JPH05278126A - Forming material of fiber reinforced thermoplastic resin - Google Patents

Forming material of fiber reinforced thermoplastic resin

Info

Publication number
JPH05278126A
JPH05278126A JP4080768A JP8076892A JPH05278126A JP H05278126 A JPH05278126 A JP H05278126A JP 4080768 A JP4080768 A JP 4080768A JP 8076892 A JP8076892 A JP 8076892A JP H05278126 A JPH05278126 A JP H05278126A
Authority
JP
Japan
Prior art keywords
tape
thermoplastic resin
fiber
reinforced thermoplastic
substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4080768A
Other languages
Japanese (ja)
Other versions
JP3317357B2 (en
Inventor
Takeshi Tsuchiida
武 土井田
Toshiaki Kitahora
俊明 北洞
Yoshimasa Takahashi
良誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP08076892A priority Critical patent/JP3317357B2/en
Publication of JPH05278126A publication Critical patent/JPH05278126A/en
Application granted granted Critical
Publication of JP3317357B2 publication Critical patent/JP3317357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To provide a forming material of fiber reinforced thermoplastic resin having a further improved impregnating property and also having workability with much pliability capable of being adapted for various shapes by heat-melting tape-like substances impregnated with thermoplastic resin, and thereafter by putting, them together at a specific convergence ratio. CONSTITUTION:A plurality of tape-like substances with reinforcing fibers immersed in thermoplastic resin to 8% or lower at percentage of void are employed and after heat-melted, the tape-like substances are put together at a convergence ratio that meets the conditional expressions of R <=0.98, R=S1/(S2XN). Herein, R shows a convergence ratio, R1 is the cross-sectional area of a forming material of fiber reinforcing thermoplastic resin, S2 is the cross-sectional area per each tape-like substance, and N indicates a number of supply of tape-like substances. In order to obtain a forming material of fiber reinforced thermoplastic resin, tape-like substances 2 are supplied from a creel 1 and, following this, the tape-like substances 2 are melted by means of an infrared ray heater 4 so that they are converged and formed in water. In this manner, formation can be done extremely simply with an excellent impregnating property.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱可塑性樹脂をマトリッ
クスとする繊維強化樹脂成形材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber reinforced resin molding material containing a thermoplastic resin as a matrix.

【0002】[0002]

【従来の技術】熱可塑性樹脂を強化繊維間に含浸した繊
維強化樹脂成形材が種々市販されている。しかし、これ
らは一般的に含浸工程と賦形工程が連続している場合が
多い。このような場合では成形できる成形品の形状が限
定され、生産性効率の面より好ましくなく、また、一般
に熱可塑性樹脂の溶融粘度が高いため必ずしも良好な含
浸性が得られていない。繊維強化樹脂成形材を連続させ
ずに新たな成形品を成形する際においては現在のところ
複雑な含浸・賦形装置が必要となる。また、複雑な含浸
・賦形装置を用いても熱可塑性樹脂の溶融粘度が高いこ
とから必ずしも良好な含浸性が得られていないのが現状
であり、これらは得られる成形品の品質面からまた、生
産性効率の面からも好ましいことではない。
2. Description of the Related Art Various fiber-reinforced resin moldings in which a thermoplastic resin is impregnated between reinforcing fibers are commercially available. However, in many cases, the impregnation step and the shaping step are generally continuous. In such a case, the shape of the molded product that can be molded is limited, which is not preferable in terms of productivity efficiency, and in general, good impregnability is not obtained because the melt viscosity of the thermoplastic resin is high. When molding a new molded product without continuous fiber reinforced resin molding material, a complicated impregnation and shaping device is required at present. In addition, even if a complicated impregnation / shape forming device is used, the high melt viscosity of the thermoplastic resin does not always lead to good impregnation. However, it is not preferable in terms of productivity and efficiency.

