JPH05272821A - Method for controlling temperature in refrigerator by electronic expansion valve and device therefor - Google Patents

Method for controlling temperature in refrigerator by electronic expansion valve and device therefor

Info

Publication number
JPH05272821A
JPH05272821A JP2369093A JP2369093A JPH05272821A JP H05272821 A JPH05272821 A JP H05272821A JP 2369093 A JP2369093 A JP 2369093A JP 2369093 A JP2369093 A JP 2369093A JP H05272821 A JPH05272821 A JP H05272821A
Authority
JP
Japan
Prior art keywords
temperature
expansion valve
electronic expansion
suction pressure
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2369093A
Other languages
Japanese (ja)
Inventor
Rikiya Fujiwara
力弥 藤原
Takashi Tanaka
隆 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of JPH05272821A publication Critical patent/JPH05272821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To perform a linear changing of a temperature in refrigerator and an efficient cooling within the refrigerator by a method wherein an electronic expansion valve is controlled in such a manner that a metering adjustment is automatically carried out under a pressure along the most suitable sucking pressure line of a freezing device. CONSTITUTION:An electronic expansion valve 4 is automatically metered and adjusted under a pressure along the most suitable sucking pressure line of a freezer device 1. The electronic expansion valve 4 is gradually closed at a control starting point (a). During this period, a measured value by the sucking pressure measuring device 11 is compared with a value indicated in a sucking pressure line B corresponding to an objective freezing device. Upon coincidence between them, the electronic expansion valve 4 is switched to releasing operation. This releasing operation is continued until the measured value of the sucking pressure measuring device 11 coincides with the most suitable sucking pressure value (b) at the present freezing device temperature. Upon coincidence between them, the electronic expansion valve 4 performs again the closing operation. In this way, the electronic expansion valve 4 is set with an upper limit value, i.e., a value represented by sucking pressure line A corresponding to the present freezing device temperature, and a lower limit value, i.e., a value represented by a sucking pressure line B corresponding to a target temperature, and ON/OFF operation is repeated between the limit values. As a result, the sucking pressure drops along the suction pressure line A corresponding to the present freezing device temperature and then the freezing device temperature is linearly decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子膨張弁を備えた冷凍
装置による庫内温度制御に係り、詳しくは、恒温恒湿槽
や温度試験サイクル装置等の庫内を迅速に冷却するため
の庫内温度制御方法とその制御装置、ならびにその制御
方法を適用した多元冷凍機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to temperature control in a refrigerator by means of a refrigerating machine equipped with an electronic expansion valve, and more specifically, a refrigerator for rapidly cooling the inside of a constant temperature and humidity chamber or a temperature test cycle device. The present invention relates to an internal temperature control method, a control device therefor, and a multi-source refrigerator to which the control method is applied.

【0002】[0002]

【従来の技術】冷凍庫等の庫内を冷却する冷凍装置にお
いて、その膨張弁機構にしばしば電子膨張弁が用いられ
ているが、その場合の電子膨張弁の開閉制御は、例えば
特開昭60−221659号公報等に示されているよう
に、冷凍装置の吸入圧力と吸入過熱度とを測定し、これ
らの測定値にもとづいて行うのが通常である。このため
冷凍装置の回路上には圧力計測器及び温度計測器を設け
ねばならず、それと共に各種制御装置を夫々装備せねば
ならず、コストアップと制御処理の複雑さが問題となっ
ていた。
2. Description of the Related Art An electronic expansion valve is often used as an expansion valve mechanism in a refrigerating device for cooling the inside of a freezer or the like. In such a case, the opening / closing control of the electronic expansion valve is disclosed in, for example, Japanese Patent Laid-Open No. As disclosed in Japanese Patent No. 221659, etc., it is usual to measure the suction pressure and suction superheat of the refrigeration system, and perform the measurement based on these measured values. For this reason, a pressure measuring device and a temperature measuring device must be provided on the circuit of the refrigerating apparatus, and together with this, various control devices must also be equipped, resulting in problems of increased cost and complexity of control processing.

【0003】そこで、こうした制御方法によらず、より
簡単に電子膨張弁を制御する一つの方法として、冷凍装
置の最適吸入圧力線、即ち、各庫内温度で冷凍装置が最
もよく能力を発揮する点をつないだ線を設定し、この最
適吸入圧力線に沿って電子膨張弁を制御することが考え
られる。
Therefore, as one method of controlling the electronic expansion valve more easily without relying on such a control method, the refrigerating apparatus exerts its best performance at the optimum suction pressure line of the refrigerating apparatus, that is, at each internal temperature. It is conceivable to set a line connecting the points and control the electronic expansion valve along this optimum suction pressure line.

【0004】即ち、図3に示した最適吸入圧力線の一例
からもわかるように、最適吸入圧力は庫内温度に比例す
るものであるため、電子膨張弁の開度を最適吸入圧力線
に合致するよう制御して、庫内温度を目標温度に向かっ
て直線的に変化させようというものである。
That is, as can be seen from an example of the optimum suction pressure line shown in FIG. 3, since the optimum suction pressure is proportional to the internal temperature of the chamber, the opening of the electronic expansion valve matches the optimum suction pressure line. The temperature inside the refrigerator is linearly changed toward the target temperature.

【0005】しかし、実際に最適吸入圧力線に沿って電
子膨張弁を制御しようとすれば、制御開始示に電子膨張
弁のパルスを0に合わせる等の面倒な作業がまず必要で
あり、しかもその後は、制御装置が最適吸入圧力線を設
定したプログラムをかなり頻繁に読み取る必要があるた
め、制御装置の構成が極めて複雑、かつ困難なものとな
る。従って現実的には1秒間に10パルス程度で膨張弁
を作動させることしかできず、優れたレスポンスで最適
吸入圧力線に追随することは全く不可能であり、事実
上、かかる方法により庫内を直線的に温度変化させるこ
とはできなかった。
However, in order to actually control the electronic expansion valve along the optimum suction pressure line, a troublesome work such as adjusting the pulse of the electronic expansion valve to 0 at the start of control is first required, and after that, Requires the controller to read the program for setting the optimum suction pressure line quite frequently, which makes the configuration of the controller extremely complicated and difficult. Therefore, in reality, it is only possible to operate the expansion valve at about 10 pulses per second, and it is completely impossible to follow the optimum suction pressure line with excellent response. The temperature could not be changed linearly.

【0006】そして、このことは、この冷凍装置によっ
て冷却される冷凍庫が、電気・電子部品等の特性を一定
の温度と湿度のもとで試験する恒温恒湿槽であった場合
には、極めて大きな問題となっていた。恒温恒湿槽に一
般的に求められる規定、即ち、温度は直線的に変化しな
ければならないという規定に合致しないからである。
This is extremely true when the freezer cooled by this refrigerating apparatus is a constant temperature and constant humidity tank for testing the characteristics of electric and electronic parts under constant temperature and humidity. It was a big problem. This is because it does not meet the regulation generally required for the constant temperature and humidity chamber, that is, the regulation that the temperature must change linearly.

【0007】また、一方、温度サイクル試験機等のよう
に、運転中、庫内温度が頻繁に上下する装置の場合は、
上記恒温恒湿槽とは違った意味で、冷凍装置のレスポン
スが求められる。すなわち、温度サイクル試験機は、テ
スト室を所定の高温度と低温度とに一定のサイクルで切
り替え、これによって、テスト室に入れた電気・電子部
品等の対温度衝撃特性を試験する装置であるが、低温の
試験は、テスト室の試料を低温室より送給される低温空
気にさらすことにより行われる。その際、低温試験が例
えば−80℃でなされるとすると、それ以前、高温試験
の最中には、低温室の庫内温度が冷凍装置により−80
℃に予冷されていて、低温試験に変わると同時にこの予
冷された低温空気がテスト室に送り込まれるようになっ
ている。
On the other hand, in the case of a device such as a temperature cycle tester in which the temperature inside the refrigerator frequently rises and falls during operation,
The response of the refrigeration system is required in a sense different from that of the constant temperature and constant humidity tank. That is, the temperature cycle tester is a device that switches the test chamber between a predetermined high temperature and a predetermined low temperature in a constant cycle, and thereby tests the electric shock resistance characteristics of the electric / electronic parts and the like placed in the test chamber. However, the low temperature test is performed by exposing the test chamber sample to the low temperature air sent from the low temperature chamber. At that time, if the low temperature test is performed at, for example, −80 ° C., before that, during the high temperature test, the inside temperature of the low temperature chamber is set to −80 by the refrigerating apparatus.
It is pre-cooled to ℃, and at the same time as the low-temperature test, this pre-cooled low-temperature air is sent to the test chamber.

