JPH05271421A - Production of titanium oxide polymer - Google Patents

Production of titanium oxide polymer

Info

Publication number
JPH05271421A
JPH05271421A JP9882092A JP9882092A JPH05271421A JP H05271421 A JPH05271421 A JP H05271421A JP 9882092 A JP9882092 A JP 9882092A JP 9882092 A JP9882092 A JP 9882092A JP H05271421 A JPH05271421 A JP H05271421A
Authority
JP
Japan
Prior art keywords
polymer
reaction
titanium oxide
titanium
oxide polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9882092A
Other languages
Japanese (ja)
Inventor
Tadahiro Muragata
忠弘 村形
Shimio Sato
志美雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP9882092A priority Critical patent/JPH05271421A/en
Publication of JPH05271421A publication Critical patent/JPH05271421A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a titanium oxide polymer which is soluble in an organic solvent, useful for a polymer/inorganic substance composite material or as a surface treatment and also useful as a photocatalyst for photooxidation or photoreduction. CONSTITUTION:A titanium oxide polymer is obtained by hydrolyzing a titanium alkoxide in an alcoholic solution in the presence of an acid catalyst, polycondensing the hydrolyzate, stopping the reaction by the addition of a titanate compound or by reflux in the presence of a titanate compound, and removing the solvent from the reaction mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な酸化チタン重合
体の製造方法に関する。本発明による酸化チタン重合体
は有機溶媒可溶性であるので、高分子物質−無機物質複
合体や表面処理剤として有用である。
FIELD OF THE INVENTION The present invention relates to a method for producing a novel titanium oxide polymer. Since the titanium oxide polymer according to the present invention is soluble in an organic solvent, it is useful as a polymer-inorganic substance composite or a surface treatment agent.

【0002】[0002]

【従来の技術】チタンアルコキシドを加水分解して酸化
チタン重合体を製造する方法は従来より研究されてお
り、例えば特開平1−129032号にはテトラアルコ
キシチタンを加水分解し低沸物を溜去してラダー状酸化
チタン重合体(ポリチタノキサン)を調製する方法が示
されている。しかしながら上記の方法は安定性に欠け反
応の途中でゲル化しやすく、目的とするポリマーを得る
ことが困難であった。
2. Description of the Related Art A method for producing a titanium oxide polymer by hydrolyzing a titanium alkoxide has been studied in the past. For example, in JP-A-1-129032, tetraalkoxy titanium is hydrolyzed to distill low boiling substances. To prepare a ladder-shaped titanium oxide polymer (polytitanoxane). However, the above method lacks stability and easily gels during the reaction, making it difficult to obtain the target polymer.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは上記の問
題がなく安定に製造でき、さらに実質的に有機溶媒中に
おいて透明性溶液を形成し得る有機溶媒可溶性に優れる
酸化チタン重合体を得る方法につき鋭意研究を行い、本
発明を完成した。
DISCLOSURE OF THE INVENTION The present inventors obtain a titanium oxide polymer which can be stably produced without the above-mentioned problems and which is capable of forming a transparent solution substantially in an organic solvent and which is excellent in organic solvent solubility. The present invention has been completed through intensive research on the method.

【0004】[0004]

【課題を解決するための手段】すなわち本発明は、チタ
ンアルコキシドのアルコール溶液を酸触媒の存在下に加
水分解した後重縮合反応を行い、次いでチタネート系化
合物を加えて反応停止することを特徴とする酸化チタン
重合体の製造方法を提供する。さらに本発明は、チタン
アルコキシドのアルコール溶液を酸触媒の存在下に加水
分解した後重縮合反応を行い、次いでチタネート系化合
物の存在下に還流を行い反応停止することを特徴とする
酸化チタン重合体の製造方法を提供する。
That is, the present invention is characterized in that an alcohol solution of titanium alkoxide is hydrolyzed in the presence of an acid catalyst, a polycondensation reaction is performed, and then a titanate compound is added to terminate the reaction. A method for producing a titanium oxide polymer is provided. Further, the present invention is a titanium oxide polymer characterized by hydrolyzing an alcohol solution of titanium alkoxide in the presence of an acid catalyst, followed by polycondensation reaction, and then refluxing in the presence of a titanate compound to stop the reaction. A method of manufacturing the same is provided.