【0003】[0003]

【発明が解決しようとする課題】本発明は前記事情を考
慮してなされたものであり、その目的は予め良好な含浸
性を有するテープ状物を用いることにより更に含浸性を
上げ、且つ様々な形状への適用が可能な柔軟性に富んだ
加工性を有する繊維強化熱可塑性樹脂成形材を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its purpose is to further improve the impregnating property by using a tape-like material having a good impregnating property in advance. It is intended to provide a fiber-reinforced thermoplastic resin molding material which is applicable to a shape and has a highly flexible workability.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
の本発明の構成は実質的に強化繊維を下記に定義する空
隙率8%以下にまで熱可塑性樹脂で含浸されてなるテー
プ状物を1ないし複数本用いて該テープ状物を加熱溶融
させた後、下記の収束比にて該テープ状物を収束して得
られる繊維強化熱可塑性樹脂成形材である。 R≦0.98 R=S1/(S2×N) ここで、R :収束比(−) S1 :繊維強化熱可塑性樹脂成形材の断面積(mm2) S2 :テープ状物一本当りの断面積(mm2) N :テープ状物供給本数(−) また、このようにして得られる繊維強化熱可塑性樹脂成
形材の空隙率は5%以下であり、これを用いて棒状、球
状、管状等の形状に賦形し該成形材を直接成形品として
用いることも可能である。また、該成形材をアスペクト
比1.5〜600にカットして他の成形に用いることも
可能である。尚、空隙率はテープ状物もしくは繊維強化
熱可塑性樹脂成形材をカットした後水に浸漬しその前後
での重量変化より算出した。以下に定義を示した。 空隙率=(水浸漬後のテープ増加重量/水浸漬前のテー
プ重量)×100 (%)
The structure of the present invention for achieving the above object comprises a tape-like material obtained by substantially impregnating a reinforcing fiber with a thermoplastic resin to a porosity of 8% or less as defined below. A fiber-reinforced thermoplastic resin molding material obtained by heating and melting one or a plurality of tape-shaped objects and converging the tape-shaped materials at the following convergence ratio. R ≦ 0.98 R = S 1 / (S 2 × N) where R: convergence ratio (−) S 1 : cross-sectional area (mm 2 ) of fiber-reinforced thermoplastic resin molding S 2 : tape-like material Cross-sectional area per line (mm 2 ) N: Number of tape-shaped materials supplied (−) The porosity of the fiber-reinforced thermoplastic resin molding material thus obtained is 5% or less, and rod-shaped, It is also possible to shape the material into a spherical shape, a tubular shape or the like and use the molding material directly as a molded product. It is also possible to cut the molding material to have an aspect ratio of 1.5 to 600 and use it for other molding. The porosity was calculated from the weight change before and after the tape-shaped material or the fiber-reinforced thermoplastic resin molding material was cut and immersed in water. The definition is shown below. Porosity = (weight increase of tape after immersion in water / weight of tape before immersion in water) x 100 (%)

【0005】以下本発明について図面に基づいて詳細に
説明するが、下記図面は本発明を何ら限定するものでは
ない。本発明で用いるテープ状物の構成として、その強
化繊維はガラス繊維、炭素繊維、アラミド繊維、ポリベ
ンゾチアゾールやポリベンゾオキサゾールなどから成る
複素環含有ポリマーから得られる繊維等の連続繊維が挙
げられる。また、熱可塑性樹脂としては、ナイロン6、
ナイロン6.6等のポリアミド樹脂、ポリエチレンテレ
フタレート、ポリブチレンテレフタレート等のポリエス
テル樹脂、ポリプロピレン、ポリエチレン等のポリオレ
フィン樹脂、また、ポリカーボネート、ポリエーテルイ
ミド、ポリフェニレンスルフィド、ポリエーテルケトン
等が挙げられる。強化繊維および熱可塑性樹脂は特に限
定されるものではない。
The present invention will be described below in detail with reference to the drawings, but the following drawings do not limit the present invention in any way. Examples of the structure of the tape-like material used in the present invention include continuous fibers such as glass fibers, carbon fibers, aramid fibers, and fibers obtained from a heterocycle-containing polymer such as polybenzothiazole or polybenzoxazole. Further, as the thermoplastic resin, nylon 6,
Examples thereof include polyamide resins such as nylon 6.6, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyolefin resins such as polypropylene and polyethylene, and polycarbonate, polyetherimide, polyphenylene sulfide, polyether ketone and the like. The reinforcing fiber and the thermoplastic resin are not particularly limited.