【0008】ところが、温度サイクル試験機の構造上、
低温空気をテスト室に送り込む際、それまでテスト室に
あった高温空気が低温室へ流れ込み、一旦、所定温度に
あった低温室の温度がこれにより瞬時にして上昇する特
質がある。従って、温度サイクル試験機における冷凍装
置は、このサイクル運転に伴って上昇する低温室の温度
を、素早くもとの−80℃まで収束させる必要がある。
However, due to the structure of the temperature cycle tester,
When the low-temperature air is sent to the test chamber, the high-temperature air that has been in the test chamber until then flows into the low-temperature chamber, and the temperature of the low-temperature chamber, which has been at the predetermined temperature, is instantly increased. Therefore, the refrigerating apparatus in the temperature cycle tester needs to quickly converge the temperature of the low temperature chamber, which rises with the cycle operation, to the original −80 ° C.

【0009】しかし、従来の温度サイクル試験機におけ
る冷凍装置の膨張弁は、通常、感温膨張弁が使用されて
いるため、収束時間は満足すべきものではなかった。例
えば、図7のグラフには、冷凍装置として二元冷凍機を
使用し、その高温側冷凍サイクル回路、低温側冷凍サイ
クル回路共に前記感温膨張弁を用いた場合の、各膨張弁
の作動の様子を示している。
However, as the expansion valve of the refrigeration system in the conventional temperature cycle tester, a temperature-sensitive expansion valve is usually used, so that the convergence time is not satisfactory. For example, the graph of FIG. 7 shows the operation of each expansion valve when a dual refrigerator is used as a refrigerating device and the temperature-sensitive expansion valve is used for both the high temperature side refrigeration cycle circuit and the low temperature side refrigeration cycle circuit. It shows the situation.

【0010】図のグラフにおいて時間は、右から左に進
行しており、この時間に沿って、図7イでは低温室内の
温度変化が表示され、図7ロでは、各膨張弁の作動の様
子が各吸入管圧力の変化によって示されている。図中、
X点が高温空気が低温室に流入した時点、すなわち負荷
投入時点である。各膨張弁(破線は高温側膨張弁、実線
は低温側膨張弁を示す)は、X点以降、ハンチングを繰
り返しながら最適の低圧値になろうと動作する。そして
このハンチングを繰り返すことで、所要の温度に達する
までの間に、無駄な時間が生ずる。従って、温度サイク
ル試験機では、このハンチングを極力なくし、より素早
く温度収束させることが求められていた。
In the graph of the figure, time progresses from right to left, and along this time, the temperature change in the low temperature chamber is displayed in FIG. 7A, and the operation of each expansion valve is shown in FIG. 7B. Is indicated by the change in each suction pipe pressure. In the figure,
Point X is the time when the hot air flows into the low temperature chamber, that is, the time when the load is applied. Each expansion valve (the broken line indicates the high temperature side expansion valve, and the solid line indicates the low temperature side expansion valve) operates from point X onward until the optimum low pressure value is reached while repeating hunting. By repeating this hunting, useless time is generated until the required temperature is reached. Therefore, in the temperature cycle tester, it has been required to eliminate this hunting as much as possible and to make the temperature converge more quickly.

【0011】[0011]

【発明が解決しようとする課題】本発明はかかる実状に
対処して、恒温恒湿槽や温度サイクル試験機等に使用さ
れる冷凍装置を、より素早いレスポンスで目標温度に制
御することを企図したもので、冷凍装置に電子膨張弁を
用い、かつ、その電子膨張弁を、優れたレスポンスで最
適吸入圧力線に追随する制御方法を提案すると共に、そ
れを実施する制御装置、及び実際に制御される冷凍装置
を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to cope with such a situation and intends to control a refrigerating apparatus used for a constant temperature and constant humidity chamber, a temperature cycle tester or the like to a target temperature with a quicker response. Therefore, we propose a control method that uses an electronic expansion valve in the refrigeration system, and that follows the optimum suction pressure line with excellent response, and a control device that implements it and the actual control. It is an object of the present invention to provide a refrigerating device.

【0012】[0012]

【課題を解決するための手段】しかして、上記目的に適
合する本発明の特徴を図1にもとづいて説明すると、冷
媒配管(6)により接続され、圧縮機(2),凝縮器
(3),電子膨張弁(4)及び蒸発器(5)を含み、蒸
発器(5)により冷凍庫(7)内を冷却可能となした冷
凍装置(1)における前記電子膨張弁(4)を冷凍装置
の最適吸入圧力線に沿った圧力で自動的に絞り調整を行
う如く制御し、冷凍庫(7)内を所定温度まで冷却する
ことを特徴とする電子膨張弁による庫内温度制御方法で
ある。
The features of the present invention which meet the above object will be described with reference to FIG. 1. The refrigerant pipe (6) is connected to the compressor (2) and the condenser (3). , The electronic expansion valve (4) and the evaporator (5), and the electronic expansion valve (4) of the refrigeration apparatus in the refrigeration apparatus (1) capable of cooling the inside of the freezer (7) by the evaporator (5) This is a method for controlling the temperature inside the refrigerator by an electronic expansion valve, which is characterized in that the inside of the freezer (7) is cooled to a predetermined temperature by controlling so as to automatically adjust the throttle with the pressure along the optimum suction pressure line.

【0013】その場合具体的には、請求項2に記載した
方法による。即ち、電子膨張弁(4)の開度を最適吸入
圧力線に沿った圧力で、目標庫内温度相当吸入圧力と、
現庫内温度相当吸入圧力の間にはさまれた領域で、目標
庫内温度相当吸入圧力になるまでは膨張弁(4)を閉め
て行き、該圧力に達すると現庫内温度相当吸入圧力まで
膨張弁(4)を開けて行くサイクルを繰り返し、最終的
に目標温度コントロール下に保持せしめる方法である。
In this case, specifically, the method according to claim 2 is used. That is, the opening degree of the electronic expansion valve (4) is a pressure along the optimum suction pressure line,
The expansion valve (4) is closed until it reaches the target internal temperature equivalent intake pressure in the region sandwiched between the actual internal temperature equivalent intake pressures, and when the pressure is reached, the current internal temperature equivalent intake pressure is reached. This is a method of repeating the cycle of opening the expansion valve (4) up to and finally maintaining the target temperature control.

