent represented by the composition formula REBa 2 Cu 3 O 7-x is RE, that is, Y, Gd, D.
Y, Ho, Er or Yb oxide, carbonate or other compound, Ba carbonate, oxide, peroxide, other barium salt or barium compound, or copper, copper (II) oxide, copper oxide ( I) or a copper compound,
Alternatively, a mixed powder obtained by mixing any of these compounds, a calcined powder, a frit powder, or the like is mixed with REBa 2 Cu 3 O 7-x after firing.
There is no particular limitation as long as it is blended so as to form RE 2 BaCuO 5 . Further, the particle size of the raw material powder is not particularly limited, but generally 2 to 20
A particle size of μm is used.

【0027】本発明においては、白金族元素のRh若し
くはPt元素又はこれらの酸化物をREBa2Cu3O7-xという
組成式で表せる超電導特性を発現し得る希土類系酸化物
中に元素を基準として0.01〜5重量%含有すると、
RE2BaCuO5からなる粒子が結晶粒中に細かく均一に分散
する効果があり、するとこれらの微粒子はピン中心とし
て作用するので好ましい。そこで、添加物を用いる凝固
点分布法においては、Rh若しくはPt元素又はこれら
の酸化物は、超電導特性を発現し得る希土類系酸化物に
均一に分散させ、他の貴金属又は貴金属酸化物の濃度分
布を制御してもよいし、又はRh若しくはPt元素又は
これらの酸化物自体の濃度分布を制御してもよい。
In the present invention, the Rh or Pt element of the platinum group element or an oxide thereof is expressed in the composition formula REBa 2 Cu 3 O 7-x , and the element is used as a reference in the rare earth oxide capable of exhibiting superconducting properties. As 0.01 to 5% by weight,
There is an effect that particles of RE 2 BaCuO 5 are finely and uniformly dispersed in crystal grains, and these fine particles act as pin centers, which is preferable. Therefore, in the freezing point distribution method using an additive, the Rh or Pt element or these oxides is uniformly dispersed in a rare earth oxide capable of exhibiting superconducting properties, and the concentration distribution of other noble metal or noble metal oxide is It may be controlled, or the concentration distribution of the Rh or Pt element or the oxide itself may be controlled.

【0028】これらの超電導特性を発現し得る希土類系
酸化物の原料粉末を、プレス成形法、鋳込み成形法、CI
P法などの公知方法で成形して成形体とし、温度勾配
法、凝固点分布法、単結晶種付け法なでの溶融法によっ
て成形体を加熱して溶融した後、徐冷することで配向性
の高い超電導特性を発現し得る希土類系酸化物の疑似単
結晶を得る。そして、X線回折等の公知方法によって疑
似単結晶の結晶方位を測定した後、所望の形状に結晶方
位を揃えて接合できるようにダイヤモンド研削装置など
で加工し、接合面を鏡面研磨することによって超電導特
性を発現し得る希土類系酸化物の疑似単結晶からなる接
合部材を得る。
Raw material powders of these rare earth oxides capable of exhibiting superconducting properties are prepared by press molding, casting molding, CI
A molded body is formed by a known method such as P method, and the formed body is heated and melted by a temperature gradient method, a freezing point distribution method, a melting method such as a single crystal seeding method, and then slowly cooled to obtain an orientation property. A rare-earth oxide pseudo single crystal capable of exhibiting high superconducting properties is obtained. Then, after measuring the crystal orientation of the pseudo single crystal by a known method such as X-ray diffraction, it is processed by a diamond grinding machine or the like so that the crystal orientation can be aligned and bonded to a desired shape, and the bonding surface is mirror-polished. A joining member made of a pseudo single crystal of a rare earth oxide capable of exhibiting superconducting properties is obtained.

【0029】次に、接合部材に用いた希土類系酸化物よ
りも融点の低い超電導特性を発現し得る希土類系酸化物
の原料粉末又は仮焼粉末等を主成分とする接合剤を、ペ
ースト塗布、スプレー塗布などの公知方法で接合部材の
接合面上に成形して、接合層を形成し、接合層の希土類
系酸化物の融点と接合部材の希土類系酸化物の融点との
中間の温度にまで加熱して、接合部材は溶融させずに接
合層のみを溶融させて半溶融状態とし、その後、通常の
溶融法と同様に徐冷して接合層を結晶成長させることに
よって、複数の超電導特性を発現し得る希土類系酸化物
の疑似単結晶を結晶方位を揃えて接合し、配向性及び結
晶性の高い大型の希土類系超電導性組成物を得る。
Next, a bonding agent containing a raw material powder or a calcined powder of a rare earth oxide capable of exhibiting a superconducting property having a melting point lower than that of the rare earth oxide used for the joining member as a main component is pasted, By forming on the joint surface of the joint member by a known method such as spray coating to form a joint layer, a temperature intermediate between the melting point of the rare earth oxide of the joint layer and the melting point of the rare earth oxide of the joint member. By heating, the joining member is not melted but only the joining layer is melted into a semi-molten state, and then slowly cooled in the same manner as in the normal melting method to grow the joining layer crystallize, thereby providing a plurality of superconducting properties. A rare earth-based superconducting composition having a high orientation and crystallinity is obtained by bonding pseudo-single crystals of the rare earth-based oxides that can be expressed in the same crystal orientation.

【0030】接合剤としては、接合部材に用いられる希
土類系酸化物の原料粉末又は仮焼粉末に、銀等の貴金属
を添加して融点を低くした粉末や、希土類元素を置換し
て融点を低くした粉末などを、好ましく用いることがで
きる。また、凝固点分布法等を用いて、あらかじめ接触
する接合面の少なくとも片方の融点が低くなるように接
合部材を作製しておき、接合剤を用いることなく接合面
を直接当接して治具で固定し、接合面の融点以上に加熱
して接合面を半溶融状態とし、その後、徐冷して接合面
で結晶成長させることによっても、配向性及び結晶性の
高い大型の希土類系超電導性組成物を好ましく得ること
ができる。この場合の溶融温度は、融点がより低い接合
面の温度以上の温度であり、接合部材の融点分布等によ
り適宜調節すればよい。半溶融状態とする加熱処理は、
一般に所定温度で所定時間保持することにより行うが、
保持時間は特に制限されるものではなく、接合形態、加
熱条件等により適宜選択することができ、通常は10分
〜2時間である。また、徐冷は溶融温度から開始し、接
合部の凝固点より30℃程度低い温度までとし、徐冷速
度は0.1〜1℃とするのが好ましい。例えば、銀無添
加のYBa2Cu3O7-xからなる接合部材を銀無添加のYbBa2Cu
3O7-xからなる接合剤で接合する場合には、溶融温度を
920〜950℃とし、溶融温度から870℃まで1時
間あたり1℃の徐冷速度で徐冷するのが好ましい。
As the bonding agent, a powder obtained by adding a noble metal such as silver to a raw material powder or a calcined powder of a rare earth oxide used for a bonding member to lower the melting point, or a rare earth element being substituted to lower the melting point. The powder etc. can be preferably used. In addition, using a freezing point distribution method, etc., a joining member is prepared in advance so that the melting point of at least one of the joining surfaces to be contacted is lowered, and the joining surfaces are directly contacted and fixed with a jig without using a bonding agent. Then, a large-scale rare earth-based superconducting composition having high orientation and crystallinity is also obtained by heating the bonding surface to a temperature equal to or higher than the melting point to bring the bonding surface into a semi-molten state, and then gradually cooling and crystallizing on the bonding surface. Can be preferably obtained. The melting temperature in this case is equal to or higher than the temperature of the joint surface having a lower melting point, and may be appropriately adjusted according to the melting point distribution of the joint member and the like. The heat treatment to make it a semi-molten state is
Generally, it is performed by holding at a predetermined temperature for a predetermined time,
The holding time is not particularly limited and can be appropriately selected depending on the bonding form, heating conditions, etc., and is usually 10 minutes to 2 hours. Further, it is preferable that the slow cooling is started from the melting temperature and is lowered to about 30 ° C. lower than the freezing point of the joint, and the slow cooling rate is 0.1 to 1 ° C. For example, a joining member made of YBa 2 Cu 3 O 7-x containing no silver is used as a bonding member containing YbBa 2 Cu containing no silver.
In the case of bonding with a bonding agent composed of 3 O 7-x , it is preferable to set the melting temperature to 920 to 950 ° C. and gradually cool from the melting temperature to 870 ° C. at a slow cooling rate of 1 ° C. per hour.

【0031】最後に接合後、公知の溶融法と同様に、酸
素雰囲気中、所定温度で保持して熱処理することによ
り、超電導酸化物中の非化学量論的である酸素の組成比
を調節して、酸化物超電導特性を発現させ、REBa2Cu3O
7-xという組成式で表せる希土類系超電導酸化物を主成
分とする超電導性組成物を得ることができる。通常65
0〜400℃で、約10〜50時間保持するのが好まし
い。
Finally, after the bonding, as in the known melting method, the composition ratio of non-stoichiometric oxygen in the superconducting oxide is adjusted by holding the material in an oxygen atmosphere at a predetermined temperature for heat treatment. To develop oxide superconductivity, and REBa 2 Cu 3 O
A superconducting composition containing a rare earth-based superconducting oxide represented by a composition formula of 7-x as a main component can be obtained. Usually 65
It is preferable to hold at 0 to 400 ° C. for about 10 to 50 hours.

【0032】本発明によれば、超電導特性を発現し得る
希土類系酸化物を主成分とする二以上のいわゆる疑似結
晶等を、隣合う結晶等の結晶方位を揃えて接触配置し
て、接触部分を加熱して半溶融状態にした後に徐冷する
ことにより接合することで、大型の結晶方位が揃った希
土類系超電導性組成物が提供される。よって、配向性が
揃っていて、粒界等によって超電導電流パスが妨げられ
ない大型の希土類系超電導性組成物が簡便に得られる。
According to the present invention, two or more so-called pseudo-crystals or the like containing a rare earth oxide capable of exhibiting superconducting properties as a main component are arranged in contact so that adjacent crystals or the like have the same crystal orientation, and contact portions are provided. After being heated to a semi-molten state and then gradually cooled to bond, a large-scale rare earth-based superconducting composition having uniform crystal orientation is provided. Therefore, it is possible to easily obtain a large-scale rare earth-based superconducting composition which has uniform orientation and in which the superconducting current path is not hindered by grain boundaries and the like.