【0006】テープ状物中の強化繊維の含有率は20〜
80容量%が好ましい。強化繊維が20容量%以下の場
合には強化効果が有効に発揮できず、また80容量%を
越えると強化繊維に樹脂が十分に含浸せず、所望の空隙
率以下にならず好ましくない。
The content of the reinforcing fiber in the tape-like material is 20 to
80% by volume is preferred. When the content of the reinforcing fiber is 20% by volume or less, the reinforcing effect cannot be effectively exhibited, and when it exceeds 80% by volume, the reinforcing fiber is not sufficiently impregnated with the resin and the porosity is less than the desired value, which is not preferable.

【0007】また、テープ状物空隙率は8%以下であ
り、6%以下が更に好ましい。空隙率が8%より大きい
場合ではテープ状物中の空気が抜け難く、溶融収束後に
得られる繊維強化熱可塑性樹脂成形材中の空隙率が下が
り難く、そのまま成形品として用いる場合や再度他の成
形に用いる場合において物性の低下が発生し好ましくな
い。また、該テープ状物はその断面形状、寸法により何
ら制限されるものではない。
The tape-like material has a porosity of 8% or less, more preferably 6% or less. When the porosity is more than 8%, the air in the tape-like material is hard to escape, and the porosity in the fiber-reinforced thermoplastic resin molding material obtained after fusion and convergence is difficult to decrease. When used for, it is not preferable because physical properties are deteriorated. Further, the tape-like material is not limited by its cross-sectional shape and dimensions.

【0008】本発明の繊維強化熱可塑性樹脂成形材を得
るための方法の一例としての概略図を図1に示した。こ
れはクリールからテープ状物を供給し、加熱装置として
赤外線ヒーターによる輻射加熱にてテープ状物を溶融さ
せ、水中で収束・賦形させるものである。この際の加熱
方法としては輻射加熱の代わりに接触加熱、対流加熱を
用いることも可能である。その後適切な簡易な収束・賦
形ダイを用いて賦形する。この際収束・賦形ダイの代わ
りにロールを用いてもよい。
FIG. 1 is a schematic view showing an example of a method for obtaining the fiber-reinforced thermoplastic resin molding material of the present invention. This is to supply a tape-like material from a creel, melt the tape-like material by radiant heating with an infrared heater as a heating device, and converge and shape it in water. As a heating method at this time, contact heating or convection heating can be used instead of radiation heating. After that, the shape is formed using an appropriate simple focusing / shape forming die. At this time, a roll may be used instead of the converging / shaping die.

【0009】この際、テープ状物を収束させる際の収束
比が重要となる。その収束比は用いるテープ状物断面積
の総計に対する溶融収束後の繊維強化熱可塑性樹脂成形
材の断面積比で規定され、この比が0.98以上ではテ
ープ状物中もしくはテープ状物間の空気を除去すること
が難しく好ましくない。収束比の調整は例えば図1に示
される収束・賦形ダイ5の入口および出口のノズル系を
適宜設計することにより容易に行うことができる。尚、
収束比の下限は特に限定されないが実用上は0.5程度
以上である。
At this time, the convergence ratio when converging the tape-shaped material is important. The convergence ratio is defined by the ratio of the cross-sectional area of the fiber-reinforced thermoplastic resin molding material after fusion convergence to the total cross-sectional area of the tape-like material to be used. If this ratio is 0.98 or more, it is in the tape-like material or between the tape-like materials. It is difficult to remove air, which is not preferable. The adjustment of the convergence ratio can be easily performed, for example, by appropriately designing the nozzle system of the entrance and exit of the convergence / shape forming die 5 shown in FIG. still,
The lower limit of the convergence ratio is not particularly limited, but is practically about 0.5 or more.

