JPH05271876A - High strength lead frame material and its manufacture - Google Patents

High strength lead frame material and its manufacture

Info

Publication number
JPH05271876A
JPH05271876A JP6585992A JP6585992A JPH05271876A JP H05271876 A JPH05271876 A JP H05271876A JP 6585992 A JP6585992 A JP 6585992A JP 6585992 A JP6585992 A JP 6585992A JP H05271876 A JPH05271876 A JP H05271876A
Authority
JP
Japan
Prior art keywords
phase
less
austenite
lead frame
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6585992A
Other languages
Japanese (ja)
Inventor
Shuichi Nakamura
秀一 中村
Kazu Sasaki
計 佐々木
Takayuki Nagashio
隆之 長塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP6585992A priority Critical patent/JPH05271876A/en
Publication of JPH05271876A publication Critical patent/JPH05271876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide a high strength lead frame material small in anisotropy and good in a sheet shape and to provide its manufacturing method. CONSTITUTION:The objective lead frame material is constituted of 20 to 27% N in the case of 0.5 to 12% Co and 52%; (2Ni+Co)< 66% in the case of 12 to 22% Co as well as <=1.0% Mn and <=0.5% Si, and the balance Fe, and in which the main structure is constituted of at least two phases of a martensitic phase and an austenitic phase, and the ratio of the austenitic phase is regulated to >=30%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は従来のものより高強度の
半導体装置用リードフレーム材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead frame material for semiconductor devices, which has higher strength than conventional ones.

【0002】[0002]

【従来の技術】近年、ロジック等の半導体装置の高容
量、高集積化およびパッケージの薄肉化に伴いパッケー
ジは多ピン化、薄板化の傾向にある。このため従来にも
増して、高強度のリードフレーム材料が要求されてい
る。これら多ピン用Fe系リードフレーム材料として、
従来Fe-42Ni,Fe-29Ni-17Co(コバール)が
知られている。これらFe-Ni系の改良材の提案には
特開昭55-131155号あるいは特開平3-39446号があり、ま
たFe-Ni-Co系の改良材については特開昭55-12856
5号、特開昭57-82455号、特開昭61-6251号、特公平1-81
7号、特公平1-5562号、特開平3-39447号および本願発明
の出願人が先に提案した特開平3-166340号等がある。
2. Description of the Related Art In recent years, with the increase in capacity and integration of semiconductor devices such as logic devices and the reduction in thickness of packages, the package tends to have a large number of pins and a thin plate. Therefore, higher strength lead frame materials are required than ever before. As these Fe-based lead frame materials for multiple pins,
Conventionally, Fe-42Ni and Fe-29Ni-17Co (Kovar) are known. JP-A-55-131155 or JP-A-3-39446 proposes these Fe-Ni-based improving materials, and JP-A-55-12856 discloses Fe-Ni-Co-based improving materials.
5, JP-A-57-82455, JP-A-61-6251, JP-B 1-81
No. 7, Japanese Patent Publication No. 1-5562, Japanese Patent Application Laid-Open No. 3-39447, and Japanese Patent Application Laid-Open No. 3-166340 previously proposed by the applicant of the present invention.

【0003】[0003]

【発明が解決しようとする課題】多ピンリードフレーム
は主に微細加工が可能なフォトエッチング法で製造され
る。しかし、これら微細加工したFe-42NiまたはF
e-29Ni-17Co薄板多ピンリードフレームは、リード
の強度不足が原因でパッケージ組立て、搬送、実装など
の際に反り、曲がりなどリードばらつきが起こり易く、
また使用中の衝撃で座屈するなど種々問題があった。
The multi-pin lead frame is mainly manufactured by a photo-etching method which enables fine processing. However, these finely processed Fe-42Ni or F
The e-29Ni-17Co thin plate multi-pin lead frame is susceptible to lead variations such as warpage and bending during package assembly, transportation, and mounting due to insufficient lead strength.
Further, there are various problems such as buckling due to impact during use.