【0014】そしてそのための装置は請求項3に記載し
た通り、前記冷凍装置の冷媒配管(6)の圧縮機(2)
吸入側に設置された吸入圧力計測器(11)と、前記冷
凍庫(7)内に配置された庫内温度計測器(13)と、
前記電子膨張弁(4)に付設され、電子膨張弁(4)を
開閉制御する制御装置よりなる。該制御装置は、前記冷
凍装置(1)の最適吸入圧力線が設定され、該最適吸入
圧力線により目標庫内温度相当吸入圧力を演算し、か
つ、最適吸入圧力線と前記庫内温度計測器(13)の計
測値により現庫内温度相当吸入圧力を演算すると共に、
該両演算値にはさまれた領域で前記吸入圧力計測器(1
3)の計測値にもとづき、電子膨張弁(4)を、目標庫
内温度相当吸入圧力になるまでは閉めて行き、該圧力に
達すると現庫内温度相当吸入圧力になるまで開けて行く
如く作動せしめるものである。
A device therefor is, as described in claim 3, a compressor (2) of a refrigerant pipe (6) of the refrigeration system.
A suction pressure measuring device (11) installed on the suction side, and an internal temperature measuring device (13) arranged in the freezer (7),
The control device is attached to the electronic expansion valve (4) and controls the opening and closing of the electronic expansion valve (4). The control device is set with an optimum suction pressure line of the refrigeration system (1), calculates a suction pressure corresponding to a target inside temperature by the optimum suction pressure line, and calculates the optimum suction pressure line and the inside temperature measuring device. The suction pressure equivalent to the current internal temperature is calculated from the measured value of (13), and
The suction pressure measuring instrument (1
Based on the measured value of 3), the electronic expansion valve (4) is closed until it reaches the target internal temperature-equivalent suction pressure, and when it reaches that pressure, it is opened until it reaches the actual internal temperature-equivalent suction pressure. It works.

【0015】また、請求項4記載の発明は、温度サイク
ル試験機における試験運転中の制御に好適な制御方法
で、電子膨張弁(4)を、庫内設定温度に対して予め定
めた冷凍装置の最適吸入圧力線に沿って、自動的に絞り
調整を行う如く制御し、庫内を所定温度まで冷却するこ
とを特徴とする電子膨張弁による庫内温度制御方法であ
る。
Further, the invention according to claim 4 is a refrigerating device in which the electronic expansion valve (4) is predetermined with respect to the set temperature in the refrigerator by a control method suitable for control during test operation in the temperature cycle tester. Is controlled so as to automatically adjust the throttle along the optimum suction pressure line, and the inside temperature is controlled to a predetermined temperature by the electronic expansion valve.

【0016】さらに、請求項5記載の発明は、温度サイ
クル試験機のプルダウン時も含めた全運転時の制御方法
を示すもので、電子膨張弁(4)を、プルダウン時は、
冷凍装置の最適吸入圧力線に沿った圧力で自動的に絞り
調整を行う如く制御し、サイクル運転時は、庫内設定温
度に対して予め定めた冷凍装置の最適吸入圧力線に沿っ
た圧力で、自動的に絞り調整を行う如く制御することを
特徴とする。
Further, the invention according to claim 5 shows a control method at the time of full operation including the pull-down of the temperature cycle tester, wherein the electronic expansion valve (4) is pulled down,
Control is performed so that throttle adjustment is automatically performed with the pressure along the optimum suction pressure line of the refrigeration system, and during cycle operation, the pressure is adjusted along the optimum suction pressure line of the refrigeration system that is preset for the set temperature in the refrigerator. The feature is that the control is performed so that the diaphragm is automatically adjusted.

【0017】一方、請求項6に記載の発明は、その場合
の冷凍装置を示したもので、これを図4にもとづいて説
明すると、温度サイクル試験機等、負荷変動の大きい装
置の庫内を冷却する多元冷凍機であって、前記庫内に
は、庫内温度センサー(17)が配置される一方、前記
多元冷凍機を構成する複数の冷凍サイクル回路(18)
(19)の各膨張機構には電子膨張弁(22)(24)
が使用され、各電子膨張弁(22)(24)を制御する
ための制御装置に、各冷凍サイクル回路(18)(1
9)毎のプルダウン用最適吸入圧力線とサイクル運転用
最適吸入圧力線とが設定されて、前記各電子膨張弁(2
2)(24)は、前記庫内温度センサー(17)の温度
計測値にもとづき、プルダウン時は、各プルダウン用最
適吸入圧力線に沿って制御され、サイクル運転時は、各
サイクル運転用最適吸入圧力線に沿って制御されるもの
である。
On the other hand, the invention according to claim 6 shows a refrigerating apparatus in that case. This will be described with reference to FIG. 4. A multi-source refrigerator for cooling, in which an in-compartment temperature sensor (17) is arranged, and a plurality of refrigeration cycle circuits (18) constituting the multi-source refrigerator.
Each expansion mechanism of (19) has an electronic expansion valve (22) (24).
Is used to control each electronic expansion valve (22) (24) to a refrigeration cycle circuit (18) (1).
9) The optimum suction pressure line for pull-down and the optimum suction pressure line for cycle operation are set for each 9), and each of the electronic expansion valves (2
2) (24) is controlled according to the optimum suction pressure line for each pulldown during pulldown, based on the temperature measurement value of the internal temperature sensor (17), and the optimum intake for each cycle operation during cycle operation It is controlled along the pressure line.

【0018】[0018]

【作用】請求項1及び2記載の方法を請求項3に記載し
た本発明制御装置の作動により説明すると、この制御装
置において、庫内を設定された温度まで冷却しようとす
るとき、制御装置はこの冷凍装置の最適吸入圧力線にも
とづいて、目標温度における最適吸入圧力を目標庫内温
度相当吸入圧力として演算し、同時に現在の庫内温度に
おける最適吸入圧力を現庫内温度相当吸入圧力として演
算する。次に制御装置は、電子膨張弁(4)に対し、目
標庫内温度相当吸入圧力を下限とし、現庫内温度相当吸
入圧力を上限として冷凍装置の吸入圧力が下限に達する
まで電子膨張弁(4)を閉鎖する方向に作動させ、下限
に達すれば、上限に至るまで開放する方向に作動させ
る。この繰り返しにより、電子膨張弁(4)の上限開度
は常に最適吸入圧力線と一致する。このため庫内温度は
最適吸入圧力線に沿って直線的に変化し、目標温度に向
かって効率的に低下することとなる。
The operation according to the first and second aspects of the present invention will be described by the operation of the control device of the present invention according to the third aspect. In this control device, when trying to cool the inside of the refrigerator to a set temperature, the control device is Based on the optimum suction pressure line of this refrigeration system, the optimum suction pressure at the target temperature is calculated as the target storage temperature equivalent suction pressure, and at the same time, the optimum suction pressure at the current storage temperature is calculated as the current storage temperature equivalent suction pressure. To do. Next, the control device sets the intake pressure equivalent to the target internal temperature as the lower limit to the electronic expansion valve (4) and the intake pressure equivalent to the current internal temperature as the upper limit until the intake pressure of the refrigerating device reaches the lower limit. 4) is operated in the closing direction, and when reaching the lower limit, it is operated in the opening direction until reaching the upper limit. By repeating this, the upper limit opening of the electronic expansion valve (4) always coincides with the optimum suction pressure line. Therefore, the internal cold storage temperature changes linearly along the optimum suction pressure line, and efficiently decreases toward the target temperature.

【0019】また、請求項4及び5記載の方法の場合
は、温度サイクル試験機等、低温室等のように、温度変
化の激しい庫内の冷却に適用して好ましく、請求項4記
載の方法の場合は、電子膨張弁(4)が、庫内設定温度
に対して予め定めた冷凍装置の最適吸入圧力線に沿って
制御されるため、温度サイクル装置のサイクル運転時に
おいて、庫内の温度は所要温度に迅速に収束する。
Further, in the case of the method according to claims 4 and 5, it is preferable that the method is applied to cooling the inside of the chamber where the temperature changes drastically, such as a temperature cycle tester, a low temperature room, etc., and the method according to claim 4 In the case of, the electronic expansion valve (4) is controlled along the preset optimum suction pressure line of the refrigerating device with respect to the set temperature in the refrigerator, so that the temperature in the refrigerator is controlled during the cycle operation of the temperature cycle device. Quickly converges to the required temperature.