【0010】このようにして溶融収束させたテープ状物
を図1中においては水中にて収束・賦形しているが、こ
の収束・賦形工程は空気中にても可能である。また、図
1のようにして得られた繊維強化熱可塑性樹脂成形材は
そのまま棒状物として用いることが可能であり、また、
得られた棒状物を一定長さにカットし他の成形方法、例
えば射出成形、圧縮成形などに用いることが可能であ
る。
Although the tape-like material thus melt-converged is converged and shaped in water in FIG. 1, this converging and shaping step can also be performed in air. Further, the fiber-reinforced thermoplastic resin molding material obtained as shown in FIG. 1 can be used as it is as a rod-shaped material, and
The obtained rod-shaped material can be cut into a certain length and used for other molding methods such as injection molding and compression molding.

【0011】この際のアスペクト比としては1.5〜6
00が好ましい。1.5以下ではカット時に繊維強化熱
可塑性樹脂成形材の端部が乱れ、例えば射出成形に用い
ると強化繊維の破損が大きく物性低下が発生するため好
ましくない。また、600以上では他の成形法例えば圧
縮成形などに用いる際、金型内への投入時等の取扱性が
低下し好ましくない。
At this time, the aspect ratio is 1.5 to 6
00 is preferable. If it is 1.5 or less, the end portion of the fiber-reinforced thermoplastic resin molding material is disturbed at the time of cutting, and if it is used for injection molding, for example, the reinforcing fiber is largely damaged and the physical properties are deteriorated, which is not preferable. On the other hand, if it is 600 or more, it is not preferable because when it is used in another molding method such as compression molding, the handling property when it is put into a mold is deteriorated.

【0012】また、賦形ダイを交換することにより複雑
断面形状のものを作製することも可能である。得られる
繊維強化熱可塑性樹脂成形材の空隙率は5%以下が好ま
しい。5%以上ではそのまま成形品として用いることは
可能ではあるが欠陥等による物性の低下が生じるため好
ましくない。また、再度他の成形に用いる場合において
も強化繊維の破損による物性低下を招くため好ましくな
い。
It is also possible to manufacture a product having a complicated cross-sectional shape by exchanging the shaping die. The porosity of the obtained fiber-reinforced thermoplastic resin molding material is preferably 5% or less. If it is 5% or more, it can be used as a molded product as it is, but it is not preferable because physical properties are deteriorated due to defects and the like. Further, even when it is used again for another molding, the physical properties are deteriorated due to breakage of the reinforcing fiber, which is not preferable.

【0013】また、本発明はフィラメントワインディン
グ、テープレーイング等に適用することも可能である。
この際にはテープ状物を溶融・収束後に適切なマンドレ
ルを設置、もしくはテープレイヤーを設置することによ
り可能となる。
The present invention can also be applied to filament winding, tape laying and the like.
In this case, it is possible to install a proper mandrel or a tape layer after melting and converging the tape-like material.

【0014】[0014]

【発明の効果】本発明は以上のような構成からなり、予
め含浸されたテープ状物を用いるため含浸性が良好で且
つその賦形は極めてシンプルに行うことができる。更に
その用途も幅広く、様々な形状に適用することが可能で
ある。
EFFECTS OF THE INVENTION The present invention has the above-mentioned constitution, and since the tape-shaped material impregnated in advance is used, the impregnation property is good and the shaping can be performed extremely simply. Further, its application is wide and can be applied to various shapes.