【0004】Fe-Ni系あるいはFe-Ni-Co系合
金の改良については、Si,Mn,Crを含有させて強
化する試み((a)特開昭55-131155号)あるいはその他の
強化元素による高強度化の提案((b)特開平3-39446号、
(c)特開平3-39447号)、Fe-Ni-Co系合金について
の熱膨張に関するもの((イ)特開昭55-128565号、(ロ)特
開昭57-82455号、(ハ)特開昭61-6251号、(ニ)特公平1-817
号、(ホ)特公平1-5562号、(ヘ)特開平1-61042号)や、本
出願人が先に提案した2相組織強化によるもの((A)特
開平3-116340号)があるが、(a)〜(c)は主要元素の他に
強化元素を含有するため、表面酸化が起こり易くリード
フレームの主要特性であるハンダ性、メッキ性を著しく
劣化させる問題があり、また、(イ)〜(ヘ)のうち(イ)以外
のものは、いずれもリードフレームの強度を積極的に改
善しようとするものではない。なお前記(イ)のものは、
強化機構が高C(0.2〜0.35%程度)またはさらにHf,N
b,V,Zr,Ta,W,Alの1種以上または2種以上添加す
るものであり、異質のものである。また、前記(A)は加
工誘起マルテンサイトと逆変態オーステナイト析出に主
眼があるため、高強度特性を得るのに十分な冷間加工を
要するものであり、これに伴い、多ピンかつ薄板のリー
ドフレームに必要な素材異方性(圧延方向と板幅方向の
諸特性の差)および形状(強圧延による材料の幅そり、
うねり等)の点で改良する部分があることがわかった。
In order to improve the Fe-Ni-based or Fe-Ni-Co-based alloy, an attempt to strengthen by containing Si, Mn, and Cr ((a) JP-A-55-131155) or other strengthening elements was used. Proposal of high strength ((b) JP-A-3-39446,
(c) JP-A-3-39447), related to thermal expansion of Fe-Ni-Co alloys ((A) JP-A-55-128565, (B) JP-A-57-82455, (C)) JP 61-6251, (D) Japanese Patent Publication 1-817
No. 1, (e) Japanese Patent Publication No. 1-5562, (f) Japanese Patent Application Laid-Open No. 1-61042), and the two-phase structure strengthening proposed by the present applicant ((A) Japanese Patent Application Laid-Open No. 3-116340). However, since (a) ~ (c) contains a strengthening element in addition to the main element, there is a problem that surface oxidation is likely to occur and the main characteristics of the lead frame, that is, solderability and plating property, are significantly deteriorated. None of (a) to (f) except (a) intends to positively improve the strength of the lead frame. In addition, the above (a) is
Reinforcement mechanism is high C (about 0.2 to 0.35%) or even Hf, N
One or more kinds of b, V, Zr, Ta, W, and Al are added, and they are different. Further, since (A) has a main focus on work-induced martensite and reverse transformation austenite precipitation, it requires cold working sufficient to obtain high-strength properties. Material anisotropy required for frame (difference between various characteristics in rolling direction and strip width direction) and shape (width warpage of material by strong rolling,
It was found that there is a part to be improved in terms of (swell, etc.).

【0005】[0005]

【課題を解決するための手段】そこで、本発明者はFe
-Ni-Co系合金の相変態機構に着目して、組成および
製造条件について種々実験を行った結果、焼鈍および冷
間加工時のマルテンサイト変態と最終焼鈍で逆変態オー
ステナイト相を析出させて少なくとも2相組織化するこ
とによりリードフレームの各種特性、特にハンダ性、メ
ッキ性を損なわずに高強度化することができるととも
に、前記の異方性および板形状の問題も解決できること
を見出し本発明をなした。
Therefore, the present inventor has proposed that Fe
As a result of conducting various experiments on the composition and manufacturing conditions, focusing on the phase transformation mechanism of the -Ni-Co alloy, at least the reverse transformation austenite phase was precipitated in the martensite transformation and the final annealing during annealing and cold working. The present invention has been found out that the two-phase structure makes it possible to increase the strength without deteriorating the various characteristics of the lead frame, particularly the solderability and the plating property, and to solve the above-mentioned problems of anisotropy and plate shape. Done