【0005】本発明で用いるチタンアルコキシドは、低
級アルコールのテトラアルコキシドが望ましく、チタン
テトライソプロポキシド、チタンテトラ−n−ブトキシ
ド、チタンイソブトキシドテトラマー等が使用できる。
上記のチタンアルコキシドのアルコール溶液は、チタン
アルコキシドを炭素数5以下の低級脂肪族アルコールに
該チタンアルコキシドを室温またはわずかに加温下に溶
解して調製する。好ましいアルコールはエタノール、n
−プロパノール、イソプロパノール、n−ブタノール等
である。チタンアルコキシドの濃度は通常10〜30重
量%の範囲から選ぶことができ、特に制限はない。
The titanium alkoxide used in the present invention is preferably a tetraalkoxide of a lower alcohol, and titanium tetraisopropoxide, titanium tetra-n-butoxide, titanium isobutoxide tetramer and the like can be used.
The alcohol solution of the titanium alkoxide is prepared by dissolving the titanium alkoxide in a lower aliphatic alcohol having 5 or less carbon atoms at room temperature or slightly heating. Preferred alcohol is ethanol, n
-Propanol, isopropanol, n-butanol and the like. The concentration of titanium alkoxide can be selected from the range of usually 10 to 30% by weight and there is no particular limitation.

【0006】チタンアルコキシドのアルコール溶液の加
水分解は、常法により行うことができる。たとえばチタ
ンアルコキシドのアルコール溶液に水、アルコール、お
よび塩酸、硫酸のような鉱酸を徐々に添加する。本発明
においては、これらの反応成分を反応溶液がゲル化せ
ず、透明な状態を保つようにして添加することが重要で
ある。加水分解触媒としてアルカリを加えるとゲル化し
やすいので望ましくない。この工程でゲルが生ずると有
機溶媒に不溶性の重合体となり目的とする重合体が得ら
れない。添加するアルコールはチタンアルコキシドのア
ルコール溶液に用いたアルコールと同一のものが好まし
いが、相溶性のあるアルコールであれば同様に用いられ
る。好ましいのはエタノール、プロパノール、ブタノー
ル、アミルアルコール等である。水の添加量はチタンに
対してモル比で3倍量が適当である。これより少ない場
合はアルコキシドの加水分解が不十分であり、またこれ
より多い場合はゲル化が速く、数分から数時間でゲル化
してしまう。酸触媒の添加量はチタンに対してモル比で
1/5程度が好ましく、酸濃度が低い場合には粒子の生
成による白濁が生じる。
Hydrolysis of an alcohol solution of titanium alkoxide can be carried out by a conventional method. For example, water, alcohol, and mineral acids such as hydrochloric acid and sulfuric acid are gradually added to an alcohol solution of titanium alkoxide. In the present invention, it is important to add these reaction components so that the reaction solution does not gel and keeps a transparent state. It is not desirable to add an alkali as a hydrolysis catalyst because it easily gels. If a gel is formed in this step, the polymer becomes insoluble in the organic solvent and the desired polymer cannot be obtained. The alcohol to be added is preferably the same as the alcohol used in the alcohol solution of titanium alkoxide, but any compatible alcohol can be used as well. Preferred are ethanol, propanol, butanol, amyl alcohol and the like. An appropriate amount of water added is 3 times the molar ratio of titanium. When it is less than this range, hydrolysis of the alkoxide is insufficient, and when it is more than this range, gelation is fast and gelation occurs in a few minutes to a few hours. The addition amount of the acid catalyst is preferably about 1/5 with respect to titanium in terms of a molar ratio, and when the acid concentration is low, white turbidity occurs due to particle formation.