【0015】[0015]

【実施例】以下に本発明を実施例により説明するが本発
明はこれらに何ら限定されるものではない。 実施例1 単糸直径13μmで1600本のモノフィラメントから
なるE−ガラス繊維に40容量%のポリプロピレンを溶
融含浸法により含浸させた空隙率5%、幅3mm、厚み
0.3mmのテープ状物を用いた。このテープ状物を図1
のように5本供給し15m/min の速度にて上下より赤
外線ヒーターで輻射加熱し溶融させたのち収束比0.8
5となるように水中にて収束・賦形ロールを用いて収束
・賦形し、これを引き取ることにより直径2mmのロッド
状繊維強化熱可塑性樹脂成形材を得た。該棒状物の空隙
率は1.3%であり且つ曲げ強度は105kg/mm2と良
好であった。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. Example 1 A tape-shaped product having a porosity of 5%, a width of 3 mm, and a thickness of 0.3 mm obtained by impregnating E-glass fibers composed of 1600 monofilaments with a single yarn diameter of 13 μm with 40% by volume of polypropylene by a melt impregnation method is used. I was there. This tape is shown in Figure 1.
As shown in the figure, 5 pieces are supplied, and the infrared rays are radiantly heated from the upper and lower sides at a speed of 15 m / min to melt and then the convergence ratio is 0.8.
5 was converged and shaped in water using a converging and shaping roll, and was taken out to obtain a rod-shaped fiber-reinforced thermoplastic resin molding material having a diameter of 2 mm. The porosity of the rod-shaped material was 1.3%, and the flexural strength was good at 105 kg / mm 2 .

【0016】実施例2 実施例1と同様のテープ状物および溶融方法にて収束比
0.90にて賦形ダイをT字型に変更しT字の各辺の幅
1mm、縦横各々1.35mmの繊維強化熱可塑性樹脂成形
材を作製した。得られたT字型棒状物の空隙率は0.2
%と低く、含浸性や賦形性も良好であった。
Example 2 The same tape-shaped material as in Example 1 and the melting method were used to change the shaping die to a T-shape with a convergence ratio of 0.90, and the width of each side of the T-shape was 1 mm and the length and width were 1. A 35 mm fiber-reinforced thermoplastic resin molding material was produced. The porosity of the obtained T-shaped bar is 0.2.
%, And the impregnability and shapeability were good.

【0017】実施例3 実施例1と同様の条件にて得られた棒状物を10mmにカ
ットしポリプロピレンペレットと混ぜ、強化繊維容量含
有率を40%とし射出成形した。得られた成形品の曲げ
強度は1900kg/mm2 、アイゾット衝撃値は28.1
kg・cm/cmと良好な機械特性を示した。
Example 3 A rod-shaped material obtained under the same conditions as in Example 1 was cut into 10 mm and mixed with polypropylene pellets, and injection molding was carried out with a reinforcing fiber volume content of 40%. The bending strength of the obtained molded product is 1900 kg / mm 2 , and the Izod impact value is 28.1.
It showed good mechanical properties of kg · cm / cm.

【0018】実施例4 実施例1と同様の条件にて得られた棒状物2本を300
mmにカットしマッチドダイ中に供給後プレス機により圧
力を負荷することにより幅10mm、厚み2.5mmの棒を
圧縮成形にて作製した。このときの金型の温度は210
℃、加えた圧力は2kg/cm2 であった。この棒の曲げ強
度は115kg/mm2 と極めて良好であった。
Example 4 Two rods obtained under the same conditions as in Example 1 were used for 300
After being cut into mm and fed into a matched die, a pressure was applied by a pressing machine to produce a bar having a width of 10 mm and a thickness of 2.5 mm by compression molding. The mold temperature at this time is 210
° C, the applied pressure was 2 kg / cm 2 . The bending strength of this bar was 115 kg / mm 2 , which was extremely good.