【0006】具体的には本発明は、重量%にてCo 0.5
〜22%、Ni 15〜27%、Mn 1.0%以下、Si 0.5%以
下、NiとCoの含有量はCo 12%未満ではNi 20%〜
27%未満、Co12%以上では52%≦(2Ni+Co)<66%
の関係を満足し、残部は不純物を除き実質的にFeから
なり、さらに主要組織がマルテンサイト相およびオース
テナイト相の少なくとも2相組織であり、前記オーステ
ナイト相が30%以上であることを特徴とする高強度リー
ドフレーム材料、または前記記載のNi0.5〜3%と等量
をCuで置換した前記と同様組織の高強度リードフレー
ム材料、ならびに上記それぞれの組成の合金をオーステ
ナイト化終了温度以上の固溶化処理後80%以下の冷間圧
延を施して50%以上のマルテンサイト相を得、その後オ
ーステナイト化終了温度を越えない温度で焼鈍して逆変
態オーステナイト相を30%以上とすることを特徴とする
高強度リードフレーム材料の製造方法である。
Specifically, the present invention is based on Co 0.5% by weight.
-22%, Ni 15-27%, Mn 1.0% or less, Si 0.5% or less, and if the content of Ni and Co is less than Co 12%, Ni 20%-
Less than 27%, 52% ≦ (2Ni + Co) <66% for Co 12% or more
Is satisfied, the balance is substantially Fe except for impurities, the main structure is at least a two-phase structure of a martensite phase and an austenite phase, and the austenite phase is 30% or more. A high-strength leadframe material, or a high-strength leadframe material having the same structure as described above, in which an amount equivalent to 0.5 to 3% of Ni described above is replaced by Cu, and an alloy of each of the above compositions are solidified at a temperature above the austenitization end temperature. After the solution treatment, cold rolling of 80% or less is performed to obtain a martensite phase of 50% or more, and thereafter, the reverse transformation austenite phase is annealed at a temperature not exceeding the austenitization end temperature to make it 30% or more. This is a method of manufacturing a high-strength lead frame material.

【0007】すなわち、本発明の高強度リードフレーム
材料とその製造方法の最も重要な点は、先に本発明者等
が提案したFe-Ni-Co系合金の冷間加工による加工
誘起マルテンサイト変態とその後の逆変態オーステナイ
ト相による析出強化に対し、組成的に低Ni,Co化す
ることで固溶化処理後の冷却過程およびその後、比較的
低い冷間加工を施して、マルテンサイト相を得、これを
さらに焼鈍して逆変態オーステナイト相を析出させ強化
するもので、高強度はもとより、形状、異方性の点で多
ピン化対応に適したリードフレーム材料が得られる。ま
た本発明材料は従来に比べコスト的にも安価なものとな
る。
That is, the most important point of the high-strength lead frame material of the present invention and the manufacturing method thereof is the work-induced martensitic transformation by cold working of the Fe-Ni-Co alloy previously proposed by the present inventors. And for the precipitation strengthening by the reverse transformation austenite phase after that, the cooling process after the solution treatment by compositionally reducing Ni, Co and then a relatively low cold working, to obtain the martensite phase, This is further annealed to precipitate and strengthen the reverse transformation austenite phase, and a lead frame material suitable for multi-pin support is obtained in terms of not only high strength but also shape and anisotropy. Further, the material of the present invention is cheaper than the conventional one.

【0008】[0008]

【作用】次に本発明の数値限定理由を述べる。Co含有
量は、その約17%付近およびで5%付近で熱膨張係数を極
小化するのに最適であり、0.5%より少ないか22%を越え
ると熱膨張係数が大きくなり、シリコンチップとの熱膨
張整合性を劣化させる。このため、Co含有量は、0.5%
〜22%の範囲に限定する。Ni含有量はCo量との関係
で決定される。Co12%未満ではNiが20%より少ないか
Co12%以上で(2Ni+Co)が52%より少ないとオー
ステナイトが不安定となり過ぎ、最終焼鈍時に析出する
逆変態オーステナイトが冷却過程でマルテンサイト変態
を起こし熱膨張係数が大きくなる。また、Co12%未満
ではNiが27%またはこれより多いか、Co12%以上で
(2Ni+Co)が66%またはこれより多いと、焼鈍お
よび冷間加工時のマルテンサイト変態が不十分となるた
め、Co12%未満ではNi20%〜27%未満、Co12%以上で
は52%≦(2Ni+Co)<66%の関係を満足するように
Niを限定した。
Next, the reasons for limiting the numerical values of the present invention will be described. The Co content is optimal for minimizing the coefficient of thermal expansion at around 17% and around 5%, and when it is less than 0.5% or exceeds 22%, the coefficient of thermal expansion becomes large, and Deteriorates thermal expansion consistency. Therefore, the Co content is 0.5%
Limited to ~ 22%. The Ni content is determined in relation to the Co content. If the content of Co is less than 12%, the content of Ni is less than 20%, or if the content of Co2 is more than 12% and the content of (2Ni + Co) is less than 52%, the austenite becomes too unstable, and the reverse transformation austenite that precipitates during final annealing undergoes martensite transformation in the cooling process and thermal expansion. The coefficient becomes large. Further, when Co is less than 12%, Ni is 27% or more, or when Co12% or more and (2Ni + Co) is 66% or more, the martensitic transformation during annealing and cold working becomes insufficient. When the content is less than%, Ni is limited to 20% to less than 27%, and when Co is 12% or more, Ni is limited so as to satisfy the relationship of 52% ≦ (2Ni + Co) <66%.

【0009】Cuは本発明では必須ではないが、パッケ
ージ樹脂とリードフレーム間の耐隙間腐食性を向上させ
る元素であるので、必要により添加するとよい。Cuは
添加する場合には0.5%より少ないと耐隙間腐食性向上に
効果がなく、また3%を越えるとハンダとの界面にCuと
Snの脆い金属間化合物を形成し、ハンダ剥離を起こし
易くなる。またCuはオーステナイト安定化元素である
ため、3%を越えて添加した場合はオーステナイト相が安
定となり過ぎ、マルテンサイト変態が生じにくくなるた
めCu0.5%〜3%に限定する。Mnは脱酸剤として使用す
るが1.0%を越えると熱膨張係数を増大させ、また、ハン
ダ性、メッキ性を劣化させるので1.0%以下に限定した。
Siは脱酸剤として添加され材料中に残存しない方が望
ましいが、0.5%までは熱膨張係数の極端んな上昇やハン
ダ性、メッキ性の極端な劣化は生じないので許容でき
る。なお、不純物であるCは0.05%を越えると素材のエ
ッチング性を著しく劣化させるため、0.05%以下に限定
すべきである。Cの望ましい範囲は0.015%以下である。
Although Cu is not essential in the present invention, it is an element that improves the crevice corrosion resistance between the package resin and the lead frame, so Cu may be added if necessary. When Cu is added in an amount of less than 0.5%, it is not effective in improving crevice corrosion resistance. When it exceeds 3%, a brittle intermetallic compound of Cu and Sn is formed at the interface with the solder, and solder peeling easily occurs. Become. Further, since Cu is an austenite stabilizing element, if added in excess of 3%, the austenite phase becomes too stable and martensite transformation is less likely to occur, so Cu is limited to 0.5% to 3%. Mn is used as a deoxidizer, but if it exceeds 1.0%, the thermal expansion coefficient increases, and the solderability and plating property deteriorate, so it was limited to 1.0% or less.
It is desirable that Si is added as a deoxidizing agent and does not remain in the material, but up to 0.5%, it does not cause an extreme increase in the coefficient of thermal expansion and an extreme deterioration in solderability and plating property, and is therefore acceptable. If C, which is an impurity, exceeds 0.05%, the etching property of the material is significantly deteriorated. Therefore, C should be limited to 0.05% or less. The desirable range of C is 0.015% or less.

【0010】また、最終の主要組織は、実質的にマルテ
ンサイト相とオーステナイト相(一部残留オーステナイ
トを含んでも可)からなる少なくとも2相でなる組織を
示すが、オーステナイト相が30%以下では十分な析出強
化が得られず、また熱膨張係数も大きくなり、シリコン
チップとの整合性が悪くなるため、オーステナイト相は
30%以上に限定する。なお、本発明におけるオーステナ
イト相の量(%)は、後述の実施例にて説明するX線回折
強度から求めた値とする。
The final main structure is a structure consisting of at least two phases consisting essentially of a martensite phase and an austenite phase (which may include some retained austenite), but if the austenite phase is 30% or less, it is sufficient. However, the austenite phase is
Limit to 30% or more. In addition, the amount (%) of the austenite phase in the present invention is a value obtained from the X-ray diffraction intensity described in Examples below.

【0011】次に、本発明の材料の製造方法において、
冷間加工前の固溶化処理温度がオーステナイト化終了温
度以下では室温までの冷却でマルテンサイト変態が起こ
らないため、冷間加工前の固溶化処理温度はオーステナ
イト化終了温度以上とする。オーステナイト化終了温度
は成分系で変化するが、本発明成分では800℃以上が望
ましい範囲である。また、固溶化処理後に加工誘起マル
テンサイト変態させる冷間加工率は、80%を越えると圧
延方向と板幅方向の素材異方性が強くなり、また形状的
に幅反り、うねり等の点で好ましくないため、冷間加工
率は80%以下に限定する。望ましくは、冷間加工は60%以
下、さらに望ましくは50%以下に抑えることでより良好
な素材形状が得られる。また、この冷間加工では固溶化
処理時に残留したオーステナイト相を加工誘起マルテン
サイトに変態させる効果もある。
Next, in the method for producing the material of the present invention,
When the solution treatment temperature before cold working is equal to or lower than the austenitization end temperature, martensite transformation does not occur by cooling to room temperature. Therefore, the solution treatment temperature before cold working is set to the austenite end temperature or higher. The austenitization completion temperature varies depending on the component system, but for the components of the present invention, 800 ° C or higher is a desirable range. Further, if the cold working ratio of the work-induced martensite transformation after solution treatment exceeds 80%, the material anisotropy in the rolling direction and the strip width direction becomes strong, and in terms of shape warpage, waviness, etc. Since it is not preferable, the cold working rate is limited to 80% or less. Desirably, the cold working is suppressed to 60% or less, and more preferably 50% or less to obtain a better material shape. Further, this cold working also has the effect of transforming the austenite phase remaining during the solution treatment into work-induced martensite.

【0012】このようにして上記固溶化処理とその後の
冷却過程で得たマルテンサイト相は、50%以下であると
次工程の焼鈍で十分な逆変態オーステナイト析出強化が
得られないため、焼鈍前のマルテンサイト量は50%以上
に限定するが、より安定した析出強化を得るために70%
以上とするのがより望ましい範囲である。さらに上記の
冷間加工後の焼鈍温度は、これがオーステナイト化終了
温度を越えると全てのマルテンサイト相がオーステナイ
ト相に変態し、少なくとも2相からなる組織とすること
ができず、所望の析出強化が得られないためオーステナ
イト化終了温度以下に限定する。
If the martensite phase obtained by the solution treatment and the subsequent cooling process is 50% or less, sufficient reverse transformation austenite precipitation strengthening cannot be obtained by annealing in the next step. The amount of martensite is limited to 50% or more, but 70% to obtain more stable precipitation strengthening.
The above is a more desirable range. Furthermore, when the annealing temperature after the cold working exceeds the austenitizing end temperature, all the martensite phases are transformed into the austenite phase, and the structure cannot be composed of at least two phases. Since it cannot be obtained, the temperature is limited to the austenitization end temperature or lower.

【0013】[0013]

【実施例】本発明材料を実施例により説明する。表1に
示す組成の合金を真空溶解炉で溶解、鋳造し、1100〜11
50℃の鍛造と熱間圧延で3mm厚さとし、さらに1000℃×1
Hrの溶体化処理後0.25mmまで冷間圧延を施した。表の試
料No.のうちA〜Kは本発明の材料であり、UはNi,Coが
本発明の規定より低いもの、VはNi,Coが本発明の規定
より高い比較材料である。また、Zは従来のコバール合
金であり、やはりNi,Coが本発明の規定より高いもの
である。表2に、上記各々の材料(0.25mm厚さ)に800℃
焼鈍と0.125mmまでの冷間圧延(50%)、続いて580℃最終
焼鈍の一連の処理を施した材料の各種特性(測定条件等
は表に付記)を示す。なお、組織比率Iは、800℃の固溶
化処理冷却後のマルテンサイト量、同IIはさらに50%の
冷間圧延した後のマルテンサイト量、および同IIIは、
またさらに580℃で焼鈍した後のオーステナイト量をそ
れぞれ%でを示したもので、その測定は、以下により求
めた値である。 マルテンサイト相(%)={Iα/(Iα+Iγ)}×100 オーステナイト相(%)=100−マルテンサイト相(%) Iα=Iα(110)+Iα(200)+Iα(211) Iα(110)等はマルテンサイトのX線回折強度 Iγ=Iγ(111)+Iγ(200)+Iγ(220)+Iγ(311) Iγ(111)等はオーステナイトのX線回折強度
EXAMPLES The material of the present invention will be described with reference to examples. Alloys of the composition shown in Table 1 were melted and cast in a vacuum melting furnace,
Forged at 50 ℃ and hot rolled to a thickness of 3mm, then 1000 ℃ × 1
After the Hr solution treatment, cold rolling was performed to 0.25 mm. Among the sample Nos. In the table, A to K are materials of the present invention, U is a material whose Ni and Co are lower than the requirements of the present invention, and V is a comparative material whose Ni and Co are higher than the requirements of the present invention. Z is a conventional Kovar alloy, and Ni and Co are higher than those specified in the present invention. Table 2 shows the above materials (0.25mm thickness) 800 ℃
The various characteristics (measurement conditions etc. are shown in the table) of the material which has been subjected to a series of treatments of annealing and cold rolling to 0.125 mm (50%), followed by final annealing at 580 ° C are shown. The structure ratio I is the amount of martensite after the solution treatment cooling at 800 ° C., the amount II is the amount of martensite after cold rolling of 50%, and the amount III is
Further, the amount of austenite after annealing at 580 ° C. is shown in%, and the measurement is the value obtained by the following. Martensite phase (%) = {Iα / (Iα + Iγ)} × 100 Austenite phase (%) = 100-Martensite phase (%) Iα = Iα (110) + Iα (200) + Iα (211)(110) X-ray diffraction intensity of martensite Iγ = Iγ (111) + Iγ (200) + Iγ (220) + Iγ (311)(111) is the austenite X-ray diffraction intensity

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】本表から本発明材料A〜Kの最終焼鈍後の組
織比率IIIは、オーステナイト単相である(オーステナ
イト100%)Zに対して、前述のマルテンサイトとの混合相
であり、これにより高い機械的特性を示すことがわか
る。さらに比較材料U、Vとの比較において、組成上から
オーステナイトが不安定になり過ぎたUは、固溶化処理
後(I)および冷間圧延後(II)ともマルテンサイト10
0%になるが、最終焼鈍で逆変態オーステナイトが析出し
ないため所望の強度が得られず、熱膨張係数も高い。ま
た、組成上からオーステナイトが安定になり過ぎたV
は、0.25mm厚さでの固溶化処理後マルテンサイト変態が
起こらず(組成比率Iが0%)、また冷間加工後の加工誘起
マルテンサイト変態も16%と不十分になるため、最終焼
鈍での逆変態オーステナイト析出量が98-84=14%と少な
く、このため、強度も小さいことがわかる。また、本発
明合金A〜Kはハンダ性、メッキ性も問題なく良好であ
る。また、Cuを添加したJ,Kは他の実施例と比較して
も高強度に加え、耐隙間腐食性に優れることがわかる。
図1および図2に、それぞれ本発明合金Gの最終焼鈍温
度に対する硬さと常温引張強さおよび熱膨張係数とオー
ステナイト量との関係を示す。本発明合金は広い温度範
囲において高強度特性を示すことがわかる。
From this table, the structural ratio III of the materials A to K of the present invention after the final annealing is a mixed phase of the austenite single phase (austenite 100%) Z and the above-mentioned martensite. It can be seen that it exhibits high mechanical properties. Further, in comparison with the comparative materials U and V, U whose austenite became too unstable due to its composition was found to have martensite 10 after solution treatment (I) and after cold rolling (II).
Although it becomes 0%, the desired strength cannot be obtained because the reverse transformation austenite does not precipitate in the final annealing, and the thermal expansion coefficient is also high. Also, due to the composition, austenite became too stable V
Indicates that martensite transformation does not occur after solution treatment at a thickness of 0.25 mm (composition ratio I is 0%), and the work-induced martensite transformation after cold working is insufficient at 16%, so final annealing The reverse transformation austenite precipitation amount was as small as 98-84 = 14%, which means that the strength was also small. Further, the alloys A to K of the present invention have good solderability and plating properties without any problems. Further, it is understood that J and K added with Cu have high strength and excellent crevice corrosion resistance as compared with the other examples.
FIG. 1 and FIG. 2 show the relationships among hardness, normal temperature tensile strength, thermal expansion coefficient, and austenite amount with respect to the final annealing temperature of the inventive alloy G, respectively. It can be seen that the alloy of the present invention exhibits high strength characteristics in a wide temperature range.

【0017】[0017]

【発明の効果】以上に述べたように、本発明材料はFe
-Ni-Co系の特定組成において、固溶化処理と冷間加
工でマルテンサイト変態をさせ、これをその後の焼鈍で
逆変態オーステナイトとすることで、メッキ性やハンダ
性を損なわずに多ピン薄型用リードフレームに必要な高
強度を得ることができる。また、本発明の材料は広い温
度範囲で熱膨張が安定して低いにもかかわらず、高い強
度が得られるのでリードの反りや曲りがなく安定してパ
ッケージの組立ができる。さらに、Cuを添加した本発
明の材料は一層の高強度比が達成でき、耐隙間腐食性も
向上するものである。本発明の方法によれば、材料の組
成との組合せ効果で、比較的低い冷間圧延率にもかかわ
らず、冷間圧延の前後の熱処理で実質的に少なくとも2
相からなる組織にすることができるので、材料の異方性
が小さく形状的にも優れた高強度リードフレーム材料を
得ることができる。
As described above, the material of the present invention is Fe
-Ni-Co based specific composition, solution hardening and cold working to transform the martensite, and by subsequent annealing to reverse transformation austenite, multi-pin thin without losing plating and solderability. It is possible to obtain the high strength required for the lead frame for automobile. Further, although the material of the present invention has high thermal strength in a stable temperature range over a wide temperature range, high strength can be obtained, so that the package can be stably assembled without warping or bending of the leads. Furthermore, the material of the present invention to which Cu is added can achieve a higher strength ratio and improve crevice corrosion resistance. According to the method of the present invention, due to the combined effect of the composition of the material, the heat treatment before and after the cold rolling is substantially at least 2 even though the cold rolling ratio is relatively low.
Since the structure can be composed of phases, it is possible to obtain a high-strength lead frame material having a small anisotropy of the material and an excellent shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】最終焼鈍温度と機械的特性を示す図である。FIG. 1 is a diagram showing a final annealing temperature and mechanical properties.

【図2】最終焼鈍温度とオーステナイト量およびα
RT-300の関係を示す図である。
FIG. 2 Final annealing temperature, austenite amount and α
It is a figure which shows the relationship of RT-300 .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%にてCo 0.5〜22%、Ni 15〜27
%未満、Mn 1.0%以下、Si 0.5%以下、NiとCoの
含有量はCo 12%未満ではNi 20%〜27%未満、Co 12
%以上では52%≦(2Ni+Co)<66%の関係を満足
し、残部は不純物を除き実質的にFeからなり、さらに
主要組織がマルテンサイト相およびオーステナイト相の
少なくとも2相組織であり、前記オーステナイト相が30
%以上であることを特徴とする高強度リードフレーム材
料。
1. Co 0.5 to 22% and Ni 15 to 27% by weight.
%, Mn 1.0% or less, Si 0.5% or less, and if the content of Ni and Co is less than Co 12%, Ni 20% to less than 27%, Co 12
%, The relation of 52% ≦ (2Ni + Co) <66% is satisfied, the balance is substantially Fe except impurities, and the main structure is at least two-phase structure of martensite phase and austenite phase. Phase 30
High-strength leadframe material characterized by a content of at least%.
【請求項2】 請求項1の組成の合金のNi0.5〜3%を
等量のCuで置換したものからなり、さらに主要組織が
マルテンサイト相およびオーステナイト相の少なくとも
2相組織であり、前記オーステナイト相が30%以上であ
ることを特徴とする高強度リードフレーム材料。
2. An alloy having the composition of claim 1 wherein 0.5 to 3% of Ni is replaced by an equal amount of Cu, and the main structure is at least a two-phase structure including a martensite phase and an austenite phase. A high strength leadframe material characterized by an austenite phase of 30% or more.
【請求項3】 室温から300℃までの平均熱膨張係数が
(3〜9)×10マイナス6乗/℃、硬さがHVで260以上、引張
強さが80kg/mm2以上であることを特徴とする請求項1ま
たは2に記載の高強度リードフレーム材料。
3. The average coefficient of thermal expansion from room temperature to 300 ° C.
(3 to 9) × 10 −6 / ° C., hardness of 260 or more in HV, and tensile strength of 80 kg / mm 2 or more, high strength lead frame material according to claim 1 or 2. ..
【請求項4】 請求項1または2に記載の組成の合金を
オーステナイト化終了温度以上の固溶化処理後、80%以
下の冷間圧延を施して50%以上のマルテンサイト相を
得、その後、オーステナイト化終了温度を越えない温度
で燒鈍して逆変態オーステナイト相(残留オーステナイ
トを伴うことを可)を30%以上とすることを特徴とする
高強度リードフレーム材料の製造方法。
4. The alloy having the composition of claim 1 or 2 is subjected to a solution treatment at a temperature above the austenitizing end temperature and then cold rolled at 80% or less to obtain a martensite phase of 50% or more, and thereafter, A method for producing a high-strength leadframe material, which comprises annealing at a temperature not exceeding the austenitizing end temperature to make the reverse transformation austenite phase (which may be accompanied by retained austenite) 30% or more.
JP6585992A 1992-03-24 1992-03-24 High strength lead frame material and its manufacture Pending JPH05271876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6585992A JPH05271876A (en) 1992-03-24 1992-03-24 High strength lead frame material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6585992A JPH05271876A (en) 1992-03-24 1992-03-24 High strength lead frame material and its manufacture

Publications (1)

Publication Number Publication Date
JPH05271876A true JPH05271876A (en) 1993-10-19

Family

ID=13299164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6585992A Pending JPH05271876A (en) 1992-03-24 1992-03-24 High strength lead frame material and its manufacture

Country Status (1)

Country Link
JP (1) JPH05271876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244962A1 (en) * 2018-06-20 2019-12-26 日立金属株式会社 Fe-ni-based alloy thin plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244962A1 (en) * 2018-06-20 2019-12-26 日立金属株式会社 Fe-ni-based alloy thin plate
JPWO2019244962A1 (en) * 2018-06-20 2021-07-08 日立金属株式会社 Fe-Ni alloy thin plate

Similar Documents

Publication Publication Date Title
US5147469A (en) Process for producing copper-based alloys having high strength and high electric conductivity
US5026435A (en) High strength lead frame material and method of producing the same
US5205878A (en) Copper-based electric and electronic parts having high strength and high electric conductivity
JPH08209306A (en) Iron-nickel alloy with low coefficient of thermal expansion
US5246511A (en) High-strength lead frame material and method of producing same
JP3297011B2 (en) High strength titanium alloy with excellent cold rollability
US5147470A (en) High strength lead frame material and method of producing the same
JPH05271876A (en) High strength lead frame material and its manufacture
JPH07216510A (en) High strength lead frame material and its production
JPH073403A (en) High strength fe-ni-co alloy sheet and production thereof
JP3510445B2 (en) Fe-Ni alloy thin plate for electronic parts with excellent softening and annealing properties
JPH06287715A (en) High strength lead frame material and its production
JP2797835B2 (en) High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance and repeated bending characteristics, and method for producing the same
JP2501157B2 (en) High strength and low thermal expansion Fe-Ni alloy with excellent hot workability
JPS6376839A (en) Copper alloy for electronic equipment and its production
JP3506289B2 (en) Fe-Ni-based alloy sheet for electronic parts and method for producing the same
JP2614395B2 (en) Method for producing thin sheet of Fe-Ni-based electronic material having excellent shrink resistance
JP2830472B2 (en) High-strength Fe-Ni-Co alloy thin plate excellent in corrosion resistance, repeated bending characteristics, and etching properties, and method for producing the same
JPH04202642A (en) Fe-ni alloy having high strength and low thermal expansion and excellent in plating suitability, solderability, and repeated bendability and its production
JPH07216509A (en) High strength lead frame material and its production
JPH09268348A (en) Fe-ni alloy sheet for electronic parts and its production
JPH06322486A (en) Shadow mask supporting member and its production
JP2705875B2 (en) Metal plate for Fe-Cu alloy lead frame having small in-plane anisotropy of bending and method for producing the same
JP2929891B2 (en) High strength Fe-Ni-Co alloy sheet having excellent corrosion resistance and repeated bending properties
JPH0565602A (en) High strength lead frame material and its production