【0033】また、接合面に超電導特性を発現し得る希
土類系酸化物をペースト状等にして塗布することも接合
剤として作用するので好ましく、接合剤に用いられる超
電導特性を発現し得る希土類系酸化物の溶融温度又は半
溶融状態となる温度は、接合部材の主成分となる超電導
特性を発現し得る希土類系酸化物よりも溶融温度又は半
溶融状態となる温度が20℃以上低いことが好ましい。
It is also preferable to apply a rare earth oxide capable of exhibiting superconducting properties to the joint surface in the form of a paste or the like, since it also acts as a jointing agent, and rare earth oxides capable of exhibiting superconducting properties used in the jointing agent are preferable. The melting temperature or the temperature of the semi-molten state of the material is preferably 20 ° C. or more lower than the melting temperature or the temperature of the semi-molten state of the rare-earth oxide capable of exhibiting superconducting properties which is the main component of the joining member.

【0034】[0034]

【実施例】以下、本発明を実施例により詳細に説明す
る。但し、本発明は下記実施例により制限されるもので
ない。なお、平板(実施例1−3)又は円筒形状(実施
例4−6)のYBa2Cu3O7-xの疑似単結晶を接合した。こ
の単結晶及びペーストに用いる希土類系酸化物の合成方
法は、Y2O3、BaO2及びCuOの混合物から直接合成する合
成方法とBaCuO2の仮焼粉末を経由する合成方法の両者を
用いた。
EXAMPLES The present invention will be described in detail below with reference to examples. However, the present invention is not limited to the following examples. A flat single crystal (Example 1-3) or a cylindrical (Example 4-6) YBa 2 Cu 3 O 7-x pseudo single crystal was bonded. As the method for synthesizing the rare-earth oxides used for this single crystal and paste, both the synthetic method of directly synthesizing from a mixture of Y 2 O 3 , BaO 2 and CuO and the synthetic method of calcination powder of BaCuO 2 were used. ..

【0035】(実施例1)まず、SmBa2Cu3O7-xの単結晶
を接触配置する溶融法で円柱形状であるYBa2Cu3O7-x
いわゆる疑似単結晶を9個得て、それらを切断し、直方
体形状の接合部材とした。Y2O3、BaO2及びCuOの各々の
粉末を、これら化合物のモル比が0.9:2.4:3.
4となるように添加し、ここに更に白金粉末を0.5重
量%添加した。次いで、これを乾式ポットミルで6時間
混合した後、酸素と窒素との体積比が1:4となる雰囲
気中にある銀板上にこの混合粉末を敷き広げて、700
℃で10時間仮焼し、次いで、この仮焼体をジルコニア
玉石を用いた回転ミルで15時間粉砕して、平均粒径は
約5μmである銀化合物を添加していないYBa2Cu3O7-x
の仮焼粉末を得た。
Example 1 First, nine so-called pseudo single crystals of YBa 2 Cu 3 O 7-x having a cylindrical shape were obtained by a melting method in which a single crystal of SmBa 2 Cu 3 O 7-x was placed in contact. Then, they were cut into a rectangular parallelepiped-shaped joining member. The respective powders of Y 2 O 3 , BaO 2 and CuO were mixed at a molar ratio of these compounds of 0.9: 2.4: 3.
No. 4 was added, and 0.5 wt% of platinum powder was further added thereto. Then, this was mixed in a dry pot mill for 6 hours, and this mixed powder was spread on a silver plate in an atmosphere in which the volume ratio of oxygen and nitrogen was 1: 4, and 700
It was calcined at ℃ for 10 hours, then, this calcined body was crushed for 15 hours by a rotary mill using zirconia boulders, and YBa 2 Cu 3 O 7 having an average particle size of about 5 μm and no silver compound added. -x
A calcined powder of was obtained.

【0036】こうして得られた銀化合物を含有しない仮
焼粉末120gを内径50mm.の円筒状金型に投入して
プレス圧0.1トン/cm2でプレス成形をし、次いで、室
温で0.5トン/cm2で等方加圧成形を行い、円柱形状の
成形体を得た。
120 g of the calcined powder containing no silver compound thus obtained was put into a cylindrical mold having an inner diameter of 50 mm and press-molded at a press pressure of 0.1 ton / cm 2 , and then at room temperature at 0. Isotropic pressure molding was performed at 5 ton / cm 2 to obtain a cylindrical molded body.

【0037】高純度アルミナ板上に、このようにして得
られた円柱形状の成形体を置いた。そしてYBa2Cu3O7-x
より融点の高いSmBa2Cu3O7-xの約4mm.x5mm.の単結晶
をab面で劈開して、この劈開面を平板状成形体の上面の
中央部に置いた。次いで、大気雰囲気中の電気炉内で、
高純度アルミナ板上の円柱形状の成形体を1030℃で
1時間保持して溶融した後、そのまま大気雰囲気中で1
030℃から980℃まで1時間あたり0.1〜1.0
℃で徐冷し、YBa2Cu3O7-xをアルミナ板上で結晶成長さ
せ、直径45mm.高さ15mm.の円柱形状のYBa2Cu3O7-x
酸化物のいわゆる疑似単結晶を得た。同様の工程で合計
9個の同一形状のいわゆる疑似単結晶を得た。X線回折
装置でこれら9個のいわゆる疑似単結晶の結晶方位を測
定した。これらの高さが15mm.の円柱形状のいわゆる
疑似単結晶より一辺30mm.の正方形が底面と上面とに
なり高さが15mm.の直方体を結晶格子のbc面及びca面
に平行になるようにダイヤモンド切断機で切り出し、各
々の直方体形状のいわゆる疑似単結晶の切断面4面を鏡
面研磨した。
The cylindrical shaped body thus obtained was placed on a high-purity alumina plate. And YBa 2 Cu 3 O 7-x
A single crystal of SmBa 2 Cu 3 O 7-x having a higher melting point of about 4 mm. × 5 mm. Was cleaved along the ab plane, and this cleaved surface was placed at the center of the upper surface of the flat plate-shaped compact. Then, in an electric furnace in the atmosphere,
After holding a cylindrical shaped body on a high-purity alumina plate at 1030 ° C for 1 hour to melt it,
0.1 to 1.0 per hour from 030 ° C to 980 ° C
After gradually cooling at ℃, YBa 2 Cu 3 O 7-x is grown on an alumina plate to form a cylindrical YBa 2 Cu 3 O 7-x with a diameter of 45 mm and a height of 15 mm.
A so-called pseudo single crystal of oxide was obtained. In the same process, a total of 9 so-called pseudo single crystals having the same shape were obtained. The crystal orientations of these nine so-called pseudo single crystals were measured with an X-ray diffractometer. From these so-called pseudo single crystals with a height of 15 mm, squares with a side of 30 mm are the bottom and top, and a rectangular parallelepiped with a height of 15 mm is parallel to the bc and ca planes of the crystal lattice. It was cut out with a diamond cutting machine, and four cut surfaces of each rectangular parallelepiped so-called pseudo single crystal were mirror-polished.

【0038】また、接合部材である疑似単結晶を接合す
る際の接合剤として、希土類系酸化物を主成分とするペ
ーストを得た。即ち、接合部材を作製するために得たYB
a2Cu3O7-xの仮焼粉末に、平均粒径約5μmの15重量
%の酸化銀粉末を添加し、乾式ポットミルで64時間混
合して、酸化銀を15重量%含有するYBa2Cu3O7-xの仮
焼粉末を得た。次いで、この酸化銀を15重量%含有す
るYBa2Cu3O7-xの仮焼粉末にトルエンを溶媒として添加
し、ペーストとした。
Further, a paste containing a rare earth oxide as a main component was obtained as a bonding agent for bonding the pseudo single crystal as the bonding member. That is, the YB obtained for producing the joining member
To a calcined powder of a 2 Cu 3 O 7-x , 15% by weight of silver oxide powder having an average particle size of about 5 μm was added and mixed in a dry pot mill for 64 hours to prepare YBa 2 containing 15% by weight of silver oxide. A calcined powder of Cu 3 O 7-x was obtained. Then, toluene was added as a solvent to the calcined powder of YBa 2 Cu 3 O 7-x containing 15% by weight of silver oxide to obtain a paste.

【0039】これらの直方体形状の9個のいわゆる疑似
単結晶を、図1aに示すように、結晶格子のab面が上面
及び下面と平行になるように縦と横とで各3列に配置し
た。そして、このペーストを隣合ういわゆる疑似単結晶
の側面に塗布した後、これらの面を接触配置し、治具で
固定した。
As shown in FIG. 1a, these nine rectangular parallelepiped so-called pseudo single crystals are arranged in three columns each in the vertical and horizontal directions so that the ab plane of the crystal lattice is parallel to the upper and lower surfaces. .. Then, after applying this paste to the side surfaces of adjacent so-called pseudo single crystals, these surfaces were arranged in contact and fixed with a jig.

【0040】大気雰囲気中、治具で固定されたこれら9
個のいわゆる疑似単結晶を990℃まで加熱し、接合剤
である酸化銀を15重量%含有するYBa2Cu3O7-xを溶融
し、990℃から960℃まで1時間あたり1℃で徐冷
し、接合部でYBa2Cu3O7-xの結晶を成長させ、これら9
個のいわゆる疑似単結晶を接合した。大気雰囲気を酸素
雰囲気に変えた後、800℃〜400℃で50時間熱処
理を施し、超電導特性を発現させ、一辺90mm.の正方
形で厚さが15mm.の平板である希土類系超電導性組成
物を得た。
These 9 fixed by a jig in the air atmosphere
Each so-called pseudo single crystal is heated to 990 ° C, YBa 2 Cu 3 O 7-x containing 15% by weight of silver oxide as a bonding agent is melted and gradually heated from 990 ° C to 960 ° C at 1 ° C per hour. After cooling, a crystal of YBa 2 Cu 3 O 7-x was grown at the joint, and these 9
The so-called pseudo single crystals were joined together. After changing the air atmosphere to an oxygen atmosphere, heat treatment is performed at 800 ° C. to 400 ° C. for 50 hours to develop superconducting properties, and a square rare earth-based superconducting composition having a side of 90 mm. And a thickness of 15 mm. Obtained.

【0041】このようにして得られた平板状の希土類系
超電導性組成物を液体窒素に浸して10分以上冷却して
超電導状態にした。次いで、平板を液体窒素中に保持し
たまま、直径30cm.長さ20cm.のソレノイド電磁石を
中心軸が平板に垂直で平板の中心を通り、平板からソレ
ノイドの端部までの距離が10cmとなるように配置して
平板に垂直に磁場を印可し、平板の反対側の中心部から
平板に垂直に1cm.離れた位置での磁束密度をホール素
子を用いて測定した。磁場を毎分1000ガウスの磁束
密度で印化し、漏洩磁場の磁束密度が印化磁場の磁束密
度の100分の1に達したときの印化磁場の磁束密度を
磁気シールド能とした。すると、磁気シールド能は80
00ガウスだった。
The thus obtained plate-shaped rare earth-based superconducting composition was immersed in liquid nitrogen and cooled for 10 minutes or more to be in a superconducting state. Then, with the flat plate kept in liquid nitrogen, a solenoid electromagnet having a diameter of 30 cm and a length of 20 cm passes through the center of the flat plate with its central axis perpendicular to the flat plate, and the distance from the flat plate to the end of the solenoid is 10 cm. And a magnetic field was applied perpendicularly to the flat plate, and the magnetic flux density at a position 1 cm. Perpendicular to the flat plate from the center of the opposite side of the flat plate was measured using a Hall element. The magnetic field was printed with a magnetic flux density of 1000 gauss per minute, and the magnetic flux density of the printed magnetic field when the magnetic flux density of the leakage magnetic field reached 1/100 of the magnetic flux density of the printed magnetic field was defined as the magnetic shielding ability. Then, the magnetic shield ability is 80
It was 00 gauss.

【0042】(実施例2)まず、酸化銀を添加した凝固
点分布法で酸化銀が分布する円柱形状であるYBa2Cu3O
7-xの疑似単結晶を9個得て、それらを切断し、直方体
形状の接合部材とした。
(Example 2) First, YBa 2 Cu 3 O having a cylindrical shape in which silver oxide is distributed by a freezing point distribution method in which silver oxide is added
Nine 7-x pseudo single crystals were obtained and cut into a rectangular parallelepiped-shaped joining member.

【0043】実施例1と同様にして、Y2O3、BaO2及びCu
Oの粉末より平均粒径は約5μmであるYBa2Cu3O7-xの仮
焼粉末を得た。こうして得られたYBa2Cu3O7-xの仮焼粉
末に、重量比で1%から1%刻みで9%まで含まれるよ
うに平均粒径約5μmの酸化銀粉末を添加、混合するこ
とで、酸化銀の濃度のみが異なる9種類の混合物を得
た。酸化銀粉末を添加しないYBa2Cu3O7-xの仮焼粉末も
便宜上ここでは混合物といい、合計10種類の酸化銀の
濃度が異なる混合物を得た。次いで、この各々の混合物
を乾式ポットミルで64時間混合して、平均粒径は約3
μmであり、酸化銀の濃度が重量比で0%から1%刻み
で9%までのものがある合計10種類の混合粉末を得
た。
In the same manner as in Example 1, Y 2 O 3 , BaO 2 and Cu
A calcined powder of YBa 2 Cu 3 O 7-x having an average particle size of about 5 μm was obtained from the O powder. To the calcined powder of YBa 2 Cu 3 O 7-x obtained in this way, add and mix silver oxide powder having an average particle size of about 5 μm so as to be contained in 1% to 9% in 1% by weight ratio. Thus, 9 kinds of mixtures having different silver oxide concentrations were obtained. The calcined powder of YBa 2 Cu 3 O 7-x to which no silver oxide powder is added is also referred to as a mixture here for convenience, and a total of 10 different types of silver oxide having different concentrations were obtained. Each of these mixtures was then mixed in a dry pot mill for 64 hours to give an average particle size of about 3
A total of 10 kinds of mixed powders having a silver oxide concentration of 0 μm and a silver oxide concentration of 0% to 9% in 1% increments were obtained.

【0044】まず、こうして得られた酸化銀を含有しな
い混合粉末45gを内径75mm.の円筒状金型に投入
し、0.1トン/cm2のプレス圧でプレス成形をすること
で、円盤状の成形体を得た。次いで、この成形体を円筒
状金型から取り出さずに、酸化銀を1重量%含有する混
合粉末45gを成形体上に投入して同様にプレス成形を
し、水平方向に二層からなる円盤状の積層体を成形し
た。以下同様にして積層成形体を取り出さずに、酸化銀
の濃度が重量比で1%ずつ増加するように混合粉末45
gを投入してプレス成形をするという過程を繰り返し、
酸化銀濃度が0%の層から9%までの層が水平方向に順
次積層する10層からなる、円柱形状の積層体を成形し
た。このようにして得られた円柱形状の積層体に室温で
0.5トン/cm2で等方加圧成形を行い、円柱形状の積層
成形体を得た。
First, 45 g of the mixed powder containing no silver oxide thus obtained was put into a cylindrical mold having an inner diameter of 75 mm, and press-molded with a press pressure of 0.1 ton / cm 2 to obtain a disc shape. A molded body of was obtained. Next, without taking out this molded body from the cylindrical mold, 45 g of a mixed powder containing 1% by weight of silver oxide was put on the molded body and press-molded in the same manner to form a disc-shaped body having two layers in the horizontal direction. The laminated body of was molded. In the same manner as above, the mixed powder 45 was added so that the concentration of silver oxide was increased by 1% by weight without taking out the laminated compact.
Repeat the process of charging g and press molding,
A cylindrical laminate was formed from 10 layers in which silver oxide concentrations of 0% to 9% were sequentially laminated in the horizontal direction. The cylindrical laminated body thus obtained was subjected to isotropic pressure molding at room temperature at 0.5 ton / cm 2 to obtain a cylindrical laminated molded body.

【0045】研磨された(100)面があるMgO単結
晶板上に、このようにして得られた円柱形状の積層成形
体を該積層成形体の酸化銀を含有しない層を底にして置
いた。次いで、大気雰囲気の電気炉内で、MgO単結晶
板上の積層成形体を1100℃で1時間保持して溶融し
た後、1100℃から1015℃まで1時間あたり10
0℃で冷却し、1015℃から950℃まで1時間あた
り0.1〜1.0℃で徐冷し、MgO単結晶板上に保持
したままYBa2Cu3O7-xの結晶を成長させ、直径約60mm.
高さ約25mm.の円柱形状のYBa2Cu3O7-xいわゆる疑似単
結晶を得た。同様な工程で同一形状のいわゆる疑似単結
晶を9個作製した。X線回折装置でこれら9個のいわゆ
る疑似単結晶の結晶方位を測定した。これらの高さが2
5mm.の円柱形状のいわゆる疑似単結晶より一辺40mm.
の正方形が底面と上面とになり高さが25mm.の直方体
を結晶格子のbc面及びca面に平行になるようにダイヤモ
ンド切断機で切り出し、各々の直方体形状のいわゆる疑
似単結晶の切断面4面を実施例1と同様に鏡面研磨し
た。
The cylindrical laminated compact thus obtained was placed on a MgO single crystal plate having a polished (100) plane with the layer containing no silver oxide of the laminated compact as the bottom. .. Then, the laminated compact on the MgO single crystal plate was held and melted at 1100 ° C. for 1 hour in an electric furnace in the air atmosphere, and then melted at 1100 ° C. to 1015 ° C. for 10 hours per hour.
After cooling at 0 ° C. and gradually cooling from 1015 ° C. to 950 ° C. at 0.1 to 1.0 ° C. per hour, YBa 2 Cu 3 O 7-x crystals are grown while being held on the MgO single crystal plate. , Diameter about 60mm.
A cylindrical YBa 2 Cu 3 O 7-x so - called pseudo single crystal having a height of about 25 mm was obtained. In the same process, nine so-called pseudo single crystals having the same shape were produced. The crystal orientations of these nine so-called pseudo single crystals were measured with an X-ray diffractometer. These heights are 2
It is 40mm on a side from a so-called pseudo single crystal with a cylindrical shape of 5mm.
A rectangular parallelepiped having a height of 25 mm with the bottom and top of the square is cut by a diamond cutting machine so as to be parallel to the bc plane and the ca plane of the crystal lattice, and each so-called quasi-single crystal cut plane 4 The surface was mirror-polished as in Example 1.

【0046】また、接合部材である疑似単結晶を接合す
る際の接合剤として、希土類系酸化物を主成分とするペ
ーストを得た。即ち、Y2O3の半分を等モルのYb2O3に置
換した以外は実施例1と同様にして、Y0.5Yb0.5Ba2Cu3O
7-xの仮焼粉末を得た。次いで、このY0.5Yb0.5Ba2Cu3O
7-xの仮焼粉末にトルエンを溶媒として添加し、ペース
トとした。
Further, a paste containing a rare earth oxide as a main component was obtained as a bonding agent for bonding the pseudo single crystal as the bonding member. That is, Y 0.5 Yb 0.5 Ba 2 Cu 3 O was prepared in the same manner as in Example 1 except that half of Y 2 O 3 was replaced with equimolar Yb 2 O 3.
A calcined powder of 7-x was obtained. Then, this Y 0.5 Yb 0.5 Ba 2 Cu 3 O
Toluene was added as a solvent to the 7-x calcined powder to prepare a paste.

【0047】これらの直方体形状の9個のいわゆる疑似
単結晶を、実施例1と同様に図1aに示すように、縦と
横とに各3列に配置し、ペーストを塗布した後、治具で
固定した。
These nine so-called pseudo single crystals in the shape of a rectangular parallelepiped are arranged in three rows vertically and horizontally as shown in FIG. Fixed in.

【0048】大気雰囲気中で治具で固定されたこれら9
個のいわゆる疑似単結晶を960℃まで加熱し、接合剤
であるY0.5Yb0.5Ba2Cu3O7-xを溶融し、960℃から9
30℃まで1時間あたり1℃で徐冷し、接合部でYBa2Cu
3O7-xの結晶を成長させ、これら9個のいわゆる疑似単
結晶を接合した。大気雰囲気を酸素雰囲気に変えた後、
800℃〜400℃で50時間熱処理を施し、超電導特
性を発現させ、一辺120mm.の正方形で厚さが25mm.
の平板である希土類系超電導性組成物を得た。
These 9 fixed by a jig in the air atmosphere
Each so-called pseudo single crystal is heated to 960 ° C. to melt Y 0.5 Yb 0.5 Ba 2 Cu 3 O 7-x which is a bonding agent,
Slowly cool down to 30 ℃ at 1 ℃ per hour, and bond YBa 2 Cu at the joint.
A crystal of 3 O 7-x was grown and these nine so-called pseudo single crystals were joined. After changing the atmosphere to an oxygen atmosphere,
Heat treatment is performed at 800 ℃ ~ 400 ℃ for 50 hours to develop the superconducting property, and the side is 120 mm square and the thickness is 25 mm.
A rare earth-based superconducting composition which is a flat plate of

【0049】実施例1と同様に磁気シールド能を測定し
たところ、磁気シールド能は12100ガウスだった。
When the magnetic shield ability was measured in the same manner as in Example 1, the magnetic shield ability was 12,100 gauss.

【0050】(実施例3)まず、YをYbで置換した凝固
点分布法で円柱形状であるY1-aYbaBa2Cu3O7-xの疑似単
結晶を9個得て、それらを切断し、直方体形状の接合部
材とした。
Example 3 First, nine pseudo single crystals of Y 1-a Yb a Ba 2 Cu 3 O 7-x having a cylindrical shape were obtained by the freezing point distribution method in which Y was replaced by Yb, and these were obtained. It cut and it was set as the rectangular parallelepiped-shaped joining member.

【0051】平均粒径約3μmであるBaCO3粉末とこれ
と等モルのCuO粉末に0.54重量%の白金粉末を添加
した。次いで、湿式ポットミルでこれらの粉末を3時間
混合した後、酸素雰囲気中にある高純度アルミナ板上に
この混合粉末を敷き広げて、1000℃で10時間仮焼
し、BaCuO2の仮焼体を得た。次いで、この仮焼体をジル
コニア玉石を用いた回転ミルで15時間粉砕して、平均
粒径は約5μmであるBaCuO2の仮焼粉末を得た。Y2O
3 、BaCuO2、CuOの各々の粉末を、これら化合物のモル
比が0.9:2.4:1.0となるように添加混合し
た。Y2O3を5モル%から5モル%刻みで50モル%まで
Yb2O3で置換すること以外は同様にして、更に10種類
のYのYbへの置換率が異なる混合粉末を得た。このよ
うにして得られた合計11種類の混合粉末の各々を乾式
ポットミルで64時間混合して、平均粒径は約5μmで
あるYのYbへの置換率が異なる11種類のY1-aYbaBa2
Cu3O7-x(a=b/20;bは0以上10以下の整数)
の仮焼粉末を得た。なお、この仮焼粉末には銀も酸化銀
も添加されなかった。
0.54% by weight of platinum powder was added to BaCO 3 powder having an average particle diameter of about 3 μm and CuO powder of the same molar amount. Next, after mixing these powders for 3 hours with a wet pot mill, spread the mixed powder on a high-purity alumina plate in an oxygen atmosphere and calcine at 1000 ° C. for 10 hours to obtain a calcined body of BaCuO 2. Obtained. Then, the calcined body was pulverized for 15 hours by a rotary mill using zirconia cobblestone to obtain a calcined powder of BaCuO 2 having an average particle size of about 5 μm. Y 2 O
Powders of 3 , BaCuO 2 , and CuO were added and mixed so that the molar ratio of these compounds was 0.9: 2.4: 1.0. Y 2 O 3 from 5 mol% to 50 mol% in 5 mol% increments
In the same manner as above, except for substituting with Yb 2 O 3 , 10 types of mixed powders having different substitution rates of Y for Yb were obtained. Each of the thus obtained 11 kinds of mixed powders in total was mixed for 64 hours in a dry pot mill, and 11 kinds of Y 1-a Yb having different substitution rates of Yb to Yb having an average particle size of about 5 μm. a Ba 2
Cu 3 O 7-x (a = b / 20; b is an integer from 0 to 10)
A calcined powder of was obtained. In addition, neither silver nor silver oxide was added to this calcined powder.

【0052】この各々の混合粉末45gを個別に内径7
5mm.の円筒状金型に投入し、0.1トン/cm2のプレス
圧でプレス成形をして、YのYbへの置換率が異なる1
1種類の円盤状体を成形した。このようにして得られた
11種類の円盤状体の各々に室温で0.5トン/cm2で等
方加圧成形を行い、YのYbへの置換率が異なる11種
類の円盤状成形体を得た。
45 g of each of the mixed powders was individually added to the inner diameter 7
It is put into a 5 mm. Cylindrical mold and press-formed with a pressing pressure of 0.1 ton / cm 2 , and the substitution rate of Y with Yb is different 1.
One type of disc-shaped body was molded. Each of the 11 kinds of disk-shaped bodies thus obtained was subjected to isotropic pressure molding at room temperature at 0.5 ton / cm 2 to obtain 11 kinds of disk-shaped bodies having different substitution ratios of Y and Yb. Got

【0053】高純度アルミナ板上にYのYbへの置換率
が50%の円盤状成形体を一番下にし、その上にYbへ
の置換率が順次少なくなるように残りの円盤状成形体を
積層した。銀無添加のSmBa2Cu3O7-xの約4mm.x5mm.の
単結晶をab面で劈開して、この劈開面を、積層した円盤
状成形体の一番上のもの、即ちYbに置換されていない
YBa2Cu3O7-xの円盤状成形体の上面に接するように置い
た。
A disc-shaped compact having a Yb substitution rate of 50% on the high-purity alumina plate is placed at the bottom, and the rest of the disc-shaped compacts are arranged on the disc-shaped compact so that the Yb substitution rate is gradually decreased. Were laminated. About 4mm.x5mm single crystal of SmBa 2 Cu 3 O 7-x without silver is cleaved along the ab plane, and this cleaved surface is the top of the laminated disc-shaped compact, that is, Yb. Not replaced
It was placed so as to be in contact with the upper surface of the disk-shaped molded body of YBa 2 Cu 3 O 7-x .

【0054】次いで、大気雰囲気中の電気炉内で、アル
ミナ板上の積層した円盤状成形体を1030℃で1時間
保持して半熔融状態として一体化した後、そのまま大気
雰囲気中で1030℃から930℃まで1時間あたり
1.0℃で徐冷し、超電導酸化物をアルミナ板上に保持
したままY1-aYbaBa2Cu3O7-xの結晶を成長させ、直径6
0mm.高さ25mm.の円柱形状のいわゆる疑似単結晶を得
た。同様な工程で同一形状のいわゆる疑似単結晶を9個
作製した。
Next, in an electric furnace in the air atmosphere, the laminated disk-shaped compacts on the alumina plate were held at 1030 ° C. for 1 hour to integrate them in a semi-molten state, and then, from 1030 ° C. in the air atmosphere as they were. The mixture was gradually cooled to 930 ° C. at 1.0 ° C. per hour, and a Y 1-a Yb a Ba 2 Cu 3 O 7-x crystal was grown while keeping the superconducting oxide on the alumina plate, and a diameter of 6
A columnar so-called pseudo single crystal having a height of 0 mm and a height of 25 mm was obtained. In the same process, nine so-called pseudo single crystals having the same shape were produced.

【0055】実施例1、2と同様に、X線回折装置でこ
れら9個のいわゆる疑似単結晶の結晶方位を測定した
後、実施例2と同様に、一辺40mm.の正方形が底面と
上面とになり高さが25mm.の直方体を結晶格子のbc面
及びca面に平行になるように切り出し、各々の直方体形
状のいわゆる疑似単結晶の切断面4面を実施例1と同様
に鏡面研磨した。
After the crystal orientations of these nine so-called pseudo single crystals were measured with an X-ray diffractometer in the same manner as in Examples 1 and 2, a square having a side of 40 mm. Then, a rectangular parallelepiped having a height of 25 mm. Was cut out so as to be parallel to the bc plane and the ca plane of the crystal lattice, and each of the four rectangular parallelepiped so-called pseudo single crystal cut surfaces was mirror-polished in the same manner as in Example 1. ..

【0056】また、接合部材である疑似単結晶を接合す
る際の接合剤として、希土類系酸化物を主成分とするペ
ーストを得た。即ち、実施例1と同様に、Yb2O3、BaO2
及びCuOの各々の粉末より、平均粒径は約5μmである
銀等を添加していないYbBa2Cu3O7-xの仮焼粉末を得た。
次いで、このYbBa2Cu3O7-xの仮焼粉末にトルエンを溶媒
として添加し、ペーストとした。
Further, a paste containing a rare earth oxide as a main component was obtained as a bonding agent for bonding the pseudo single crystal as the bonding member. That is, as in Example 1, Yb 2 O 3 and BaO 2
From each of the powders of CuO and CuO, a calcined powder of YbBa 2 Cu 3 O 7-x having an average particle size of about 5 μm and containing no added silver was obtained.
Then, toluene was added as a solvent to the calcined powder of YbBa 2 Cu 3 O 7-x to obtain a paste.

【0057】これらの直方体形状の9個のいわゆる疑似
単結晶を、実施例1と同様に図1aに示すように、結晶
格子のab面が上面及び下面と平行になるように縦と横と
に各3列に配置し、ペーストを塗布した後、治具で固定
した。大気雰囲気中で治具で固定されたこれら9個のい
わゆる疑似単結晶を900℃まで加熱し、接合剤である
YbBa2Cu3O7-xを溶融し、920℃から880℃まで1時
間あたり1℃で徐冷し、接合部でYbBa2Cu3O7-xの結晶を
成長させ、これら9個のいわゆる疑似単結晶を接合し
た。大気雰囲気を酸素雰囲気に変えた後、800℃〜4
00℃で50時間熱処理を施し、超電導特性を発現さ
せ、実施例2と同一形状の一辺120mm.の正方形で厚
さが25mm.の平板である希土類系超電導性組成物を得
た。
These nine so-called pseudo single crystals in the shape of a rectangular parallelepiped are arranged vertically and horizontally so that the ab plane of the crystal lattice is parallel to the upper and lower surfaces, as shown in FIG. The pieces were arranged in three rows, and after applying the paste, they were fixed with a jig. These nine so-called pseudo single crystals fixed by a jig in the air atmosphere are heated to 900 ° C. to form a bonding agent.
YbBa 2 Cu 3 O 7-x is melted and gradually cooled from 920 ° C. to 880 ° C. at 1 ° C. per hour to grow a YbBa 2 Cu 3 O 7-x crystal at the joint portion. Pseudo single crystals were joined. After changing the atmospheric atmosphere to an oxygen atmosphere, 800 ° C-4
Heat treatment was performed at 00 ° C. for 50 hours to develop superconducting properties, and a rare earth-based superconducting composition which was a flat plate having the same shape as in Example 2 and a side of 120 mm. And a thickness of 25 mm.

【0058】実施例1と同様に磁気シールド能を測定し
たところ、磁気シールド能は10800ガウスだった。
When the magnetic shield ability was measured in the same manner as in Example 1, the magnetic shield ability was 10800 gauss.

【0059】(実施例4)まず、実施例1と同様に、Sm
Ba2Cu3O7-xの単結晶を用いる単結晶種付け法で、直径約
45mm.高さ約15mm.の円柱形状であるYBa2Cu3O7-x
いわゆる疑似単結晶を6個得た。次いで、この円柱体の
中心部を円柱体状にダイヤモンド研削機で切り出し、外
径45mm.内径25mm.高さ15mm.の円筒形状の疑似単
結晶6個を作製し、接合部材とした。
(Fourth Embodiment) First, as in the first embodiment, Sm
Obtained 6 so-called pseudo single crystals of YBa 2 Cu 3 O 7-x in the shape of a cylinder with a diameter of approximately 45 mm and a height of approximately 15 mm by a single crystal seeding method using a single crystal of Ba 2 Cu 3 O 7-x . It was Then, the central portion of this cylindrical body was cut into a cylindrical shape with a diamond grinder, and six cylindrical pseudo single crystals having an outer diameter of 45 mm, an inner diameter of 25 mm, and a height of 15 mm were produced as a joining member.

【0060】X線回折装置で各々のいわゆる疑似単結晶
の結晶方位を測定し、上下面が結晶格子のab面と平行に
なるように面だしをした。次いで、この面出しをした面
を鏡面研磨した。
The crystal orientation of each so-called pseudo single crystal was measured with an X-ray diffractometer, and the surfaces were aligned so that the upper and lower surfaces were parallel to the ab plane of the crystal lattice. Next, the chamfered surface was mirror-polished.

【0061】また、接合部材である疑似単結晶を接合す
る際の接合剤として、実施例2と同様に、Y0.5Yb0.5Ba2
Cu3O7-xを含有するペーストを用いた。
Further, as a bonding agent for bonding a pseudo single crystal as a bonding member, as in Example 2, Y 0.5 Yb 0.5 Ba 2
A paste containing Cu 3 O 7-x was used.

【0062】このペーストをこれらのいわゆる疑似単結
晶の鏡面研磨した上下面に塗布した後、6個の円筒体を
図1bに示すように積層してこれらの面を接触配置し、
治具で固定した。
This paste was applied to the mirror-polished upper and lower surfaces of these so-called pseudo single crystals, and then six cylinders were laminated as shown in FIG. 1b and these surfaces were placed in contact with each other.
It was fixed with a jig.

【0063】これら6個のいわゆる疑似単結晶を実施例
2と同様な条件で、接合剤であるY0 .5Yb0.5Ba2Cu3O7-x
を溶融し、次いで徐冷することで、接合部でYBa2Cu3O
7-xの結晶を成長させ、図1cの様にこれら6個のいわ
ゆる疑似単結晶を接合した。大気雰囲気を酸素雰囲気に
変えた後、800℃〜400℃で50時間熱処理を施
し、超電導特性を発現させ、外径45mm.、内径25m
m.、高さ90mm.の円筒形状の希土類系超電導性組成物
を得た。
[0063] These six so-called pseudo-single crystal under the same conditions as in Example 2, a bonding agent Y 0 .5 Yb 0.5 Ba 2 Cu 3 O 7-x
Is melted and then slowly cooled, so that YBa 2 Cu 3 O
A 7-x crystal was grown and these six so-called pseudo single crystals were joined as shown in FIG. 1c. After changing the atmospheric atmosphere to an oxygen atmosphere, heat treatment is performed at 800 ° C to 400 ° C for 50 hours to develop superconducting properties, outer diameter 45 mm., Inner diameter 25 m.
A cylindrical rare earth-based superconducting composition having a height of 90 mm and a height of 90 mm was obtained.

【0064】このようにして得られた円筒状の希土類系
超電導性組成物を液体窒素に浸して10分以上冷却して
超電導状態にした。次いで、円筒体を液体窒素中に保持
したまま、直径30cm.長さ20cm.のソレノイド電磁石
の中心軸が円筒体の中心軸に垂直で円筒体の中心を通
り、円筒体からソレノイドの端部までの距離が10cmと
なるように配置して円筒体に垂直に磁場を印可し、円筒
体の中心軸上の中央部での磁束密度をホール素子を用い
て測定した。磁場を毎分1000ガウスの磁束密度で印
化し、漏洩磁場の磁束密度が印化磁場の磁束密度の10
0分の1に達したときの印化磁場の磁束密度を磁気シー
ルド能とした。すると、磁気シールド能は15300ガ
ウスだった。
The thus obtained cylindrical rare earth-based superconducting composition was immersed in liquid nitrogen and cooled for 10 minutes or more to be in a superconducting state. Then, with the cylindrical body kept in liquid nitrogen, the central axis of the solenoid electromagnet having a diameter of 30 cm and a length of 20 cm is perpendicular to the central axis of the cylindrical body and passes through the center of the cylindrical body from the cylindrical body to the end of the solenoid. Was placed so that the distance was 10 cm, and a magnetic field was applied perpendicularly to the cylindrical body, and the magnetic flux density at the central portion on the central axis of the cylindrical body was measured using a Hall element. The magnetic field is printed with a magnetic flux density of 1000 gauss per minute, and the magnetic flux density of the leakage magnetic field is 10 times that of the printed magnetic field.
The magnetic flux density of the imprinted magnetic field when it reached 1/0 was defined as the magnetic shield ability. Then, the magnetic shielding ability was 15300 gauss.

【0065】(実施例5)まず、実施例2と同様に、酸
化銀を添加した凝固点分布法で酸化銀の添加量が0重量
%から9重量%まで1重量%刻みに変化する10層が順
次、積層して分布する円柱形状であるYBa2Cu3O7-xの疑
似単結晶を6個得た。次いで、この円柱体の中心部を、
実施例4と同様に、円柱体状に切り出し、外径60mm.
内径40mm.高さ20mm.の円筒形状の疑似単結晶6個を
作製し、接合部材とした。
Example 5 First, in the same manner as in Example 2, 10 layers in which the addition amount of silver oxide was changed from 0% by weight to 9% by 1% by 1% by the freezing point distribution method in which silver oxide was added were prepared. Six pseudo single crystals of YBa 2 Cu 3 O 7-x having a cylindrical shape, which were sequentially stacked and distributed, were obtained. Then, the central part of this cylindrical body,
Similar to Example 4, cut out into a columnar shape with an outer diameter of 60 mm.
Six cylindrical pseudo single crystals having an inner diameter of 40 mm and a height of 20 mm were prepared and used as a joining member.

【0066】X線回折装置で各々のいわゆる疑似単結晶
の結晶方位を測定し、上下面が結晶格子のab面と平行に
なるように面だしをした。次いで、この面出しをした面
を鏡面研磨した。
The crystal orientation of each so-called pseudo single crystal was measured with an X-ray diffractometer, and the surfaces were aligned so that the upper and lower surfaces were parallel to the ab plane of the crystal lattice. Next, the chamfered surface was mirror-polished.

【0067】また、接合部材である疑似単結晶を接合す
る際の接合剤として、実施例2と同様に、銀等が無添加
のY0.5Yb0.5Ba2Cu3O7-xを含有するペーストを用いた。
実施例4と同様に、このペーストをこれらのいわゆる疑
似単結晶の鏡面研磨した上下面に塗布した後、6個の円
筒体を図1bに示すように積層してこれらの面を接触配
置し、治具で固定した。
Also, as in Example 2, a paste containing Y 0.5 Yb 0.5 Ba 2 Cu 3 O 7-x with no addition of silver was used as a bonding agent when bonding the pseudo single crystal as a bonding member. Was used.
After applying this paste to the mirror-polished upper and lower surfaces of these so-called pseudo single crystals in the same manner as in Example 4, six cylinders were laminated as shown in FIG. 1b and these surfaces were placed in contact with each other. It was fixed with a jig.

【0068】これら6個のいわゆる疑似単結晶を実施例
2と同様な条件で、接合剤であるY0 .5Yb0.5Ba2Cu3O7-x
を溶融し、次いで徐冷することで、接合部でYBa2Cu3O
7-xの結晶を成長させ、図1cに示すように、これら6
個のいわゆる疑似単結晶を接合した。
[0068] These six so-called pseudo-single crystal under the same conditions as in Example 2, a bonding agent Y 0 .5 Yb 0.5 Ba 2 Cu 3 O 7-x
Is melted and then slowly cooled, so that YBa 2 Cu 3 O
A 7-x crystal was grown and these 6
The so-called pseudo single crystals were joined together.

【0069】大気雰囲気を酸素雰囲気に変えた後、80
0℃〜400℃で50時間熱処理を施し、超電導特性を
発現させ、外径60mm.内径40mm.高さ120mm.の円
筒形状の希土類系超電導性組成物を得た。
After changing the air atmosphere to an oxygen atmosphere, 80
A heat treatment was performed at 0 ° C. to 400 ° C. for 50 hours to develop superconducting properties, and a cylindrical rare earth superconducting composition having an outer diameter of 60 mm, an inner diameter of 40 mm and a height of 120 mm was obtained.

【0070】実施例4と同様に磁気シールド能を測定し
たところ、磁気シールド能は14400ガウスだった。
When the magnetic shield ability was measured in the same manner as in Example 4, the magnetic shield ability was 14400 gauss.

【0071】(実施例6)まず、実施例3と同様に、Y
をYbで置換した凝固点分布法でYのYbへの置換率が0
モル%から50モル%まで5%刻みに変化する11層が
順次、積層して分布する円柱形状のY1-aYbaBa2Cu3O7-x
(a=b/20;bは0以上10以下の整数)の疑似単
結晶を6個得た。次いで、この円柱体の中心部を、実施
例4と同様に、円柱体状に切り出し、外径60mm.内径
40mm.高さ25mm.の円筒形状の疑似単結晶6個を作製
し、接合部材とした。
(Sixth Embodiment) First, as in the third embodiment, Y
In the freezing point distribution method in which Y is replaced by Yb, the replacement rate of Y by Yb is 0.
Cylindrical Y 1-a Yb a Ba 2 Cu 3 O 7-x with 11 layers that sequentially change from 5 mol% to 50 mol% in 5% increments.
Six pseudo single crystals (a = b / 20; b is an integer of 0 or more and 10 or less) were obtained. Then, the central part of this columnar body was cut out into a columnar body shape in the same manner as in Example 4 to produce 6 cylindrical pseudo single crystals having an outer diameter of 60 mm, an inner diameter of 40 mm, and a height of 25 mm, and used as a joining member. did.

【0072】実施例4と同様に、X線回折装置で各々の
いわゆる疑似単結晶の結晶方位を測定し、上下面が結晶
格子のab面と平行になるように面だしをし、鏡面研磨し
た。
As in Example 4, the crystal orientation of each so-called pseudo single crystal was measured by an X-ray diffractometer, the upper and lower surfaces of the so-called quasi-single crystal were set to be parallel to the ab plane of the crystal lattice, and mirror-polished. ..

【0073】そして、ペーストを塗布することなく、各
々の円筒の上面がYのみの層になり、下面がYbが等モル
置換した層となるように、これらの面を接触配置し、6
個の円筒形状の疑似単結晶を図1bに示すように積層
し、治具で固定した。
Then, without applying the paste, these cylinders are arranged in contact with each other so that the upper surface of each cylinder is a layer of only Y and the lower surface thereof is a layer in which Yb is replaced by an equimolar amount.
Individual cylindrical pseudo single crystals were stacked as shown in FIG. 1b and fixed with a jig.

【0074】これら6個のいわゆる疑似単結晶を960
℃に加熱し、接触部を半溶融状態にした後、960℃か
ら930℃まで1時間あたり1分で徐冷することで、接
合部で結晶成長させ、図1cに示すように、これら6個
のいわゆる疑似単結晶を接合した。大気雰囲気を酸素雰
囲気に変えた後、800℃〜400℃で50時間熱処理
を施し、超電導特性を発現させ、外径60mm.内径40m
m.高さ150mm.の円筒形状の希土類系超電導性組成物
を得た。
These six so-called pseudo single crystals were 960
After heating to ℃ to semi-molten the contact part, and gradually cooling from 960 ℃ to 930 ℃ for 1 minute per hour, to grow crystals at the joint, as shown in FIG. The so-called pseudo single crystal of was joined. After changing the atmospheric atmosphere to an oxygen atmosphere, heat treatment is performed at 800 ° C to 400 ° C for 50 hours to develop superconducting properties, and the outer diameter is 60 mm and the inner diameter is 40 m.
A cylindrical rare earth-based superconducting composition having a height of m and a height of 150 mm was obtained.

【0075】実施例4と同様に磁気シールド能を測定し
たところ、磁気シールド能は15700ガウスだった。
When the magnetic shield ability was measured in the same manner as in Example 4, the magnetic shield ability was 15700 gauss.

【0076】以下の比較例は、疑似単結晶の接合をする
ことなく溶融法のみで大型の疑似単結晶等を得た場合を
示している。酸化銀を添加した凝固点分布法でYBa2Cu3O
7-xの疑似単結晶、又はYbで置換した凝固点分布法でY
1-aYbaBa2Cu3O7-xの疑似単結晶を得て、所定の形状に加
工しただけで、希土類系超電導性組成物を作製した。
The following comparative examples show the case where a large quasi-single crystal or the like is obtained only by the melting method without joining the quasi-single crystals. YBa 2 Cu 3 O was obtained by the freezing point distribution method with the addition of silver oxide.
7-x pseudo single crystal or Yb
To give 1-a Yb a Ba 2 Cu 3 O 7-x of pseudo single crystal, only processed into a predetermined shape, to produce a rare earth-based superconducting composition.

【0077】(比較例1)実施例2と同様に、酸化銀を
添加した凝固点分布法で酸化銀の添加量が0重量%から
9重量%まで1重量%刻みに変化する10層が順次、積
層して分布する直径60mm.厚さ25mm.の円盤形状のY
Ba2Cu3O7-xの疑似単結晶を得た。外観からは全体が一個
の単結晶のようであった。実施例1と同様に磁気シール
ド能を測定したところ、磁気シールド能は4400ガウ
スだった。
(Comparative Example 1) In the same manner as in Example 2, by the freezing point distribution method in which silver oxide was added, 10 layers in which the amount of silver oxide added changed from 0% by weight to 9% by weight in steps of 1% by weight were sequentially formed. Diameter of 60 mm distributed by stacking. Disc-shaped Y with a thickness of 25 mm.
A Ba 2 Cu 3 O 7-x pseudo single crystal was obtained. From the appearance, the whole was like a single crystal. When the magnetic shield ability was measured in the same manner as in Example 1, the magnetic shield ability was 4400 gauss.

【0078】(比較例2)実施例3と同様に、YをYbで
置換した凝固点分布法でYのYbへの置換率が0モル%
から50モル%まで5%刻みに変化する11層が順次、
積層して分布するY1 -aYbaBa2Cu3O7-x(a=b/20;
bは0以上10以下の整数)の疑似単結晶を得た。次い
で、この疑似単結晶を切断し、実施例1と同一形状の一
辺90mm.の正方形形状で厚さが15mm.の平板状の希土
類超電導性組成物を作製した。外観からは、種結晶を中
心に約65mm.の所までは単結晶のようであったが、そ
こより周辺部は、一辺が10〜20mm.の数個の結晶粒
からなるようであった。 実施例1と同様に磁気シール
ド能を測定したところ、磁気シールド能は4500ガウ
スだった。
(Comparative Example 2) As in Example 3, the substitution rate of Y to Yb was 0 mol% by the freezing point distribution method in which Y was substituted with Yb.
From 11 to 50 mol% in 5% steps,
Y 1 -a Yb a Ba 2 Cu 3 O 7-x (a = b / 20;
b is an integer of 0 or more and 10 or less) to obtain a pseudo single crystal. Then, this pseudo single crystal was cut to produce a flat rare earth superconducting composition having the same shape as in Example 1 and a square shape with a side of 90 mm. And a thickness of 15 mm. From the appearance, the seed crystal appeared to be a single crystal up to about 65 mm., But the peripheral portion of the seed crystal appeared to be composed of several crystal grains with a side of 10 to 20 mm. When the magnetic shield ability was measured in the same manner as in Example 1, the magnetic shield ability was 4500 gauss.

【0079】(比較例3)実施例2と同様に、酸化銀を
添加した凝固点分布法で酸化銀の添加量が0重量%から
9重量%まで1重量%刻みに変化する10層が順次、積
層して分布するYBa2Cu3O7-xからなる実施例1と同一形
状の一辺90mm.の正方形形状で厚さが15mm.の平板状
の希土類超電導性組成物を作製した。外観からは、種結
晶を中心に約62mm.の所までは単結晶のようであった
が、そこより周辺部は、一辺が10〜20mm.の数個の
結晶粒からなるようであった。 実施例1と同様に磁気
シールド能を測定したところ、磁気シールド能は470
0ガウスだった。
(Comparative Example 3) In the same manner as in Example 2, 10 layers in which the amount of silver oxide added changed from 0% by weight to 9% by weight in steps of 1% by weight were sequentially obtained by the freezing point distribution method in which silver oxide was added. A flat rare earth superconducting composition having a square shape with a side of 90 mm. And a thickness of 15 mm. Made of YBa 2 Cu 3 O 7-x distributed in layers was produced. From the appearance, the seed crystal seemed to be a single crystal up to about 62 mm., But the peripheral portion from that point seemed to be composed of several crystal grains having a side of 10 to 20 mm. When the magnetic shield ability was measured in the same manner as in Example 1, the magnetic shield ability was 470.
It was 0 gauss.

【0080】(比較例4)実施例3と同様に、YをYbで
置換した凝固点分布法でYのYbへの置換率が0モル%
から50モル%まで5%刻みに変化する11層が順次、
積層して分布する外径45mm.高さ60mm.の円柱形状で
あるY1-aYbaBa2Cu3O7-x(a=b/20;bは0以上1
0以下の整数)の疑似単結晶を得た。次いで、この円柱
体の中心部を、実施例4と同様に円柱体状に切り出し、
外径45mm.内径25mm.高さ60mm.の円筒形状の希土
類系超電導性組成物を得た。外観からは、種結晶を設置
した上面より側面へ20〜25mm.は単結晶となってい
るようであったが、その他の部分は配向が揃っていない
不揃いの多結晶が凝縮していた。実施例6と同様に磁気
シールド能を測定したところ、磁気シールド能は100
0ガウスだった。
(Comparative Example 4) As in Example 3, the substitution rate of Y with Yb was 0 mol% by the freezing point distribution method in which Y was substituted with Yb.
From 11 to 50 mol% in 5% steps,
Cylindrical Y 1-a Yb a Ba 2 Cu 3 O 7-x (a = b / 20; b is 0 or more 1
A pseudo single crystal having an integer of 0 or less) was obtained. Then, the central portion of this cylindrical body was cut out into a cylindrical shape in the same manner as in Example 4,
A cylindrical rare earth superconducting composition having an outer diameter of 45 mm, an inner diameter of 25 mm and a height of 60 mm was obtained. From the appearance, a single crystal appeared to be 20 to 25 mm from the upper surface on which the seed crystal was placed to the side surface, but in the other portions, non-aligned polycrystals were condensed and condensed. When the magnetic shield ability was measured in the same manner as in Example 6, the magnetic shield ability was 100.
It was 0 gauss.

【0081】(比較例5)実施例2と同様に、酸化銀を
添加した凝固点分布法で酸化銀の添加量が0重量%から
9重量%まで1重量%刻みに変化する10層が順次、積
層して分布する外径45mm.高さ60mm.の円柱形状であ
るYBa2Cu3O7-xからなる疑似単結晶を得た。次いで、こ
の円柱体の中心部を、実施例4と同様に円柱体状に切り
出し、比較例5と同一形状の外径45mm.内径25mm.高
さ60mm.の円筒形状の希土類系超電導性組成物を得
た。外観からは、種結晶を設置した上面より側面へ20
〜25mm.は単結晶となっているようであったが、その
他の部分は配向が揃っていない不揃いの多結晶が凝縮し
ていた。実施例6と同様に磁気シールド能を測定したと
ころ、磁気シールド能は800ガウスだった。
(Comparative Example 5) In the same manner as in Example 2, by the freezing point distribution method in which silver oxide was added, 10 layers in which the amount of silver oxide added changed from 0% by weight to 9% by weight in steps of 1% by weight were sequentially formed. A quasi-single crystal composed of YBa 2 Cu 3 O 7-x having a cylindrical shape having an outer diameter of 45 mm and a height of 60 mm, which are distributed by stacking, was obtained. Then, the central portion of this cylindrical body was cut into a cylindrical shape in the same manner as in Example 4, and the rare earth-based superconducting composition having the same shape as Comparative Example 5 and having an outer diameter of 45 mm, an inner diameter of 25 mm, and a height of 60 mm. Got From the appearance, it is possible to move from the top surface where the seed crystal is installed to the side surface.
It seems that a single crystal was formed in the range of -25 mm., But in the other portions, irregular polycrystals having non-uniform orientation were condensed. When the magnetic shield ability was measured in the same manner as in Example 6, the magnetic shield ability was 800 gauss.

【0082】比較例は、疑似単結晶の接合をすることな
く溶融法のみで大型の疑似単結晶を得る困難さを如実に
示している。種結晶の周辺では、疑似単結晶を得ること
ができるが、種結晶から離れるに従って、不揃いの多結
晶が生じ易いことがわかる。このように不揃いの多結晶
が生じると、超電導電流パスが妨げられるので磁気シー
ルド能で表される超電導特性は悪化した。
The comparative example shows how difficult it is to obtain a large-sized pseudo single crystal only by the melting method without joining the pseudo single crystals. Although a pseudo single crystal can be obtained in the vicinity of the seed crystal, it can be seen that irregular polycrystals are likely to occur with increasing distance from the seed crystal. When such irregular polycrystals are generated, the superconducting current flow path is hindered, so that the superconducting property represented by the magnetic shielding ability is deteriorated.

【0083】ところが、実施例では二以上の疑似単結晶
を隣合う結晶の結晶方位を揃えて接触配置して接合する
ので、たとえ比較例より大型化しても配向性が揃ってい
て超電導電流パスが妨げられない希土類系超電導性組成
物を得ることができる。その結果、 実施例では比較例
より大型の組成物を得ているが、超電導電流パスが妨げ
らないので、比較例より顕著に磁気シールド能が向上し
ていることがわかる。
However, in the embodiment, two or more pseudo single crystals are joined by adjoining the crystals so that the crystal orientations of the adjacent crystals are aligned. Therefore, even if the size is larger than that of the comparative example, the orientation is uniform and the superconducting current flow path is large. It is possible to obtain a rare earth-based superconducting composition that is not hindered. As a result, it can be seen that although the composition obtained in the example is larger than that in the comparative example, the magnetic shielding ability is remarkably improved as compared with the comparative example because the superconducting current flow path is not hindered.

【0084】[0084]

【発明の効果】【The invention's effect】

本発明によれば、超電導特性を発現し得る希土類系酸化
物を主成分とする二以上の結晶をこれらの結晶よりも融
点の低い接合層を介して、隣合う結晶の結晶方位を揃え
て接触配置して、加熱によって接触部分を半溶融状態に
した後に徐冷することにより接合することで、大型の結
晶方位が揃った希土類系超電導性組成物が提供される。
よって、配向性が揃っていて、粒界等によって超電導電
流パスが妨げられず、マイスナー効果による大きな磁場
を発生できる大型の希土類系超電導性組成物が簡便に得
られる。また、接合面に該結晶よりも融点の低い超電導
特性を発現し得る希土類系酸化物をペースト状等にして
塗布することも接合剤として作用するので好ましい。
According to the present invention, two or more crystals containing a rare earth oxide capable of exhibiting superconducting properties as a main component are contacted by aligning the crystal orientations of adjacent crystals through a bonding layer having a lower melting point than these crystals. The rare earth-based superconducting composition having a large crystal orientation is provided by arranging and heating the contact portion to bring it into a semi-molten state and then gradually cooling it to join.
Therefore, it is possible to easily obtain a large-scale rare earth-based superconducting composition that has uniform orientation, does not hinder the superconducting current flow path due to grain boundaries or the like, and can generate a large magnetic field due to the Meissner effect. In addition, it is also preferable to apply a rare earth oxide having a melting point lower than that of the crystal and capable of exhibiting superconducting properties to the joint surface in the form of a paste or the like because it acts as a jointing agent.

【0085】このようにして得られる本発明に係る希土
類系超電導性組成物は、希土類系超電導酸化物を主成分
とする配向性及び結晶性が高い大型の組成物であり、本
発明に係る製造方法では、従来は容易に得ることができ
なかったこのような大型の組成物も容易に得られる。そ
して、このような大型の組成物でも、高い超電導特性を
有するので、希土類系酸化物超電導体の実用化に向けて
一歩、近ずくことになり、本発明は産業の発達に貢献す
ることができる。
The thus obtained rare earth-based superconducting composition according to the present invention is a large-sized composition containing a rare earth-based superconducting oxide as a main component and having high orientation and crystallinity. By the method, such a large composition which could not be obtained easily in the past can be easily obtained. Since even such a large composition has high superconducting properties, it will be one step closer to practical application of the rare earth oxide superconductor, and the present invention can contribute to the development of industry. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】超電導特性を発現し得る希土類系酸化物を主成
分とする二以上の結晶の接合態様の例を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing an example of a bonding mode of two or more crystals containing a rare earth oxide capable of exhibiting superconducting characteristics as a main component.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 565 D 8936−5G H01L 39/24 ZAA B 8728−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location H01B 13/00 565 D 8936-5G H01L 39/24 ZAA B 8728-4M

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 超電導特性を発現し得る希土類系酸化物
を主成分とする二以上の結晶が、隣合う結晶の結晶方位
を揃えて接合されていることを特徴とする希土類系超電
導性組成物。
1. A rare earth-based superconducting composition, characterized in that two or more crystals containing a rare earth-based oxide capable of exhibiting superconducting properties as a main component are bonded so that adjacent crystals have the same crystal orientation. ..
【請求項2】 該二以上の結晶が、超電導特性を発現し
得る希土類系酸化物を介して接合されていることを特徴
とする請求項1記載の希土類系超電導性組成物。
2. The rare earth-based superconducting composition according to claim 1, wherein the two or more crystals are bonded via a rare earth-based oxide capable of exhibiting superconducting properties.
【請求項3】 該二以上の結晶が、隣合う結晶の主成分
の超電導特性を発現し得る希土類系酸化物の半溶融状態
となる温度より半溶融状態となる温度が低い超電導特性
を発現し得る希土類系酸化物を介して接合されているこ
とを特徴とする請求項1記載の希土類系超電導性組成
物。
3. The superconducting properties of the two or more crystals exhibiting a semi-molten state lower than a semi-molten state of a rare earth oxide capable of exhibiting the superconducting properties of adjacent crystals. The rare earth-based superconducting composition according to claim 1, wherein the rare earth-based superconducting composition is bonded via the obtained rare earth-based oxide.
【請求項4】 REはY、Gd、Dy、Ho、Er及びY
bからなる群のなかの少なくとも一元素からなり、xが
0以上1以下のREBa2Cu3O7-xという組成式で、結晶の主
成分となる及び/又は接合に用いる超電導特性を発現し
得る希土類系酸化物が表せることを特徴とする請求項
1、2又は3記載の希土類系超電導性組成物。
4. RE is Y, Gd, Dy, Ho, Er and Y.
The composition formula is REBa 2 Cu 3 O 7-x in which at least one element in the group consisting of b is used and x is 0 or more and 1 or less, and it is a main component of the crystal and / or exhibits superconducting properties used for bonding. The rare earth-based superconducting composition according to claim 1, wherein the obtained rare earth-based oxide can be represented.
【請求項5】 超電導特性を発現し得る希土類系酸化物
を主成分とする二以上の結晶を、隣合う結晶の結晶方位
を揃えて接触配置して、接触部分を加熱して半溶融状態
にした後に徐冷することにより接合することを特徴とす
る希土類系超電導性組成物の製造方法。
5. Two or more crystals containing a rare earth oxide capable of exhibiting superconducting properties as a main component are arranged in contact so that the crystal orientations of adjacent crystals are aligned, and the contact portions are heated to a semi-molten state. A method for producing a rare earth-based superconducting composition, characterized in that the two are joined together by slow cooling.
【請求項6】 超電導特性を発現し得る希土類系酸化物
を主成分とする二以上の結晶を、超電導特性を発現し得
る希土類系酸化物を介し、隣合う結晶の結晶方位を揃え
て接触配置して、接触部分を加熱して半溶融状態にした
後に徐冷することにより接合することを特徴とする希土
類系超電導性組成物の製造方法。
6. A contact arrangement in which two or more crystals containing a rare earth oxide capable of exhibiting superconducting properties as a main component are arranged with the crystal orientations of adjacent crystals aligned through the rare earth oxide exhibiting superconducting properties. Then, the contact portion is heated to be in a semi-molten state, and then gradually cooled to be joined, whereby the rare earth-based superconducting composition is produced.
【請求項7】 超電導特性を発現し得る希土類系酸化物
を主成分とする二以上の結晶を、隣合う結晶の主成分で
ある超電導特性を発現し得る希土類系酸化物の半溶融状
態となる温度より半溶融状態となる温度が低い超電導特
性を発現し得る希土類系酸化物を介し、隣合う結晶の結
晶方位を揃えて接触配置して、接触部分を加熱して半溶
融状態にした後に徐冷することにより接合することを特
徴とする希土類系超電導性組成物の製造方法。
7. A semi-molten state of two or more crystals containing a rare earth oxide capable of exhibiting superconducting properties as a main component and having a rare earth oxide capable of exhibiting superconducting properties as a main component of adjacent crystals. A rare earth-based oxide that can develop superconducting properties whose temperature is semi-molten than the temperature is placed by aligning the crystal orientations of adjacent crystals, and heating the contact to make it semi-molten A method for producing a rare earth-based superconducting composition, which comprises joining by cooling.
JP4075077A 1992-03-31 1992-03-31 Rare-earth superconducting composition and its production Withdrawn JPH05279028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4075077A JPH05279028A (en) 1992-03-31 1992-03-31 Rare-earth superconducting composition and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4075077A JPH05279028A (en) 1992-03-31 1992-03-31 Rare-earth superconducting composition and its production

Publications (1)

Publication Number Publication Date
JPH05279028A true JPH05279028A (en) 1993-10-26

Family

ID=13565765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4075077A Withdrawn JPH05279028A (en) 1992-03-31 1992-03-31 Rare-earth superconducting composition and its production

Country Status (1)

Country Link
JP (1) JPH05279028A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634379A1 (en) * 1992-04-03 1995-01-18 Nippon Steel Corporation Bonded element of superconductive oxide materials and its manufacture
WO2003002483A1 (en) * 2001-06-29 2003-01-09 International Superconductivity Technology Center, The Juridical Foundation Method of joining oxide superconductor and oxide superconductor joiner
US7126060B2 (en) 2001-01-16 2006-10-24 Nippon Steel Corporation Low resistance conductors, processes of production thereof, and electrical members using same
JP2012214329A (en) * 2011-03-31 2012-11-08 Shibaura Institute Of Technology Superconductive bulk body and method for manufacturing the same, and superconductive bulk magnet
JP2014125666A (en) * 2012-12-27 2014-07-07 Fujikura Ltd Target for formation of oxide superconducting thin film and method of producing oxide superconducting wire
WO2016129469A1 (en) * 2015-02-12 2016-08-18 住友電気工業株式会社 Superconducting wire material production method and superconducting wire material joining member
JP2018035015A (en) * 2016-08-29 2018-03-08 新日鐵住金株式会社 Superconducting bulk conjugate and manufacturing method of superconducting bulk conjugate
JP2018127381A (en) * 2017-02-08 2018-08-16 新日鐵住金株式会社 Method for producing superconductive bulk conjugate
JP2020164340A (en) * 2019-03-28 2020-10-08 日本製鉄株式会社 Oxide superconductive bulk conductor and manufacturing method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634379A1 (en) * 1992-04-03 1995-01-18 Nippon Steel Corporation Bonded element of superconductive oxide materials and its manufacture
EP0634379A4 (en) * 1992-04-03 1995-04-19 Nippon Steel Corp Bonded element of superconductive oxide materials and its manufacture.
US5786304A (en) * 1992-04-03 1998-07-28 Nippon Steel Corporation Joining product of oxide superconducting material and process for producing the same
US7126060B2 (en) 2001-01-16 2006-10-24 Nippon Steel Corporation Low resistance conductors, processes of production thereof, and electrical members using same
US7138581B2 (en) 2001-01-16 2006-11-21 Nippon Steel Corporation Low resistance conductor, processes of production thereof, and electrical members using same
EP1353339B1 (en) * 2001-01-16 2017-12-27 Nippon Steel & Sumitomo Metal Corporation Low resistance conductor, method of producing the same, and electric component using the same
WO2003002483A1 (en) * 2001-06-29 2003-01-09 International Superconductivity Technology Center, The Juridical Foundation Method of joining oxide superconductor and oxide superconductor joiner
US7001870B2 (en) 2001-06-29 2006-02-21 International Superconductivity Technology Center, The Juridical Foundation Method for joining oxide superconductors and joined oxide superconductor
JP2012214329A (en) * 2011-03-31 2012-11-08 Shibaura Institute Of Technology Superconductive bulk body and method for manufacturing the same, and superconductive bulk magnet
JP2014125666A (en) * 2012-12-27 2014-07-07 Fujikura Ltd Target for formation of oxide superconducting thin film and method of producing oxide superconducting wire
CN107210099A (en) * 2015-02-12 2017-09-26 住友电气工业株式会社 Method and superconducting wire engagement member for manufacturing superconducting wire
KR20170117414A (en) * 2015-02-12 2017-10-23 스미토모 덴키 고교 가부시키가이샤 Method of manufacturing superconducting wire and member for superconducting wire bonding
JPWO2016129469A1 (en) * 2015-02-12 2017-11-24 住友電気工業株式会社 Superconducting wire manufacturing method and superconducting wire joining member
WO2016129469A1 (en) * 2015-02-12 2016-08-18 住友電気工業株式会社 Superconducting wire material production method and superconducting wire material joining member
EP3258471A4 (en) * 2015-02-12 2018-02-21 Sumitomo Electric Industries, Ltd. Superconducting wire material production method and superconducting wire material joining member
CN107210099B (en) * 2015-02-12 2019-04-12 住友电气工业株式会社 For manufacturing the method and superconducting wire engagement member of superconducting wire
JP2020057607A (en) * 2015-02-12 2020-04-09 住友電気工業株式会社 Method of producing superconducting wire material and superconducting wire material joining member
US10706991B2 (en) 2015-02-12 2020-07-07 Sumitomo Electric Industries, Ltd. Method for producing a superconducting wire material lengthened
JP2018035015A (en) * 2016-08-29 2018-03-08 新日鐵住金株式会社 Superconducting bulk conjugate and manufacturing method of superconducting bulk conjugate
JP2018127381A (en) * 2017-02-08 2018-08-16 新日鐵住金株式会社 Method for producing superconductive bulk conjugate
JP2020164340A (en) * 2019-03-28 2020-10-08 日本製鉄株式会社 Oxide superconductive bulk conductor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5084436A (en) Oriented superconductor containing a dispersed non-superconducting phase
EP0634379B1 (en) Joined product of of superconductive oxide materials and its manufacture
EP0562640B1 (en) Production of oxide superconductors having large magnetic levitation force
EP0456116B1 (en) Oxide superconductor and process for its production
JPH05279028A (en) Rare-earth superconducting composition and its production
EP0356722B1 (en) Oxide superconductor and method of producing the same
KR100524466B1 (en) Method of joining oxide superconductor and oxide superconductor joiner
US5032570A (en) Method for producing ceramic superconducting material using intermediate products
CA1314791C (en) Epitaxial ba-y-cu-o superconductor film on perovskite structure substrate
JP4470008B2 (en) Target material, manufacturing method thereof, and oxide superconductor thin film
EP0564279B1 (en) Rare earth superconducting body and process for production thereof
US6830839B1 (en) Method for coating a semiconductor material using high remanent induction, coated superconductor material and the use thereof
US6103670A (en) Method of manufacturing oxide superconductor containing Ag and having substantially same crystal orientation
JPH05279031A (en) Rare earth oxide superconductor and its production
JP3621750B2 (en) Manufacturing method of oxide superconducting material
JP4669998B2 (en) Oxide superconductor and manufacturing method thereof
JP3889139B2 (en) Oxide superconductor containing silver and method for producing the same
JPH0791057B2 (en) Rare earth oxide superconductor
JP3159764B2 (en) Manufacturing method of rare earth superconductor
US6627582B2 (en) Large superconductor and its intermediate, and method for manufacturing the same
JP3034267B2 (en) Oxide superconductor
JP2692614B2 (en) Oxide superconductor with new structure
JP4951790B2 (en) Manufacturing method of oxide superconductivity
JP2000169145A (en) Oxide superconducting material and its production
JP2000302595A (en) Production of oxide bulk superconductor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608