【0019】実施例5 実施例1と同様のテープ状物を用いて図2に示すような
フィラメントワインディングを行い収束比0.95にて
5m/min の速度で巻取った。加熱空気10の温度は2
80℃、マンドレル9および圧力ローラ8に最初に接触
する部分の表面材料温度は210℃であった。なおマン
ドレルは160℃に加熱されている。こうして表面が平
坦で且つ空隙率0.1%と、よく含浸された直径20m
m、長さ100mm、厚み3mmの管状物を得た。
Example 5 The same tape-like material as in Example 1 was used to perform filament winding as shown in FIG. 2, and it was wound at a convergence ratio of 0.95 at a speed of 5 m / min. The temperature of the heated air 10 is 2
The surface material temperature of the part which first contacts 80 ° C. and the mandrel 9 and the pressure roller 8 was 210 ° C. The mandrel is heated to 160 ° C. In this way, the surface is flat and the porosity is 0.1%, and the diameter is 20 m, which is well impregnated.
A tubular product having a length of 100 mm and a thickness of 3 mm was obtained.

【0020】比較例1 実施例1と同サイズのテープ状物で空隙率のみ10%の
ものを実施例1と同様の方法にて直径2mmの棒状繊維強
化熱可塑性樹脂成形材を得た。該棒状物の空隙率は9.
5%であり且つ曲げ強度は62kg/mm2 と低い物性であ
った。
Comparative Example 1 A tape-shaped material having the same size as in Example 1 and having a porosity of 10% was obtained in the same manner as in Example 1 to obtain a rod-shaped fiber-reinforced thermoplastic resin molding material having a diameter of 2 mm. The porosity of the rod is 9.
The physical properties were 5% and the bending strength was 62 kg / mm 2 , which was a low physical property.

【0021】比較例2 実施例1と同様のテープ状物および供給本数、溶融方法
・条件にて収束比1.0となるよう賦形ダイを直径約
2.4mmとし棒状物を作製した。得られた棒状物の空隙
率は10.9%であり且つ該ロッド状物の曲げ強度は5
9kg/mm2 と低い物性であった。
Comparative Example 2 The same tape-shaped material as in Example 1 and a rod-shaped material were produced with a shaping die having a diameter of about 2.4 mm so that the convergence ratio was 1.0 according to the number of supplied materials and the melting method / conditions. The porosity of the obtained rod-shaped material was 10.9% and the bending strength of the rod-shaped material was 5%.
The physical properties were as low as 9 kg / mm 2 .

【図面の簡単な説明】[Brief description of drawings]

【図1】繊維強化熱可塑性樹脂成形材の作製装置概略図
の一例である。
FIG. 1 is an example of a schematic view of an apparatus for producing a fiber-reinforced thermoplastic resin molding material.

【図2】フィラメントワインディング装置の概略図の一
例である。
FIG. 2 is an example of a schematic view of a filament winding apparatus.

【符号の説明】 1 クリール 2 テープ状物 3 ガイド 4 加熱装置 5 収束・賦形ダイ 6 水 浴 7 引き取り機 8 繊維強化熱可塑性樹脂成形材 9 圧力ローラ 10 マンドレル 11 加熱空気[Explanation of symbols] 1 creel 2 tape-like material 3 guide 4 heating device 5 converging / forming die 6 water bath 7 take-up machine 8 fiber reinforced thermoplastic resin molding material 9 pressure roller 10 mandrel 11 heated air