【0020】さらに、請求項5記載の方法では、これに
プルダウン時の制御が加わり、プルダウン時は目標温度
に向かって直線的に温度低下し、サイクル運転時は、前
記したように迅速な温度収束が実現されて、温度サイク
ル試験機の極めて効率的な運転が達成される。
Further, in the method according to the fifth aspect, control during pull-down is added to this, and the temperature decreases linearly toward the target temperature during pull-down, and during the cycle operation, the rapid temperature convergence as described above. Is achieved and extremely efficient operation of the temperature cycle tester is achieved.

【0021】一方、請求項6記載の多元冷凍機において
は、電子膨張弁(22)(24)の制御装置に各冷凍サ
イクル回路(18)(19)毎のプルダウン用最適吸入
圧力線とサイクル運転用最適吸入圧力線とが設定されて
いるため、例えば、この多元冷凍機を温度サイクル試験
機に適用した際、低温室(16)内に設置された一個の
温度センサー(17)だけで、各冷凍サイクル回路(1
8)(19)の電子膨張弁(22)(23)はレスポン
スよく制御され、庫(16)内は効率的に冷却される。
On the other hand, in the multi-source refrigerator according to the sixth aspect, the pull-down optimum suction pressure line for each refrigeration cycle circuit (18) (19) and the cycle operation are controlled by the control device of the electronic expansion valves (22) (24). Since the optimum suction pressure line for use is set, for example, when this multi-source refrigerator is applied to a temperature cycle tester, only one temperature sensor (17) installed in the low temperature chamber (16) Refrigeration cycle circuit (1
8) The electronic expansion valves (22) and (23) of (19) are controlled with good response, and the inside of the refrigerator (16) is efficiently cooled.

【0022】[0022]

【実施例】以下、本発明の実施例を図面にもとづき説明
する。同図において、(1)は冷凍装置を示し、圧縮機
(2),凝縮器(3),電子膨張弁(4)及び蒸発器
(5)が冷媒配管(6)により接続されて構成されてい
る。このうち蒸発器(5)は、恒温恒湿槽(7)の庫内
側に配置されて、庫内を冷却可能である。なお、(8)
は蒸発器(5)に併設された逆ヒータ,(9),(1
0)は凝縮器(3),蒸発器(5)の各送風ファンであ
る。
Embodiments of the present invention will now be described with reference to the drawings. In the figure, (1) indicates a refrigeration system, which is configured by connecting a compressor (2), a condenser (3), an electronic expansion valve (4) and an evaporator (5) through a refrigerant pipe (6). There is. Of these, the evaporator (5) is arranged inside the constant temperature and humidity chamber (7) and can cool the inside. Note that (8)
Is a reverse heater attached to the evaporator (5), (9), (1
Reference numeral 0) is each fan for the condenser (3) and the evaporator (5).

【0023】上記冷凍装置(1)の冷媒配管(6)に
は、さらに圧縮機(2)の吸入側に吸入圧力計測器(1
1)が介装されており、その計測値は後述する制御装置
に送られるようになっている。
In the refrigerant pipe (6) of the refrigeration system (1), a suction pressure measuring device (1) is further provided on the suction side of the compressor (2).
1) is interposed and the measured value is sent to the control device described later.

【0024】(12)は、前記恒温恒湿槽(7)の庫内
目標冷却温度を設定する庫内目標温度設定器であり、そ
の設定値も制御装置に入力される。また、(13)は恒
温恒湿槽(7)の庫内温度を計測する庫内温度計測器で
あり、庫内に配置された温度センサ(14)に接続さ
れ、該温度センサ(14)の計測した温度を逐一制御装
置に入力する。さらに(15)は、前記電子膨張弁
(4)を開閉作動させるための電子膨張弁開閉手段であ
り、前記制御装置から出力される制御指令を受けて、電
子膨張弁(4)を後述する如く開閉させる。
Reference numeral (12) is an internal target temperature setting device for setting the internal target cooling temperature of the constant temperature and humidity chamber (7), and the set value is also input to the control device. Further, (13) is an inside temperature measuring device for measuring the inside temperature of the constant temperature and humidity chamber (7), which is connected to the temperature sensor (14) arranged in the inside of the temperature sensor (14). The measured temperature is input to the controller one by one. Further, (15) is an electronic expansion valve opening / closing means for opening / closing the electronic expansion valve (4), which receives the control command output from the control device and operates the electronic expansion valve (4) as described later. Open and close.

【0025】次に制御装置は、この場合、マイクロコン
ピュータが適用されている。コンピュータ内部の処理の
流れは同図下方に示す通りである。即ち、上記冷凍装置
(1)における最適吸入圧力線が予め設定されていて、
前記庫内目標温度設定器(12)及び前記庫内温度計測
器(13)より入力される各温度値における最適吸入圧
力を、前記最適吸入圧力線にもとづいて夫々演算し、こ
の演算値を前記吸入圧力計測器(11)により入力され
た圧力値と比較しつつ、前記電子膨張弁開閉手段(1
5)に対して電子膨張弁(4)開閉指令を出力する。
Next, as the control device, in this case, a microcomputer is applied. The flow of processing inside the computer is as shown in the lower part of the figure. That is, the optimum suction pressure line in the refrigeration system (1) is preset,
The optimum suction pressure at each temperature value input from the inside target temperature setting device (12) and the inside temperature measuring device (13) is calculated based on the optimum suction pressure line, and the calculated value is calculated as described above. The electronic expansion valve opening / closing means (1) is compared with the pressure value input by the suction pressure measuring device (11).
The electronic expansion valve (4) opening / closing command is output to 5).

【0026】これによる具体的な電子膨張弁(4)の開
放動作は、図2に示すグラフ中に図示してある。図にお
いて、(A)は各温度における最適吸入圧力を示す現庫
内温度相当吸入圧力線、(B)は目標温度における最適
吸入圧力を示す目標庫内温度相当吸入圧力線であり、縦
方向に時間(t)をとり、横方向に吸入圧力(P)をと
ってある。電子膨張弁(4)の開度は、前記吸入圧力計
測器(11)の計測する圧力変化として表わされ、2つ
の吸入圧力線(A),(B)の間に矢示線により表示さ
れている。左方への矢示線は膨張弁(4)が閉動作して
いるときであり、右方への矢示線は膨張弁(4)が開動
作しているときである。
The specific opening operation of the electronic expansion valve (4) by this is illustrated in the graph shown in FIG. In the figure, (A) is a suction pressure line corresponding to the current internal temperature corresponding to the optimum suction pressure at each temperature, and (B) is a target internal temperature equivalent suction pressure line corresponding to the optimum suction pressure at the target temperature. The time (t) is taken and the suction pressure (P) is taken in the lateral direction. The opening degree of the electronic expansion valve (4) is represented as a pressure change measured by the suction pressure measuring device (11), and is indicated by an arrow line between the two suction pressure lines (A) and (B). ing. The arrow line to the left is when the expansion valve (4) is closing operation, and the arrow line to the right is when the expansion valve (4) is opening operation.

【0027】図2において、点aは制御開始点であり、
図では2kg/cm2 の位置で電子膨張弁(4)の開度が現
庫内温度相当吸入圧力線(A)に一致しているが、制御
開始点(a)における膨張弁(4)開度は同位置に限定
されるものではない。まず、点(a)において、電子膨
張弁(4)は徐々に閉鎖される。この間、吸入圧力計測
器(11)による計測値と目標庫内温度相当吸入圧力線
(B)の示す値とが比較され、この場合であれば0kg/
cm2 において両者の値が一致すると、電子膨張弁(4)
は開放動作に転ずる。そしてこの開放動作は、吸入圧力
計測器(11)の計測値が、現在の庫内温度における最
適吸入圧力値(b)(図では1.8 kg/cm2 )に一致する
まで続き、一致すると、電子膨張弁(4)は再び閉鎖方
向への動作となる。
In FIG. 2, point a is the control start point,
In the figure, the opening of the electronic expansion valve (4) at the position of 2 kg / cm 2 matches the suction pressure line (A) corresponding to the current internal temperature, but the expansion valve (4) opens at the control start point (a). The degree is not limited to the same position. First, at the point (a), the electronic expansion valve (4) is gradually closed. During this period, the value measured by the suction pressure measuring device (11) is compared with the value indicated by the suction pressure line (B) corresponding to the target internal temperature, and in this case, 0 kg /
If both values match in cm 2 , the electronic expansion valve (4)
Turns to open motion. Then, this opening operation continues until the measured value of the suction pressure measuring device (11) matches the optimum suction pressure value (b) (1.8 kg / cm 2 in the figure) at the present internal temperature, and when it matches, the electronic The expansion valve (4) operates again in the closing direction.

【0028】このようにして電子膨張弁(4)は、現庫
内温度相当吸入圧力線(A)の示す値を上限とし、目標
温度相当吸入圧力線(B)の示す値を下限として、その
範囲内で開閉動作を繰り返す。この結果、吸入圧の低下
は実質上、現庫内温度相当吸入圧力線(A)に沿ったも
のとなり、庫内温度が直線的に低下して行くこととな
る。
In this way, the electronic expansion valve (4) has its upper limit set to the value indicated by the current storage temperature equivalent suction pressure line (A) and its lower limit set to its target temperature equivalent suction pressure line (B). Repeat the opening and closing operations within the range. As a result, the suction pressure decreases substantially along the current storage temperature equivalent suction pressure line (A), and the storage temperature decreases linearly.

【0029】なお、図中C点以降は一定温度コントロー
ル領域で、例えば目標温度が−40℃で、そのときの最
適吸入圧力が0kg/cm2 であるとき、電子膨張弁(4)
は0kg/cm2 〜0.2 kg/cm2 程度の巾で制御され、同時
に蒸発器(5)に併設した逆ヒータ(8)が作動して庫
内温度の一定化が図られる。
In addition, in the constant temperature control region after point C in the figure, for example, when the target temperature is -40 ° C. and the optimum suction pressure at that time is 0 kg / cm 2 , the electronic expansion valve (4)
Is controlled with a width of about 0 kg / cm 2 to 0.2 kg / cm 2 , and at the same time, the reverse heater (8) attached to the evaporator (5) operates to stabilize the temperature inside the refrigerator.

【0030】次に、図4に示したものは、温度サイクル
試験機に併設された二元冷凍機で、図中、(16)は、
温度サイクル試験機の低温室である。(17)は、この
低温室の中に設置された温度センサーである。なお、温
度サイクル装置としては、この他、試料を載置するテス
ト室、テスト室に高温空気を吹き込む高温室等が構成要
素としてあるが、ここでは図示を省略している。
Next, the one shown in FIG. 4 is a dual refrigerator attached to the temperature cycle tester. In the figure, (16) is
This is the low temperature room of the temperature cycle tester. (17) is a temperature sensor installed in this low temperature chamber. In addition, as the temperature cycle device, a test chamber in which a sample is placed, a high temperature chamber in which high temperature air is blown into the test chamber, and the like are other components, but they are not shown here.

【0031】前記二元冷凍機は、高温側冷凍サイクル回
路(18)と低温側冷凍サイクル回路(19)とからな
り、高温側冷媒サイクル回路(18)は、圧縮機(2
0)、凝縮器(21)、高温側膨張弁(22)、カスケ
ードコンデンサ(23)を順次配管接続して構成され、
低温側冷凍サイクル回路(19)は、低温側膨張弁(2
4)、蒸発器(25)、圧縮機(26)、前記カスケー
ドコンデンサ(23)を順次接続して構成されている。
前記低温室(16)には、低温側冷凍サイクル回路(1
9)の蒸発器(25)が配設される。なお、各冷凍サイ
クル回路(18)(19)の圧縮機(20)(26)吸
入側には、夫々、吸入圧力を計測する吸入圧力計測器
(27)(28)が付設されている。
The binary refrigerator comprises a high temperature side refrigeration cycle circuit (18) and a low temperature side refrigeration cycle circuit (19), and the high temperature side refrigerant cycle circuit (18) is a compressor (2
0), the condenser (21), the high temperature side expansion valve (22), and the cascade condenser (23) are connected in this order by piping.
The low temperature side refrigeration cycle circuit (19) includes a low temperature side expansion valve (2
4), an evaporator (25), a compressor (26) and the cascade condenser (23) are sequentially connected.
The low temperature chamber (16) includes a low temperature side refrigeration cycle circuit (1
The evaporator (25) of 9) is arranged. In addition, suction pressure measuring devices (27) and (28) for measuring the suction pressure are attached to the compressor (20) (26) suction side of each refrigeration cycle circuit (18) (19).

【0032】前記高温側膨張弁(22)及び低温側膨張
弁(24)は、共に電子膨張弁が適用されているが、そ
の制御は、図5に示すブロック図に従ってなされる。す
なわち、制御装置へは、前記温度センサー(17)から
の庫内温度計測値と、各冷凍サイクル回路(18)(1
9)に設けられた吸入圧力計測器(27)(28)によ
る高温側冷凍サイクル回路(18)の吸入圧力値(高温
側吸入圧力)と低温側冷凍サイクル回路(19)の吸入
圧力値(低温側吸入圧力)とが入力されるようになって
いる。また、その出力側には、高温側膨張弁(22)、
低温側膨張弁(24)の駆動機構に接続される。
The high temperature side expansion valve (22) and the low temperature side expansion valve (24) are both electronic expansion valves, and their control is performed according to the block diagram shown in FIG. That is, to the control device, the measured value of the internal temperature from the temperature sensor (17) and each refrigeration cycle circuit (18) (1
The suction pressure value (high temperature side suction pressure) of the high temperature side refrigeration cycle circuit (18) and the suction pressure value (low temperature side) of the low temperature side refrigeration cycle circuit (19) by the suction pressure measuring devices (27) and (28) provided in 9). Side suction pressure) and are input. In addition, the high temperature side expansion valve (22),
It is connected to the drive mechanism of the low temperature side expansion valve (24).

【0033】制御装置には、予め図6に示すような最適
吸入圧力線が記憶されている。破線が高温側冷凍サイク
ル回路(18)のプルダウン時の最適吸入圧力線であ
り、一点鎖線が高温側冷凍サイクル回路(18)のサイ
クル運転時の最適吸入圧力線である。また、二点鎖線が
低温側冷凍サイクル回路(19)のプルダウン時の最適
吸入圧力線、実線が低温側冷凍サイクル回路(19)の
サイクル運転時の最適吸入圧力線である。各最適吸入圧
力線は、予め試験等により求められたもので、プルダウ
ン時の最適吸入圧力線は、前述した恒温恒湿槽(7)の
場合と同様、低温室(16)内を直線的に温度低下させ
る線が設定されている。また、各冷凍サイクル回路(1
8)(19)の運転時の最適吸入圧力線を設定するに
は、所定サイクルにより各所定温度で高温試験と低温試
験とを繰り返し、低温試験を始めるに当たり、最も素早
く低温室(16)内の温度を収束させたときの圧力線
を、前記所定温度における最適吸入圧力線として定めて
ある。なお、実際に各電子膨張弁(22)(24)の制
御に寄与するのは主にこのグラフの0℃以下の部分であ
り、それ以上の部分は、例として示している。
An optimum suction pressure line as shown in FIG. 6 is stored in the control device in advance. The broken line is the optimum suction pressure line when the high temperature side refrigeration cycle circuit (18) is pulled down, and the alternate long and short dash line is the optimum suction pressure line when the high temperature side refrigeration cycle circuit (18) is cycled. The two-dot chain line is the optimum suction pressure line when the low temperature side refrigeration cycle circuit (19) is pulled down, and the solid line is the optimum suction pressure line when the low temperature side refrigeration cycle circuit (19) is cycled. Each optimum suction pressure line is obtained in advance by a test or the like, and the optimum suction pressure line at the time of pulling down is linear in the low temperature chamber (16) as in the case of the constant temperature and humidity chamber (7) described above. The line to lower the temperature is set. In addition, each refrigeration cycle circuit (1
8) In order to set the optimum suction pressure line during operation in (19), the high temperature test and the low temperature test are repeated at each predetermined temperature in a predetermined cycle, and at the beginning of the low temperature test, the temperature inside the low temperature chamber (16) is the fastest. The pressure line when the temperature is converged is defined as the optimum suction pressure line at the predetermined temperature. It should be noted that it is mainly the portion at 0 ° C. or lower in this graph that actually contributes to the control of the electronic expansion valves (22) and (24), and the portion above that is shown as an example.

【0034】まず、プルダウン時、制御装置に前記各計
測値が入力されると、制御装置は、プルダウン用の各最
適吸入圧力線に沿って、各冷凍サイクル回路(18)
(19)の各電子膨張弁(22)(24)を開閉制御す
る。このときの各電子膨張弁(22)(24)の開閉
は、前記恒温恒湿槽の場合で説明したのと同様の様態と
なる。次に、サイクル試験運転時、制御装置は、プルダ
ウン用の各最適吸入圧力線に沿って各冷凍サイクル回路
(18)(19)の各電子膨張弁(22)(24)を開
閉制御する。
First, when each of the measured values is input to the control device during pull-down, the control device causes each refrigeration cycle circuit (18) to follow each optimum suction pressure line for pull-down.
The electronic expansion valves (22) and (24) of (19) are opened and closed. The opening and closing of each electronic expansion valve (22) (24) at this time is in the same manner as described in the case of the constant temperature and constant humidity tank. Next, during the cycle test operation, the control device controls the opening and closing of each electronic expansion valve (22) (24) of each refrigeration cycle circuit (18) (19) along each pull-down optimum suction pressure line.

【0035】具体的には、例えば3秒毎に庫内温度値と
各吸入圧力値とが制御装置に入力されると、制御装置
は、そのときの庫内温度に対する各冷凍サイクル回路
(18)(19)の最適吸入圧力を前記サイクル運転用
の各最適吸入圧力線から求める。そして入力された各吸
入圧力値と比較する。その結果、庫内圧力の方が最適吸
入圧力線から求めた最適圧力よりも大きければ、電子膨
張弁(22)(24)を、例えば10パルス宛閉鎖し、
逆の場合であれば、10パルス宛開放する等して、実際
の吸入圧力を最適吸入圧力に適合させる。これにより、
各電子膨張弁(22)(24)は無駄なく制御され、低
温室(16)は極めて短時間で目標温度に収束する。
Specifically, when the temperature value in the refrigerator and each suction pressure value are input to the control device, for example, every 3 seconds, the control device causes the refrigeration cycle circuit (18) for the temperature in the refrigerator at that time. The optimum suction pressure of (19) is determined from each optimum suction pressure line for the cycle operation. Then, it is compared with each input suction pressure value. As a result, if the internal pressure is higher than the optimum pressure obtained from the optimum suction pressure line, the electronic expansion valves (22) (24) are closed, for example, for 10 pulses,
In the opposite case, the actual suction pressure is adapted to the optimum suction pressure by opening 10 pulses. This allows
The electronic expansion valves (22) (24) are controlled without waste, and the low temperature chamber (16) converges to the target temperature in an extremely short time.

【0036】そして以上の結果、プルダウン時はもとよ
り、サイクル運転時においても、電子膨張弁(22)
(24)は、常に最適吸入圧力線にもとづいて作動する
ことになり、温度サイクル試験機の作動時全てにわた
り、低温室(17)内は、効率的に冷却されることにな
る。
As a result of the above, the electronic expansion valve (22) is not only used during pull-down but also during cycle operation.
Since (24) always operates based on the optimum suction pressure line, the low temperature chamber (17) is efficiently cooled during the entire operation of the temperature cycle tester.

【0037】なお、以上の例では、温度試験サイクル機
の冷凍機として、二元冷凍機を使用したが、冷凍機とし
ては二元冷凍機に拘らず、単元のものであっても、また
二元以上の多元冷凍機であってもよい。各冷媒サイクル
回路毎に、プルダウン用とサイクル試験用の各最適吸入
圧力線を夫々設定し、装置の運転状況に応じ、各最適吸
入圧力線にもとづいて同様に制御することで、同様の効
果が得られる。
In the above example, the dual refrigerator is used as the refrigerator of the temperature test cycle machine. However, regardless of whether the refrigerator is a dual refrigerator, a dual refrigerator may be used. It may be a multi-source refrigerator of the original size or more. For each refrigerant cycle circuit, each optimum suction pressure line for pull-down and cycle test is set respectively, and similar control is performed based on each optimum suction pressure line according to the operating status of the device. can get.

【0038】[0038]

【発明の効果】以上説明したように本発明方法は、電子
膨張弁(4)を冷凍装置(1)の最適吸入圧力線に沿っ
た圧力で自動的に絞り調整を行う如く制御し、冷凍庫
(7)内を冷却する方法であるから、庫内温度は最適吸
入圧力線に沿って直線的に変化する。その場合、請求項
2に記載する方法により、上記方法はより実際的なもの
となり、庫内温度を確実に直線変化させることができ
る。従って、こうした温度変化が求められる恒温恒湿槽
の冷凍装置に本発明方法を適用すれば顕著な効果を奏す
る。
As described above, according to the method of the present invention, the electronic expansion valve (4) is controlled so as to automatically perform throttle adjustment by the pressure along the optimum suction pressure line of the refrigeration system (1), and the freezer ( 7) Since it is a method of cooling the inside, the internal temperature changes linearly along the optimum suction pressure line. In that case, the method described in claim 2 makes the method more practical, and the temperature inside the refrigerator can be surely changed linearly. Therefore, if the method of the present invention is applied to the refrigerating device of the constant temperature and constant humidity tank in which such a temperature change is required, a remarkable effect is obtained.

【0039】また、請求項3に記載する装置は、上記方
法を容易に実施することができる。しかも、この装置
は、従来の電子膨張弁(4)を過熱度により制御するも
のと異なり、冷媒配管(6)に温度計測器を備える必要
がないため、簡単に構成でき、コストダウンが図れる点
でも有利である。
The apparatus described in claim 3 can easily implement the above method. Moreover, unlike the conventional electronic expansion valve (4) which controls the electronic expansion valve (4) by the degree of superheat, this device does not need to have a temperature measuring device in the refrigerant pipe (6), so that it can be easily configured and cost can be reduced. But it is advantageous.

【0040】さらに、請求項4及び5記載の方法の場合
は、温度サイクル試験機における低温室(16)等のよ
うに、温度変化の激しい庫内に対する冷却の場合に、極
めてレスポンスよく膨張弁が作動する。その場合、請求
項4記載の方法を適用することで、温度サイクル試験機
のサイクル運転時における低温室の温度が所要温度に迅
速に収束する。
Furthermore, in the case of the method according to claims 4 and 5, the expansion valve is extremely responsive in the case of cooling the inside of the chamber where the temperature changes drastically like the low temperature chamber (16) in the temperature cycle tester. Operate. In that case, by applying the method of claim 4, the temperature of the low temperature chamber during the cycle operation of the temperature cycle tester quickly converges to the required temperature.

【0041】また、請求項5記載の方法では、これにプ
ルダウン時の制御が加わり、プルダウン時は、目標温度
に向かって直線的に温度低下するため、温度サイクル試
験機の極めて効率的な運転が実現される。
Further, in the method according to the fifth aspect, control during pull-down is added to this, and the temperature decreases linearly toward the target temperature during pull-down. Therefore, extremely efficient operation of the temperature cycle tester is possible. Will be realized.

【0042】一方、請求項6記載の多元冷凍機は、電子
膨張弁(22)(24)の制御装置に各冷凍サイクル回
路(18)(19)毎のプルダウン用最適吸入圧力線と
サイクル運転用最適吸入圧力線とが設定されているた
め、各冷凍サイクル回路(18)(19)に夫々温度セ
ンサーを設けずとも、庫内に設置された一個の温度セン
サー(17)だけで各電子膨張弁(22)(24)を制
御することができ、装置の部品点数削減に実効を奏する
と共に、温度サイクル試験機等、負荷変動の大きい装置
の庫内冷却に際して、そのプルダウン時には極めて迅速
に目標温度へ到達し、サイクル運転時には、素早く目標
温度へ収束して、効率的な運転を実現する。
On the other hand, in the multi-source refrigerator according to the sixth aspect, the optimum suction pressure line for pulling down and the cycle operation for each refrigeration cycle circuit (18) (19) are provided to the control device of the electronic expansion valves (22) (24). Since the optimum suction pressure line is set, even if each refrigeration cycle circuit (18) (19) is not provided with a temperature sensor, only one temperature sensor (17) installed in the refrigerator is used for each electronic expansion valve. It is possible to control (22) and (24), which is effective in reducing the number of parts of the device, and at the time of pulling down during cooling of the inside of a device with large load fluctuations such as a temperature cycle tester, to the target temperature extremely quickly. When the temperature reaches the end of the cycle, it quickly converges to the target temperature for efficient operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明電子膨張弁による庫内温度制御装置の作
動説明図である。
FIG. 1 is an operation explanatory view of an internal temperature control device using an electronic expansion valve of the present invention.

【図2】本発明電子膨張弁による庫内温度制御装置の作
動説明図である。
FIG. 2 is an operation explanatory view of the internal temperature control device using the electronic expansion valve of the present invention.

【図3】最適吸入圧力線を説明するグラフである。FIG. 3 is a graph illustrating an optimum suction pressure line.

【図4】本発明に係る多元冷凍機の一実施例を示す配管
系統図である。
FIG. 4 is a piping system diagram showing an embodiment of a multi-source refrigerator according to the present invention.

【図5】上記多元冷凍機における電子膨張弁制御のため
のブロック図である。
FIG. 5 is a block diagram for controlling an electronic expansion valve in the multi-source refrigerator.

【図6】上記多元冷凍機における電子膨張弁制御のため
の最適吸入圧力線を説明するグラフである。
FIG. 6 is a graph illustrating an optimum suction pressure line for controlling an electronic expansion valve in the multi-source refrigerator.

【図7】従来の感温膨張弁による温度サイクル試験機の
庫内制御の様子を示すグラフで、図7イは庫内の温度変
化を示すグラフ、図7ロは、膨張弁の作動の様子を示す
グラフである。
7A and 7B are graphs showing how the conventional temperature-sensitive expansion valve controls the temperature inside the temperature cycle testing machine, where FIG. 7A is a graph showing the temperature change inside the chamber, and FIG. 7B is the operation of the expansion valve. It is a graph which shows.

【符号の説明】[Explanation of symbols]

(1) 冷凍装置 (2) 圧縮機 (3) 凝縮器 (4) 電子膨張弁 (5) 蒸発器 (6) 冷媒配管 (7) 恒温恒湿槽 (11)吸入圧力計測器 (13)庫内温度計測器 (17)温度センサー (18)高温側冷凍サイクル回路 (19)低温側冷凍サイクル回路 (22)高温側膨張弁 (24)低温側膨張弁 (1) Refrigeration system (2) Compressor (3) Condenser (4) Electronic expansion valve (5) Evaporator (6) Refrigerant pipe (7) Constant temperature and humidity chamber (11) Suction pressure measuring device (13) Inside Temperature measuring instrument (17) Temperature sensor (18) High temperature side refrigeration cycle circuit (19) Low temperature side refrigeration cycle circuit (22) High temperature side expansion valve (24) Low temperature side expansion valve

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 冷媒配管(6)により接続され、圧縮機
(2),凝縮器(3),電子膨張弁(4)及び蒸発器
(5)を含み、蒸発器(5)により冷凍庫(7)内を冷
却可能となした冷凍装置(1)における前記電子膨張弁
(4)を、冷凍装置の最適吸入圧力線に沿った圧力で自
動的に絞り調整を行う如く制御し、冷凍庫(7)内を所
定温度まで冷却することを特徴とする電子膨張弁による
庫内温度制御方法。
1. A freezer (7) connected by a refrigerant pipe (6), which includes a compressor (2), a condenser (3), an electronic expansion valve (4) and an evaporator (5). ) The electronic expansion valve (4) in the refrigeration system (1) capable of cooling the inside is controlled so that the throttle adjustment is automatically performed by the pressure along the optimum suction pressure line of the refrigeration system, and the freezer (7). A method for controlling a temperature inside a refrigerator by an electronic expansion valve, characterized in that the inside is cooled to a predetermined temperature.
【請求項2】 冷媒配管(6)により接続され、圧縮機
(2),凝縮器(3),電子膨張弁(4)及び蒸発器
(5)を含み、蒸発器(5)により冷凍庫(7)内を冷
却可能となした冷凍装置(1)における前記電子膨張弁
(4)の開度を、最適吸入圧力線に沿った圧力で、目標
庫内温度相当吸入圧力と、現庫内温度相当吸入圧力の間
にはさまれた領域で、目標庫内温度相当吸入圧力になる
までは膨張弁(4)を閉めて行き、該圧力に達すると現
庫内温度相当吸入圧力まで膨張弁(4)を開けて行くサ
イクルを繰り返し、最終的に目標温度コントロール下に
保持せしめたことを特徴とする電子膨張弁による庫内温
度制御方法。
2. A freezer (7) connected by a refrigerant pipe (6), comprising a compressor (2), a condenser (3), an electronic expansion valve (4) and an evaporator (5). ) The opening degree of the electronic expansion valve (4) in the refrigerating apparatus (1) capable of cooling the inside is a pressure along the optimum suction pressure line, which corresponds to the target inside temperature equivalent intake pressure and the current inside temperature equivalent. In the region sandwiched between the suction pressures, the expansion valve (4) is closed until the suction pressure equivalent to the target internal temperature is reached, and when the pressure is reached, the expansion valve (4) is reached to the suction pressure equivalent to the current internal temperature. ) Is repeated, and finally the temperature is kept under the target temperature control.
【請求項3】 冷媒配管(6)により接続され、圧縮機
(2),凝縮器(3),電子膨張弁(4)及び蒸発器
(5)を含み、蒸発器(5)により冷凍庫(7)内を冷
却可能となした冷凍装置(1)と、前記冷媒配管(6)
の圧縮機(2)吸入側に設置された吸入圧力計測器(1
1)と、前記冷凍庫(7)内に配置された庫内温度計測
器(13)と、前記電子膨張弁(4)に付設され、電子
膨張弁(4)を開閉制御する制御装置よりなり、該制御
装置は、前記冷凍装置(1)の最適吸入圧力線が設定さ
れ、該最適吸入圧力線により目標庫内温度相当吸入圧力
を演算し、かつ、最適吸入圧力線と前記庫内温度計測器
(13)の計測値により現庫内温度相当吸入圧力を演算
すると共に、該両演算値にはさまれた領域で前記吸入圧
力計測器(13)の計測値にもとづき、電子膨張弁
(4)を、目標庫内温度相当吸入圧力になるまで閉めて
行き、該圧力に達すると現庫内温度相当吸入圧力になる
まで開けて行く如く作動せしめることを特徴とする電子
膨張弁による庫内温度制御装置。
3. A freezer (7) connected by a refrigerant pipe (6), comprising a compressor (2), a condenser (3), an electronic expansion valve (4) and an evaporator (5). ) A refrigerating device (1) capable of cooling the inside, and the refrigerant pipe (6)
Compressor (2) Suction pressure measuring device (1
1), an internal temperature measuring device (13) arranged in the freezer (7), and a control device attached to the electronic expansion valve (4) for controlling opening and closing of the electronic expansion valve (4), The control device is set with an optimum suction pressure line of the refrigeration system (1), calculates a suction pressure corresponding to a target inside temperature by the optimum suction pressure line, and calculates the optimum suction pressure line and the inside temperature measuring device. The intake pressure equivalent to the current internal temperature is calculated from the measured value of (13), and the electronic expansion valve (4) is calculated based on the measured value of the suction pressure measuring device (13) in a region between the calculated values. The internal temperature control by the electronic expansion valve is characterized in that it is operated so as to be closed until the suction pressure equivalent to the target internal temperature is reached, and when the pressure is reached, it is opened until the suction pressure equivalent to the current internal temperature is reached. apparatus.
【請求項4】 冷媒配管(6)により接続され、圧縮機
(2),凝縮器(3),電子膨張弁(4)及び蒸発器
(5)を含み、蒸発器(5)により、冷凍装置(1)に
対する負荷変動の大きい温度サイクル試験機等の庫内を
冷却可能となした冷凍装置(1)における前記電子膨張
弁(4)を、庫内設定温度に対して予め定めた冷凍装置
(1)の最適吸入圧力線に沿って、自動的に絞り調整を
行う如く制御し、庫(7)内を所定温度まで冷却するこ
とを特徴とする電子膨張弁による庫内温度制御方法。
4. A refrigeration system connected by a refrigerant pipe (6), comprising a compressor (2), a condenser (3), an electronic expansion valve (4) and an evaporator (5), and comprising an evaporator (5). The refrigerating device (4) which is predetermined for the preset temperature in the refrigerator is provided with the electronic expansion valve (4) in the refrigerating device (1) capable of cooling the interior of the refrigerator such as a temperature cycle tester having a large load fluctuation with respect to (1). A method for controlling a temperature inside a refrigerator by an electronic expansion valve, characterized in that the inside of the refrigerator (7) is cooled to a predetermined temperature by automatically controlling the throttle along the optimum suction pressure line of 1).
【請求項5】 冷媒配管(6)により接続され、圧縮機
(2),凝縮器(3),電子膨張弁(4)及び蒸発器
(5)を含み、蒸発器(5)により、冷凍装置(1)に
対する負荷変動の大きい温度サイクル試験機等の庫内を
冷却可能となした冷凍装置(1)における電子膨張弁
(4)を、プルダウン時は、冷凍装置(1)の最適吸入
圧力線に沿った圧力で自動的に絞り調整を行う如く制御
し、サイクル運転時は、庫内設定温度に対して予め定め
た冷凍装置(1)の最適吸入圧力線に沿った圧力で、自
動的に絞り調整を行う如く制御することを特徴とする電
子膨張弁による庫内温度制御方法。
5. A refrigeration system connected by a refrigerant pipe (6), comprising a compressor (2), a condenser (3), an electronic expansion valve (4) and an evaporator (5), the evaporator (5) When pulling down the electronic expansion valve (4) in the refrigeration system (1) capable of cooling the inside of the refrigerator such as a temperature cycle tester having a large load fluctuation with respect to (1), the optimum suction pressure line of the refrigeration system (1) The control is performed so that the throttle adjustment is automatically performed with the pressure along the line, and during the cycle operation, the pressure is automatically set at the pressure along the optimum suction pressure line of the refrigeration system (1) that is predetermined with respect to the set temperature in the refrigerator. A method for controlling a temperature inside a refrigerator by an electronic expansion valve, which is controlled so as to adjust a throttle.
【請求項6】温度サイクル試験機等、負荷変動の大きい
装置の庫内を冷却する多元冷凍機であって、前記庫内に
は、庫内温度センサー(17)が配置される一方、前記
多元冷凍機を構成する複数の冷凍サイクル回路(18)
(19)の各膨張機構には電子膨張弁(22)(24)
が使用され、各電子膨張弁(22)(24)を制御する
ための制御装置に、各冷凍サイクル回路(18)(1
9)毎のプルダウン用最適吸入圧力線とサイクル運転用
最適吸入圧力線とが設定されて、前記各電子膨張弁(2
2)(24)は、前記庫内温度センサー(17)の温度
計測値にもとづき、プルダウン時は、各プルダウン用最
適吸入圧力線に沿って制御され、サイクル運転時は、各
サイクル運転用最適吸入圧力線に沿って制御されること
を特徴とする多元冷凍機。
6. A multi-source refrigerator for cooling the interior of a device having large load fluctuations such as a temperature cycle tester, in which an in-compartment temperature sensor (17) is arranged while the multi-component refrigerator is installed. A plurality of refrigeration cycle circuits (18) constituting a refrigerator
Each expansion mechanism of (19) has an electronic expansion valve (22) (24).
Is used to control each electronic expansion valve (22) (24) to a refrigeration cycle circuit (18) (1).
9) The optimum suction pressure line for pull-down and the optimum suction pressure line for cycle operation are set for each 9), and each of the electronic expansion valves (2
2) (24) is controlled according to the optimum suction pressure line for each pulldown during pulldown, based on the temperature measurement value of the internal temperature sensor (17), and the optimum intake for each cycle operation during cycle operation A multi-source refrigerator characterized by being controlled along a pressure line.
JP2369093A 1992-01-29 1993-01-18 Method for controlling temperature in refrigerator by electronic expansion valve and device therefor Pending JPH05272821A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4-40210 1992-01-29
JP4021092 1992-01-29

Publications (1)

Publication Number Publication Date
JPH05272821A true JPH05272821A (en) 1993-10-22

Family

ID=12574420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2369093A Pending JPH05272821A (en) 1992-01-29 1993-01-18 Method for controlling temperature in refrigerator by electronic expansion valve and device therefor

Country Status (1)

Country Link
JP (1) JPH05272821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033002A (en) * 2005-07-29 2007-02-08 Sanden Corp Showcase cooler
JP2011257040A (en) * 2010-06-08 2011-12-22 Mitsubishi Electric Building Techno Service Co Ltd Refrigerator and control device of electronic expansion valve for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033002A (en) * 2005-07-29 2007-02-08 Sanden Corp Showcase cooler
JP2011257040A (en) * 2010-06-08 2011-12-22 Mitsubishi Electric Building Techno Service Co Ltd Refrigerator and control device of electronic expansion valve for the same

Similar Documents

Publication Publication Date Title
KR900008901B1 (en) Air conditioner for vehicle and refrigeration system for refrigerator
CA1250442A (en) System for controlling flow rate of refrigerant
KR950006399A (en) Damper control method of refrigerator
KR20010095086A (en) Method and apparatus for refrigeration system control having electronic evaporator pressure regulators
US5211713A (en) Temperature control method with simultaneous heating and cooling near the set-point
JPH05272821A (en) Method for controlling temperature in refrigerator by electronic expansion valve and device therefor
CN116576600A (en) Rapid and stable control method for room temperature between refrigeration systems
JPH0634206A (en) Injection type refrigerating equipment
US4242880A (en) Refrigerating apparatus
JPH03267656A (en) Freezer
KR100577420B1 (en) Refrigerator and Control Method Thereof
JPH031055A (en) Cooling and heating apparatus
JPH051866A (en) Refrigerator
JP2646917B2 (en) Refrigeration equipment
JPH0225090Y2 (en)
JPS63259354A (en) Method of obtaining low temperature by refrigerator and refrigerator
JP2785546B2 (en) Refrigeration equipment
JPS6321457A (en) Refrigeration cycle device
JPH06180152A (en) Chilled water feeding device
JPH0518621A (en) Pulse tube freezer
KR20070068932A (en) Control method of refrigerator
JPH04297771A (en) Refrigerating device
JPH0534045A (en) Freezing control device of freezing vehicle
KR910001339A (en) Defrost control device of the freezer
JP2001270323A (en) Air conditioner for vehicle