【0007】本発明における重縮合反応は、加水分解後
の反応溶液を、室温にて数時間ないし数日間静置するこ
とにより行われる。具体的には1時間以上2日間程度の
静置が好ましく、それ以上長時間静置してもとくに利点
は見られない。所望の時間静置した後、反応停止剤を添
加し重縮合反応を停止する。本発明では所望の重縮合反
応後、チタネート系化合物を加えて該反応を停止させ
る。チタネート系化合物としては、パイロホスフェート
基を有するチタネート化合物が望ましく、たとえばイソ
プロピルトリス(ジオクチルパイロホスフェート)チタ
ネートやビス(ジオクチルパイロホスフェート)エチレ
ンチタネート等が好ましく使用できる。
The polycondensation reaction in the present invention is carried out by allowing the reaction solution after hydrolysis to stand at room temperature for several hours to several days. Specifically, it is preferable to stand for 1 hour or longer and 2 days or so, and even if it is left for a longer period of time, there is no particular advantage. After standing for a desired time, a reaction terminator is added to stop the polycondensation reaction. In the present invention, after the desired polycondensation reaction, the titanate compound is added to stop the reaction. As the titanate compound, a titanate compound having a pyrophosphate group is desirable, and for example, isopropyl tris (dioctyl pyrophosphate) titanate, bis (dioctyl pyrophosphate) ethylene titanate, etc. can be preferably used.

【0008】本発明の反応機構は以下のように考えられ
る。すなわち、加水分解で生成した水酸化チタンの活性
な水酸基が重縮合して重合体を形成する。後述するよう
に、本発明による重合体は有機溶媒に可溶性であるの
で、実質的に線状の構造であると考えられる。得られた
重合体は、その末端水酸基を上記チタネート化合物と反
応させることにより活性な水酸基をなくして、安定化さ
せることができる。従来の技術では、重縮合反応後なん
ら反応停止剤を加えずに重合体を回収するため、最終工
程でも反応が進みゲルが生じたりして、安定して良好な
生成物が得られなかった。
The reaction mechanism of the present invention is considered as follows. That is, the active hydroxyl groups of titanium hydroxide produced by hydrolysis are polycondensed to form a polymer. As will be described later, since the polymer according to the present invention is soluble in an organic solvent, it is considered to have a substantially linear structure. The obtained polymer can be stabilized by removing the active hydroxyl group by reacting the terminal hydroxyl group with the titanate compound. In the conventional technique, the polymer is recovered after the polycondensation reaction without adding any reaction terminator, so that the reaction proceeds even in the final step to cause gelation and a stable and good product cannot be obtained.

【0009】なお本発明者らは、化学工学会第24回秋
季大会 研究発表講演要旨集(1991年9月16日発
行)において、反応停止剤としてトリメチルクロロシラ
ンのようなシランカップリング剤を用いた発明を発表し
た。該シランカップリング剤を用いる方法では、本発明
のような有機溶媒可溶性の酸化チタン重合体は得られな
いので、反応機構および重合体の構造などが異なる発明
であると考えられる。
The present inventors used a silane coupling agent such as trimethylchlorosilane as a reaction terminator in the proceedings of the 24th Autumn Meeting of the Chemical Engineering Society of Japan, which was published on September 16, 1991. Announced the invention. Since the method using the silane coupling agent does not give an organic solvent-soluble titanium oxide polymer as in the present invention, it is considered that the invention is different in reaction mechanism and polymer structure.

【0010】本発明では、チタンアルコキシドのチタン
に対する反応停止剤の量を変えることにより有機溶媒可
溶性の異なった重合体を得ることができる。例えば、イ
ソプロピルトリス(ジオクチルパイロホスフェート)チ
タネートあるいはビス(ジオクチルパイロホスフェー
ト)エチレンチタネートを停止剤に用いた場合、チタン
アルコキシドのチタンに対して0.7倍モル付近を境
に、これ未満の添加量ではアルコール、アセトンのよう
な極性有機溶媒への溶解性が高く、またベンゼン、ヘキ
サンのような非極性有機溶媒への溶解性が低いかあるい
は不溶な重合体が得られる。これに対して0.7倍モル
以上の停止剤を加えて重合体を得た場合は、停止剤の添
加量の増加とともに極性有機溶媒には次第に不溶とな
り、また非極性有機溶媒への溶解性が増す。この性質は
重合体内の水酸基と停止剤の親油基(アルキル基)の量
に関係するものと考えられる。
In the present invention, polymers having different solubility in organic solvents can be obtained by changing the amount of the reaction terminator for titanium of the titanium alkoxide. For example, when isopropyl tris (dioctyl pyrophosphate) titanate or bis (dioctyl pyrophosphate) ethylene titanate is used as a terminating agent, the amount of addition is less than 0.7 times the mole of titanium alkoxide with respect to titanium. A polymer having high solubility in a polar organic solvent such as alcohol or acetone and low or insoluble in a nonpolar organic solvent such as benzene or hexane can be obtained. On the other hand, when a polymer is obtained by adding a terminating agent in an amount of 0.7 times or more, the polymer gradually becomes insoluble in the polar organic solvent as the amount of the terminating agent added increases, and the solubility in the non-polar organic solvent increases. Will increase. This property is considered to be related to the amount of hydroxyl groups in the polymer and the lipophilic groups (alkyl groups) of the terminator.

【0011】停止剤を添加後数十分ないし一時間程度経
過したら、以下の工程で重合体を回収する。反応停止後
の反応液を常圧ないし減圧下溶媒を蒸発する。その後減
圧乾燥することにより樹脂状の重合体が得られる。さら
に本発明によれば、チタネート系化合物添加後の反応液
を加熱還流処理した後に、上記の重合体回収工程に付す
こともできる。還流処理は反応溶媒の常圧沸点で数時間
還流する。この還流処理によって水酸化チタンの重縮合
反応の追込みと、重合体の活性末端基封止反応が行われ
るものと考えられる。還流処理を経て得られた重合体の
分子量は、しないのものに比して高いものであった。
When several tens of minutes to one hour has passed after the addition of the terminator, the polymer is recovered in the following steps. After stopping the reaction, the reaction solution is evaporated under normal pressure or reduced pressure. Thereafter, a resinous polymer is obtained by drying under reduced pressure. Further, according to the present invention, the reaction liquid after the addition of the titanate compound can be heated and refluxed, and then subjected to the above-mentioned polymer recovery step. The reflux treatment is carried out at the boiling point of the reaction solvent at atmospheric pressure for several hours. It is considered that this reflux treatment causes the polycondensation reaction of titanium hydroxide and the reaction of blocking the active end groups of the polymer. The molecular weight of the polymer obtained through the reflux treatment was higher than that of the polymer without the reflux treatment.

【0012】以下本発明により得られる重合体につき説
明する。本発明により得られた重合体の分子量を蒸気圧
浸透圧法(VPO)により測定した結果、数平均分子量
は停止剤の添加量および還流の有無にも依存するが、5
000ないし9000であった。VPOの測定はクロロ
ホルムを溶媒とし、測定時における装置定数の決定及び
検定は分子量2550と3550の単分散ポリスチレン
を用いて行った。また、テトラヒドロフランを溶媒と
し、ゲルパーミエーションクロマトグラフ(GPC)法
により分子量分布を測定した結果、1000から10
0,000程度までの分子量分布を持つことが確認され
た。還流処理を行った重合体は分子量が高く、還流処理
せずに回収した重合体の分子量は低い傾向が認められ、
この傾向は停止剤添加量が少ないほど顕著である。これ
は停止剤添加量が少ない場合には立体的に重縮合可能な
水酸基がある程度残存しており、還流処理によりこれら
の間での反応がさらに進むためと考えられた。
The polymer obtained by the present invention will be described below. As a result of measuring the molecular weight of the polymer obtained by the present invention by the vapor pressure osmometry (VPO), the number average molecular weight depends on the addition amount of the terminator and the presence or absence of reflux.
It was 000 to 9000. Chloroform was used as a solvent for VPO measurement, and instrument constants were determined and assayed using monodisperse polystyrene having molecular weights of 2550 and 3550. Further, the molecular weight distribution was measured by gel permeation chromatograph (GPC) method using tetrahydrofuran as a solvent.
It was confirmed to have a molecular weight distribution up to about 000. The polymer subjected to the reflux treatment has a high molecular weight, and the polymer recovered without the reflux treatment tends to have a low molecular weight,
This tendency is more remarkable as the amount of the stopper added is smaller. It is considered that this is because when the amount of the terminating agent added is small, sterically polycondensable hydroxyl groups remain to some extent, and the reaction between them further proceeds by the reflux treatment.

【0013】本発明による酸化チタン重合体は安定性に
優れており、例えばそのクロロホルム溶液を調製し室温
で1ケ月放置しても全くゲルは生せず透明な溶液であっ
た。また、この重合体をクロロホルム等の適当な有機溶
媒に溶かしガラス基板上にスピンコーティグ法等で製膜
することにより均一で透明な膜を得ることができる。こ
の膜は有機溶媒で簡単に洗い流されるが、熱処理(例え
ば、80℃で30分乾燥後、500℃で30分焼成)を
行うことにより透明性を失わずに有機溶媒に不溶化する
ことができる。さらに、ポリスチレンのような有機系の
高分子と溶液内において混合した後製膜することによっ
ても透明膜を得ることができる。また、重合体の溶液は
通常の酸化チタンと同様に、400nm以下の紫外域に
吸収を持つ。これを用いてKIの光酸化反応およびメチ
レンブルーの光還元反応を行った結果、双方の活性のあ
ることが認められた。従って、本発明による重合体は均
一溶液系での光触媒としても有用であると考えられる。
The titanium oxide polymer according to the present invention is excellent in stability. For example, even if its chloroform solution was prepared and left at room temperature for 1 month, no gel was formed and it was a transparent solution. Further, a uniform and transparent film can be obtained by dissolving this polymer in an appropriate organic solvent such as chloroform and forming the film on a glass substrate by a spin coating method or the like. Although this film is easily washed away with an organic solvent, it can be insolubilized in an organic solvent without losing transparency by performing a heat treatment (for example, drying at 80 ° C. for 30 minutes and baking at 500 ° C. for 30 minutes). Further, a transparent film can also be obtained by forming a film after mixing with an organic polymer such as polystyrene in a solution. Further, the polymer solution has absorption in the ultraviolet region of 400 nm or less, like ordinary titanium oxide. As a result of carrying out the photooxidation reaction of KI and the photoreduction reaction of methylene blue using this, it was confirmed that they had both activities. Therefore, the polymer according to the present invention is considered to be useful as a photocatalyst in a homogeneous solution system.

【0014】[0014]

【実施例】【Example】

実施例1〜20 蒸留したエタノール50mlにチタンテトライソプロポ
キシド10mlを加えて均一な溶液を調製する。次にエ
タノール50ml、濃塩酸1ml、イオン交換水1.2
mlからなる溶液を先に調製した溶液に常温で攪拌下、
徐々に滴下する。滴下が終了した状態で溶液組成はチタ
ンテトライソプロポキシド:エタノール:水=1:6
0:3となる。その後、加水分解およびそれに引き続く
重縮合反応を十分に進行させるために密封して24時間
常温で放置する。24時間経た後所定量の停止剤イソプ
ロピルトリス(ジオクチルパイロホスフェート)チタネ
ート(停止剤A)、あるいはビス(ジオクチルパイロホ
スフェート)エチレンチタネート(停止剤B)を加えて
攪拌混合する。得られた溶液を二等分して、一部につい
てはエバポレーターを用いて70〜80℃で溶媒、塩酸
を除去し固形物を得、また他の一部については還流を5
時間行った後、同様にエバポレートして固形物を得た。
その後両者とも常温で真空乾燥を12時間行い、目的重
合物を得た。表1に各実施例の重合体の溶媒への溶解性
を示す。本実施例で、停止剤の添加量を変えることによ
り種々の溶液に均一溶液として可溶化する重合体が得ら
れることが分かる。
Examples 1 to 20 Titanium tetraisopropoxide (10 ml) is added to distilled ethanol (50 ml) to prepare a uniform solution. Next, 50 ml of ethanol, 1 ml of concentrated hydrochloric acid, 1.2 of deionized water.
While stirring the solution consisting of ml into the previously prepared solution at room temperature,
Gradually drop. The solution composition of titanium tetraisopropoxide: ethanol: water = 1: 6 when the dropping was completed.
It becomes 0: 3. Then, in order to allow the hydrolysis and the subsequent polycondensation reaction to proceed sufficiently, it is sealed and left at room temperature for 24 hours. After 24 hours, a predetermined amount of terminating agent isopropyl tris (dioctylpyrophosphate) titanate (terminating agent A) or bis (dioctylpyrophosphate) ethylene titanate (terminating agent B) is added and mixed with stirring. The resulting solution was divided into two equal parts, a part of which was removed from the solvent and hydrochloric acid at 70 to 80 ° C. using an evaporator to obtain a solid, and the other part of which was refluxed at 5 ° C.
After the time, it was evaporated in the same manner to obtain a solid.
After that, both were vacuum dried at room temperature for 12 hours to obtain a target polymer. Table 1 shows the solubility of the polymer of each example in a solvent. In this example, it can be seen that a polymer which is solubilized as a homogeneous solution in various solutions can be obtained by changing the addition amount of the terminator.

【0015】[0015]

【表1】 [Table 1]

【0016】比較例1〜12 停止剤を用いないか、または表面改質剤として知られる
シランカップリング剤を停止剤に用いる以外は、実施例
1と同様にして重合体を調製した。停止剤を用いない場
合には、エバポレート中あるいは還流中にゲル化が生ず
る場合があり、また反応条件によっては可溶性のものも
得られるが、水、メタノールのみに可溶であった。一
方、シラン系の停止剤を用いた場合には水及び一部アル
コールに可溶で比較的安定な生成物が粉末状で得られる
が、やはり極性の低い有機溶媒には不溶であった。その
結果を表2に示す。いずれの重合体もアセトン、クロロ
ホルム、ベンゼン、ヘキサンに不溶であった。
Comparative Examples 1 to 12 Polymers were prepared in the same manner as in Example 1 except that no terminating agent was used or a silane coupling agent known as a surface modifier was used as the terminating agent. When the terminator was not used, gelation might occur during evaporation or reflux, and a soluble one could be obtained depending on the reaction conditions, but it was soluble only in water and methanol. On the other hand, when a silane-based terminating agent was used, a relatively stable product which was soluble in water and some alcohols was obtained as a powder, but it was also insoluble in an organic solvent having a low polarity. The results are shown in Table 2. All the polymers were insoluble in acetone, chloroform, benzene and hexane.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】本発明により高分子量で有機溶媒可溶性
の酸化チタン重合体が安定に製造することができ、該酸
化チタン重合体は高分子物質−無機物質複合体や表面処
理剤として使用することができる。また光酸化反応や光
還元反応の均一溶媒系での光触媒としても有用である。
According to the present invention, a titanium oxide polymer having a high molecular weight and soluble in an organic solvent can be stably produced, and the titanium oxide polymer can be used as a polymer-inorganic substance composite or a surface treatment agent. You can It is also useful as a photocatalyst in a homogeneous solvent system for photooxidation or photoreduction.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタンアルコキシドのアルコール溶液を
酸触媒の存在下に加水分解した後重縮合反応を行い、次
いでチタネート系化合物を加えて反応停止することを特
徴とする酸化チタン重合体の製造方法。
1. A method for producing a titanium oxide polymer, which comprises hydrolyzing an alcohol solution of titanium alkoxide in the presence of an acid catalyst, followed by a polycondensation reaction, and then adding a titanate compound to stop the reaction.
【請求項2】 重縮合反応の後、チタネート系化合物の
存在下に還流を行い反応停止することを特徴とする請求
項1記載の酸化チタン重合体の製造方法。
2. The method for producing a titanium oxide polymer according to claim 1, wherein after the polycondensation reaction, the reaction is stopped by refluxing in the presence of a titanate compound.
JP9882092A 1992-03-24 1992-03-24 Production of titanium oxide polymer Pending JPH05271421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9882092A JPH05271421A (en) 1992-03-24 1992-03-24 Production of titanium oxide polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9882092A JPH05271421A (en) 1992-03-24 1992-03-24 Production of titanium oxide polymer

Publications (1)

Publication Number Publication Date
JPH05271421A true JPH05271421A (en) 1993-10-19

Family

ID=14229954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9882092A Pending JPH05271421A (en) 1992-03-24 1992-03-24 Production of titanium oxide polymer

Country Status (1)

Country Link
JP (1) JPH05271421A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084671A (en) * 2005-09-21 2007-04-05 Toyo Seikan Kaisha Ltd Binder composition for dispersing semiconductor micro-particle
WO2010140501A1 (en) * 2009-06-02 2010-12-09 Makino Kenjiro Novel titanic acid monomer and polymer thereof, process for production of the monomer and the polymer, and use of the mobnomer and the polymer
JP5588088B1 (en) * 2013-12-11 2014-09-10 賢次郎 牧野 Method for producing linear alkoxytitanic acid / phosphoric acid polymer
WO2015087694A1 (en) * 2013-12-11 2015-06-18 賢次郎 牧野 Oxidation-reduction potential generating material produced using alkoxytitanic acid-phosphoric acid compound
JP2015113463A (en) * 2014-07-24 2015-06-22 賢次郎 牧野 Method for producing linear alkoxytitanic acid phosphoric acid polymer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084671A (en) * 2005-09-21 2007-04-05 Toyo Seikan Kaisha Ltd Binder composition for dispersing semiconductor micro-particle
WO2010140501A1 (en) * 2009-06-02 2010-12-09 Makino Kenjiro Novel titanic acid monomer and polymer thereof, process for production of the monomer and the polymer, and use of the mobnomer and the polymer
JP5606437B2 (en) * 2009-06-02 2014-10-15 賢次郎 牧野 Novel titanic acid monomer and polymer thereof, and production method and use thereof
JP5588088B1 (en) * 2013-12-11 2014-09-10 賢次郎 牧野 Method for producing linear alkoxytitanic acid / phosphoric acid polymer
WO2015087412A1 (en) * 2013-12-11 2015-06-18 賢次郎 牧野 Method for producing linear alkoxytitanic acid phosphoric acid polymer
WO2015087694A1 (en) * 2013-12-11 2015-06-18 賢次郎 牧野 Oxidation-reduction potential generating material produced using alkoxytitanic acid-phosphoric acid compound
JP2015113463A (en) * 2014-07-24 2015-06-22 賢次郎 牧野 Method for producing linear alkoxytitanic acid phosphoric acid polymer

Similar Documents

Publication Publication Date Title
Cao et al. Influence of chemical polymerization conditions on the properties of polyaniline
JPH06502442A (en) Hyperbranched polyesters and polyamides
EP0328715B1 (en) A catalyst for sol-gel method using metal alkoxide and sol-gel method using the same
TW201728671A (en) Polyethylene terephthalate resin composition and film formed from same
US5804649A (en) Water-soluble self acid-doped polyaniline, method of preparation thereof, and polymer blends made therefrom
WO1991008241A1 (en) High refractive-index ceramic/polymer hybrid material
JP4025389B2 (en) Organic-inorganic composite and inorganic porous body
JPH05271421A (en) Production of titanium oxide polymer
US5053166A (en) Hetero-arylene vinylene polymer and highly conductive composition thereof
JP3186328B2 (en) Conductive composite and manufacturing method thereof
US4868284A (en) Process for producing stretched molded articles of conjugated polymers and highly conductive compositions of said polymers
KR100205912B1 (en) Process for preparing soluble electrical conductive polyaniline
US4080432A (en) Dissolution of polydihalophosphazenes
TW561163B (en) Process for preparing polypropylene terephthalate/polyethylene terephthalate copolymers
US7014794B1 (en) Use of sulphonic and phosphonic acids as dopants of conductive polyaniline films and conductive composite material based on polyaniline
EP0312571A1 (en) Process for preparing polyketones
EP0332704A1 (en) Process for producing conductive polymer film
JP3161058B2 (en) Poly (pyridine-2,5-diylvinylene) polymer and production method
CN104311803B (en) A kind of preparation method of toughness reinforcing high temperature resistance polyester material poly terephthalic acid-1.4 cyclohexanedimethanoester ester
KR0175204B1 (en) Method for producing high molecular weight polybutylene terephthalate
Moiseev et al. Chemical degradation of polymers in corrosive liquid media
CN109422878B (en) Preparation method of polyarylether thioether sulfone and obtained polyarylether thioether sulfone
Kaykha et al. Sulfonated poly (butylene succinate) as a pseudo‐random copolymer: effect of sulfonate groups on microstructure and thermal behavior
CN116515094B (en) Preparation method of flame-retardant degradable polyester and degradable copolymerized flame retardant
JPH0335761B2 (en)