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 105:08 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display area // B29K 105: 08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 実質的に強化繊維が本文中に定義する空
隙率8%以下にまで熱可塑性樹脂で含浸されてなるテー
プ状物を1ないし複数本用いて該テープ状物を加熱溶融
させた後、下記の収束比にて該テープ状物を収束して得
られることを特徴とする繊維強化熱可塑性樹脂成形材。 R≦0.98 R=S1 /(S2×N) ここで、R :収束比(−) S1 :繊維強化熱可塑性樹脂成形材の断面積(mm2) S2 :テープ状物一本当りの断面積(mm2) N :テープ状物供給本数(−)
1. A tape-shaped material obtained by impregnating one or a plurality of tape-shaped materials, each of which is obtained by substantially impregnating a reinforcing fiber with a thermoplastic resin to a porosity of 8% or less as defined in the text, and heating and melting the tape-shaped material. Then, the fiber-reinforced thermoplastic resin molding material is obtained by converging the tape-shaped material at the following convergence ratio. R ≦ 0.98 R = S 1 / (S 2 × N) where R: convergence ratio (−) S 1 : cross-sectional area of fiber reinforced thermoplastic resin molding (mm 2 ) S 2 : tape-like material Cross-sectional area per piece (mm 2 ) N: Number of tape-like objects supplied (-)
【請求項2】 繊維強化熱可塑性樹脂成形材の空隙率が
5%以下であることを特徴とする請求項1記載の繊維強
化熱可塑性樹脂成形材。
2. The fiber-reinforced thermoplastic resin molding material according to claim 1, wherein the fiber-reinforced thermoplastic resin molding material has a porosity of 5% or less.
【請求項3】 繊維強化熱可塑性樹脂成形材が板状、棒
状、球状、管状等の形状を有することを特徴とする請求
項1ないし2記載の繊維強化熱可塑性樹脂成形材。
3. The fiber-reinforced thermoplastic resin molding material according to claim 1, wherein the fiber-reinforced thermoplastic resin molding material has a plate shape, a rod shape, a spherical shape, a tubular shape, or the like.
【請求項4】 繊維強化熱可塑性樹脂成形材をアスペク
ト比1.5〜600にカットして得られることを特徴と
する請求項1ないし2記載の繊維強化熱可塑性樹脂成形
材。
4. The fiber-reinforced thermoplastic resin molding material according to claim 1, which is obtained by cutting the fiber-reinforced thermoplastic resin molding material to an aspect ratio of 1.5 to 600.
JP08076892A 1992-04-02 1992-04-02 Fiber reinforced thermoplastic resin molding material Expired - Fee Related JP3317357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08076892A JP3317357B2 (en) 1992-04-02 1992-04-02 Fiber reinforced thermoplastic resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08076892A JP3317357B2 (en) 1992-04-02 1992-04-02 Fiber reinforced thermoplastic resin molding material

Publications (2)

Publication Number Publication Date
JPH05278126A true JPH05278126A (en) 1993-10-26
JP3317357B2 JP3317357B2 (en) 2002-08-26

Family

ID=13727603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08076892A Expired - Fee Related JP3317357B2 (en) 1992-04-02 1992-04-02 Fiber reinforced thermoplastic resin molding material

Country Status (1)

Country Link
JP (1) JP3317357B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040996A (en) * 2003-07-23 2005-02-17 Toyobo Co Ltd Organic fibre reinforced resin pellet, its manufacturing method and resin molded product
US8043669B2 (en) 2006-11-09 2011-10-25 Teijin Chemicals Ltd. Composite material and process for the production thereof
CN102615840A (en) * 2012-04-09 2012-08-01 华东理工大学 Production equipment and using method for thermoplastic pultrusion product
JP2013163377A (en) * 2012-01-23 2013-08-22 Boeing Co:The Narrow flake composite fiber material compression molding
ES2551631A1 (en) * 2014-05-19 2015-11-20 Manuel Torres Martínez Machine for the manufacture of bands of fiber composite materials (Machine-translation by Google Translate, not legally binding)
WO2020136926A1 (en) * 2018-12-28 2020-07-02 株式会社Ihiエアロスペース Frp continuous molding apparatus and frp continuous molding method
JP2021504500A (en) * 2017-11-29 2021-02-15 ロッテ ケミカル コーポレイション Continuous fiber reinforced thermoplastic resin composite material and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7234632B2 (en) 2017-07-18 2023-03-08 東レ株式会社 Unidirectionally oriented tape-shaped prepreg and its molded product

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005040996A (en) * 2003-07-23 2005-02-17 Toyobo Co Ltd Organic fibre reinforced resin pellet, its manufacturing method and resin molded product
US8043669B2 (en) 2006-11-09 2011-10-25 Teijin Chemicals Ltd. Composite material and process for the production thereof
EP2080781A4 (en) * 2006-11-09 2014-06-11 Teijin Chemicals Ltd Composite material and process for producing the same
JP2013163377A (en) * 2012-01-23 2013-08-22 Boeing Co:The Narrow flake composite fiber material compression molding
JP2018020568A (en) * 2012-01-23 2018-02-08 ザ・ボーイング・カンパニーTheBoeing Company Narrow flake composite fiber material compression molding
CN102615840A (en) * 2012-04-09 2012-08-01 华东理工大学 Production equipment and using method for thermoplastic pultrusion product
ES2551631A1 (en) * 2014-05-19 2015-11-20 Manuel Torres Martínez Machine for the manufacture of bands of fiber composite materials (Machine-translation by Google Translate, not legally binding)
JP2021504500A (en) * 2017-11-29 2021-02-15 ロッテ ケミカル コーポレイション Continuous fiber reinforced thermoplastic resin composite material and its manufacturing method
WO2020136926A1 (en) * 2018-12-28 2020-07-02 株式会社Ihiエアロスペース Frp continuous molding apparatus and frp continuous molding method
JPWO2020136926A1 (en) * 2018-12-28 2021-02-18 株式会社Ihiエアロスペース FRP continuous molding equipment and FRP continuous molding method

Also Published As

Publication number Publication date
JP3317357B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
US5068142A (en) Fiber-reinforced polymeric resin composite material and process for producing same
JPH08118490A (en) Crosshead die, and manufacture of long fiber-reinforced resin structure
KR20140027252A (en) Composite core for electrical transmission cables
JPH07216104A (en) Preparation of long filament-reinforced resin structure
KR20140015462A (en) Continious fiber reinforced thermoplastic rod and pultrusion method for its manufacture
JPH0732495A (en) Manufacture of long fiber-reinforced thermoplastic resin composition
JPH05278126A (en) Forming material of fiber reinforced thermoplastic resin
EP0393536A2 (en) Fiber-reinforced polymeric resin composite material and process for producing same
JP3620103B2 (en) Method for producing resin-coated reinforcing fiber yarn
JPH06114830A (en) Manufacture of continuous glass-fiber reinforced thermoplastic resin pellet
US6114000A (en) Material for FRTP molded objects and FRTP tubular molded object
JP3040865B2 (en) Long fiber reinforced thermoplastic resin pellets
JP3386158B2 (en) Molding materials and filament wound moldings
JP2847918B2 (en) Extruded product manufacturing method
JP2675862B2 (en) Manufacturing method of fiber-reinforced resin filament with spiral recess
JPH01229867A (en) Apparatus and method for impregnating multifilament and multifiber structure having continuous length
US6230775B1 (en) High temperature wet filament winding arrangement
CA2075929C (en) Continuous production process of fiber-reinforced rod-like resin material and apparatus therefor
JP3437651B2 (en) Method for producing pellet-shaped long fiber reinforced resin structure
JPH0550434A (en) Continuous preparation of rod-shaped fiber-reinforced resin material and apparatus thereof
JP3317358B2 (en) Composite reinforcing fiber material impregnated with thermoplastic resin
JP3210694B2 (en) Method for producing fiber-reinforced composite material
JPH1119998A (en) Composite molding
JP2869116B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP3289783B2 (en) Composite reinforcing fiber material impregnated with thermoplastic resin

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees