JPH05269374A - Device for decomposing low boiling point organic halogen - Google Patents

Device for decomposing low boiling point organic halogen

Info

Publication number
JPH05269374A
JPH05269374A JP7126892A JP7126892A JPH05269374A JP H05269374 A JPH05269374 A JP H05269374A JP 7126892 A JP7126892 A JP 7126892A JP 7126892 A JP7126892 A JP 7126892A JP H05269374 A JPH05269374 A JP H05269374A
Authority
JP
Japan
Prior art keywords
low
hydrogen peroxide
organic halogen
decomposed
point organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7126892A
Other languages
Japanese (ja)
Inventor
Yoshiro Nishida
好郎 西田
Toshiaki Shimozono
俊昭 下園
Tomohiro Nakano
朝広 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Seiko Co Ltd
Original Assignee
Nitto Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Seiko Co Ltd filed Critical Nitto Seiko Co Ltd
Priority to JP7126892A priority Critical patent/JPH05269374A/en
Publication of JPH05269374A publication Critical patent/JPH05269374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

PURPOSE:To efficiently decompose a low b.p. organic halogenide at ordinary temp. and pressure by adding hydroperoxide or sodium hypochlorite into the low b.p. organic halogenide and irradiating with ultraviolet ray. CONSTITUTION:Hydroperoxide or sodium hypochlorite is poured through a supply pipe 3 into a raw water supply pipe 1 in which the low b.p. organic halogenide is supplied. The low b.p. organic halogenide is decomposed by irradiating the raw water supplied from the supply pipe 1 with ultraviolet ray from ultraviolet sterilizers 5a-5c. The decomposed treated solution is neutralized by an alkaline aq. solution in a waste water storage tank 7 and is discharged through a discharge pipe 13. As a result, the low b.p. organic halogenide such as liquid fluorocarbon or trihalomethane is efficiently decomposed at ordinary temp. and pressure. furthermore, the device is small-sized and cheap in production cost because a special device such as ozone generator is unnecessary.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低沸点有機ハロゲン分解
装置に関し、特に液体フロンの分解装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low boiling point organic halogen decomposing apparatus, and more particularly to a liquid CFC decomposing apparatus.

【0002】[0002]

【従来の技術】従来、低沸点の有機ハロゲンとしては、
液体フロン,有機塩素系溶剤,トリハロメタン等が知ら
れている。一般に、フロンは、メタン,エタン等の炭化
水素の水素原子の一部又は全部をフッ素原子と塩素原子
とで置換した化合物の総称であり、正式名称はフルオロ
カーボンである。フロンは無色無臭の気体(例えば、フ
ロン11,フロン12等)又は液体(例えば、フロン1
13等)で、工業的に量産されているものだけで、20
種類にものぼる。用途は冷凍機やエアコンの冷媒,エア
ゾール製品の噴霧剤,精密機器や電子部品の洗浄用・乾
燥用剤,ウレタンフォームの発泡剤,ドライエッチン
グ,消火剤等である。化学的に安定した物質であるため
直接人体に影響はないが、成層圏まで上昇すると、強い
紫外線をあびて分解し、塩素を放出する。この塩素が、
触媒として働き、連続的にオゾンと反応し、地上の生物
を保護しているオゾン層を破壊する。このため、地表に
達する紫外線が増え悪性皮膚がんの増加,地球の温度を
上昇させる温室効果等、地球的規模での異常気象や生態
系への影響が心配されている。
2. Description of the Related Art Conventionally, as a low boiling point organic halogen,
Liquid CFCs, organic chlorine solvents, trihalomethanes, etc. are known. In general, chlorofluorocarbon is a general term for compounds in which some or all of hydrogen atoms of hydrocarbons such as methane and ethane are replaced with fluorine atoms and chlorine atoms, and the official name is fluorocarbon. Freon is a colorless and odorless gas (for example, Freon 11 or Freon 12) or liquid (for example, Freon 1).
13 etc.), only those that are industrially mass-produced
There are many kinds. Applications include refrigerating machines and air conditioner refrigerants, aerosol product sprays, cleaning and drying agents for precision equipment and electronic components, urethane foam blowing agents, dry etching, fire extinguishing agents, etc. Since it is a chemically stable substance, it has no direct effect on the human body, but when it reaches the stratosphere, it decomposes by being exposed to strong ultraviolet light, and releases chlorine. This chlorine
It acts as a catalyst, reacts continuously with ozone, and destroys the ozone layer that protects terrestrial organisms. For this reason, there is concern about abnormal weather on a global scale and effects on the ecosystem, such as an increase in ultraviolet rays reaching the surface of the earth, an increase in malignant skin cancer, and a greenhouse effect that raises the temperature of the earth.

【0003】また、トリクロロエチレン(トリクレ
ン),テトラクロロエチレン(パークレン),1,1,1-ト
リクロロエタン等の有機塩素系溶剤は、脱脂性に優れる
ため機械の洗浄,メッキ,クリーニング等に、または半
導体工場等のハイテク工場で使用されている。トリクロ
ロエチレンや1,1,1-トリクロロエタンはメッキ前洗浄等
に使用されるが、いずれも毒性の疑いがある。トリクロ
ロエチレンとテトラクロロエチレンとは共に発がん性が
指摘されており、現在では化学物質審査規制法で定める
指定化学物質に指定され、製造については届出が義務づ
けられている。
Organochlorine solvents such as trichloroethylene (trichlene), tetrachloroethylene (parklene), and 1,1,1-trichloroethane are excellent in degreasing property and therefore are used for cleaning machines, plating, cleaning, etc., or in semiconductor factories. Used in high-tech factories. Trichlorethylene and 1,1,1-trichloroethane are used for cleaning before plating, etc., but they are all suspected to be toxic. It has been pointed out that both trichlorethylene and tetrachloroethylene are carcinogenic, and they are currently designated as designated chemical substances under the Chemical Substances Control Law, and notification of their manufacture is obligatory.

【0004】更に、トリクロロメタン,ブロモジクロロ
メタン,ジブロモクロロメタン,トリブロモメタン等の
トリハロメタンは、水道水中の発がん物質として知られ
ている。このように、液体フロン,有機塩素系溶剤,ト
リハロメタン等の低沸点有機ハロゲンは、オゾン層破
壊,発がん性等の問題があるため、使用後等には分解処
理して廃棄することが望ましい。これら低沸点有機ハロ
ゲンの分解方法としては、例えば、紫外線照射法,
オゾン分解法,紫外線照射法+オゾン分解法,ゼオ
ライト分解法,高周波プラズマ分解法,紫外線照射
法+塩素処理法等の方法が知られている。
Further, trihalomethanes such as trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane are known as carcinogens in tap water. As described above, low-boiling-point organic halogens such as liquid CFCs, organic chlorine-based solvents, and trihalomethanes have problems of ozone layer destruction, carcinogenicity, etc. Therefore, it is desirable to decompose and discard them after use. Examples of the method for decomposing these low boiling point organic halogens include, for example, an ultraviolet irradiation method,
Methods such as ozone decomposition method, ultraviolet irradiation method + ozone decomposition method, zeolite decomposition method, high frequency plasma decomposition method, ultraviolet irradiation method + chlorine treatment method are known.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記〜
の分解方法には、それぞれ以下に示すような課題があ
る。 の課題 高温,高圧等の条件下で紫外線を照射させる必要があ
る。また、単に紫外線を照射しただけでは、フロン等の
分解率が非常に悪い。 の課題 オゾン分解法単独では、フロン等の分解率が非常に悪
い。また、オゾン発生器等の装置が別途必要になるた
め、装置が高価になる。 の課題 上記と同様、オゾン発生器等の装置が別途必要になる
ため、装置が高価になる。 の課題 500℃の高温分解であるため、装置が大きくなり、コ
ストも高くなる。 の課題 1万℃の高温・高圧分解であるため、装置が大きくな
り、コストも高くなる。 の課題 塩素の酸化剤としての力が弱いため、多量の塩素が必要
になる。したがって、排水中に多量の塩素が残留するた
め、後処理の問題がある。
However, the above-mentioned
Each of the above decomposition methods has the following problems. The issue is that it is necessary to irradiate ultraviolet rays under conditions such as high temperature and high pressure. In addition, the decomposition rate of CFCs and the like is very poor by simply irradiating ultraviolet rays. Problems with the ozone decomposition method alone, the decomposition rate of CFCs is very poor. In addition, since a device such as an ozone generator is separately required, the device becomes expensive. Problem to be Solved Similar to the above, since an apparatus such as an ozone generator is separately required, the apparatus becomes expensive. Problem Since the decomposition is carried out at a high temperature of 500 ° C., the equipment becomes large and the cost becomes high. Problem Since the high temperature and high pressure decomposition of 10,000 ℃, the equipment becomes large and the cost becomes high. Problem Since chlorine has a weak power as an oxidant, a large amount of chlorine is required. Therefore, since a large amount of chlorine remains in the waste water, there is a problem of post-treatment.

【0006】本発明は上記課題に鑑み、オゾン発生器等
の特別な装置が不要で製造コストが安く、後処理が容易
で、しかも常温・常圧で効率良く分解できる低沸点有機
ハロゲン分解装置を提供することを目的とする。
In view of the above problems, the present invention provides a low-boiling-point organic halogen decomposing device which does not require a special device such as an ozone generator, has a low manufacturing cost, can be easily post-treated, and can be decomposed efficiently at room temperature and atmospheric pressure. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するため、低沸点有機ハロゲンに過酸化水素又は次亜塩
素酸ナトリウムを注入する注入手段と,上記注入手段に
より過酸化水素又は次亜塩素酸ナトリウムが注入された
低沸点有機ハロゲンに、紫外線を照射する紫外線照射手
段とを具備することを特徴とする。
In order to solve the above problems, the present invention provides an injection means for injecting hydrogen peroxide or sodium hypochlorite into a low boiling organic halogen, and hydrogen peroxide or hypochlorous acid by the injection means. The low-boiling-point organic halogen into which sodium chlorate has been injected is provided with an ultraviolet irradiation means for irradiating with ultraviolet rays.

【0008】加えて、上記低沸点有機ハロゲンは、液体
フロン,有機塩素系溶剤,又はトリハロメタンであるこ
とを特徴とする。
In addition, the low-boiling organic halogen is liquid fluorocarbon, an organic chlorine-based solvent, or trihalomethane.

【0009】[0009]

【作用】本発明者らは、上記目的を達成すべく鋭意研究
を重ねた結果、液体フロン,有機塩素系溶剤,トリハロ
メタン等の低沸点有機ハロゲンに過酸化水素又は次亜塩
素酸ナトリウムを添加し、且つ、紫外線を照射すること
により、これらの低沸点有機ハロゲンを効率良く分解で
きることを見出し、更に研究を重ねて本発明を完成する
に至った。
The present inventors have conducted intensive studies to achieve the above object, and as a result, added hydrogen peroxide or sodium hypochlorite to low boiling organic halogens such as liquid CFCs, organic chlorine solvents, and trihalomethanes. Moreover, they have found that these low-boiling organic halogens can be efficiently decomposed by irradiating them with ultraviolet rays, and have further researched to complete the present invention.

【0010】即ち、本発明の低沸点有機ハロゲン分解装
置は、液体フロン,有機塩素系溶剤,トリハロメタン等
の低沸点有機ハロゲンを常温・常圧で効率良く分解する
ことができる。この理由は明らかではないが、例えば、
化1に示すように、過酸化水素又は次亜塩素酸ナトリウ
ムがおそらく触媒として作用するため、常温・常圧で分
解できるものと思われる。また、このように触媒として
作用する過酸化水素や次亜塩素酸ナトリウムは、無色の
液体であるため、紫外線の透過を妨げることもない。こ
れらの理由によって、低沸点有機ハロゲンを常温・常圧
で効率良く分解することができるものと思われる。
That is, the low-boiling-point organic halogen decomposing apparatus of the present invention can efficiently decompose low-boiling-point organic halogens such as liquid CFCs, organic chlorine-based solvents and trihalomethanes at room temperature and atmospheric pressure. The reason for this is not clear, but for example,
As shown in Chemical formula 1, since hydrogen peroxide or sodium hypochlorite probably acts as a catalyst, it seems that it can be decomposed at room temperature and atmospheric pressure. Further, since hydrogen peroxide and sodium hypochlorite which act as a catalyst in this way are colorless liquids, they do not hinder the transmission of ultraviolet rays. For these reasons, it is considered that the low boiling point organic halogen can be efficiently decomposed at room temperature and atmospheric pressure.

【0011】ここで、低沸点有機ハロゲンの一例として
液体フロン(フロン113)を用いた場合のフロン11
3の分解反応を化1に示す。
Here, CFC 11 using liquid CFC (CFC 113) as an example of low boiling point organic halogen
The decomposition reaction of 3 is shown in Chemical formula 1.

【0012】[0012]

【化1】 [Chemical 1]

【0013】加えて、本発明の低沸点有機ハロゲン分解
装置は、オゾン発生器等の特別な装置が不要であるため
装置が小型で、且つ、製造コストも安い。更には、少量
の過酸化水素又は次亜塩素酸ナトリウムで低沸点有機ハ
ロゲンを分解することができるため、排水の後処理が容
易である。特に、過酸化水素を用いた場合には、過酸化
水素が水中で分解して排水の後処理が一層容易になるの
で好ましい。
In addition, the low boiling point organic halogen decomposing apparatus of the present invention does not require a special apparatus such as an ozone generator, so that the apparatus is small and the manufacturing cost is low. Furthermore, since the low boiling point organic halogen can be decomposed with a small amount of hydrogen peroxide or sodium hypochlorite, the post-treatment of waste water is easy. In particular, the use of hydrogen peroxide is preferable because the hydrogen peroxide decomposes in water and the post-treatment of waste water becomes easier.

【0014】[0014]

【実施例】【Example】

〔実施例〕図1は本発明の一実施例に係る低沸点有機ハ
ロゲン分解装置のフローシートであり、低沸点有機ハロ
ゲンを含む原水を供給する原水供給管1と,過酸化水素
貯蔵槽2と,この過酸化水素貯蔵槽2に貯蔵された過酸
化水素を過酸化水素供給管3を介して原水に供給する過
酸化水素供給ポンプ4と,前記原水供給管1を介して供
給される原水に紫外線を照射する紫外線式殺菌器5a・
5b・5cとを主構成要素としている。更に、この図に
おいて、6は原水に含まれる低沸点有機ハロゲンを分解
処理した後の処理液を排水貯蔵槽7に排出する処理液排
出管であり、8はアルカリ貯蔵槽9内に貯蔵されたアル
カリ水溶液を、アルカリ供給管10を介して排水に供給
するアルカリ供給ポンプであり、11は前記処理液排出
管6を介して排出された処理液と,前記アルカリ供給管
10を介して供給されたアルカリ水溶液とを攪拌する攪
拌機であり、12は排水の水素イオン濃度(pH)を計
るpHメータであり、13は分解処理後の処理液をアル
カリ水溶液で中和処理した後、外部に放流する排水放流
管である。
[Embodiment] FIG. 1 is a flow sheet of a low-boiling organic halogen decomposing apparatus according to an embodiment of the present invention, which includes a raw water supply pipe 1 for supplying raw water containing low-boiling organic halogen, and a hydrogen peroxide storage tank 2. , A hydrogen peroxide supply pump 4 for supplying the hydrogen peroxide stored in the hydrogen peroxide storage tank 2 to the raw water via the hydrogen peroxide supply pipe 3, and a raw water supplied via the raw water supply pipe 1. Ultraviolet ray type sterilizer 5a that radiates ultraviolet rays
The main components are 5b and 5c. Further, in this figure, 6 is a treatment liquid discharge pipe for discharging the treatment liquid after decomposing the low boiling point organic halogen contained in the raw water to the waste water storage tank 7, and 8 is stored in the alkali storage tank 9. Reference numeral 11 denotes an alkali supply pump for supplying the alkaline aqueous solution to the wastewater through the alkali supply pipe 10, and 11 denotes the treatment liquid discharged through the treatment liquid discharge pipe 6 and the alkali supply pipe 10. A stirrer that stirs the alkaline aqueous solution, 12 is a pH meter that measures the hydrogen ion concentration (pH) of the wastewater, and 13 is wastewater that is discharged to the outside after neutralizing the treatment solution after the decomposition treatment with the alkaline aqueous solution. It is a discharge pipe.

【0015】図2は上記紫外線式殺菌器5aの概略断面
図であり、この図において、51は本体ケースであり、
この本体ケース51の上部にはカバー52が固定されて
いる。このカバー52には入口53と出口54とが夫々
対向する位置に形成してあり、この出口54には前記本
体ケース51に内蔵された殺菌槽55の流出口55aが
接続されている。この殺菌槽55には、上部のカバー5
2に一端が固定された殺菌燈56としての紫外線ランプ
が挿入してあり、この殺菌燈56はガラス管(図示せ
ず)で覆われて先端が殺菌槽55の底部に達している。
この殺菌槽55の底部の側壁には流入口としての複数の
小孔57が形成してあり、この小孔57を介して前記殺
菌槽55内と本体ケース51とは連通している。尚、他
の紫外線式殺菌器5b・5cについても、この紫外線式
殺菌器5aと同様の構成である。
FIG. 2 is a schematic sectional view of the ultraviolet sterilizer 5a, in which 51 is a main body case,
A cover 52 is fixed to the upper part of the main body case 51. An inlet 53 and an outlet 54 are formed in the cover 52 at positions facing each other, and the outlet 54 is connected to an outlet 55a of a sterilization tank 55 built in the main body case 51. This sterilization tank 55 has an upper cover 5
An ultraviolet lamp serving as a germicidal lamp 56, one end of which is fixed to 2, is inserted into the lamp 2. The germicidal lamp 56 is covered with a glass tube (not shown), and its tip reaches the bottom of the germicidal tank 55.
A plurality of small holes 57 are formed on the side wall of the bottom of the sterilization tank 55 as inflow ports, and the inside of the sterilization tank 55 and the main body case 51 communicate with each other through the small holes 57. The other ultraviolet sterilizers 5b and 5c have the same configuration as the ultraviolet sterilizer 5a.

【0016】次に、上記構成の分解装置における低沸点
有機ハロゲンの分解処理について具体的に説明する。こ
こでは、低沸点有機ハロゲンの一例として液体フロン
(フロン113)を用いた場合について説明する。先
ず、フロン113を含んだ原水は原水供給管1を下流側
に流れていく間に、過酸化水素貯蔵槽2から過酸化水素
供給ポンプ4及び過酸化水素供給管3を介して、過酸化
水素が添加される。その後、この過酸化水素が添加され
た原水は、紫外線式殺菌器5aの入口53を通って本体
ケース51内を流れ、殺菌槽55の小孔57を介して殺
菌槽55内に入る。そして、この殺菌槽55内を下流側
から上流側へと流れる間に殺菌燈56としての紫外線ラ
ンプによって紫外線が照射された後、流出口55a及び
出口54を介して、次の紫外線式殺菌器5bに入る。こ
の紫外線照射を紫外線式殺菌器5b・5cについても同
様に繰り返した後、処理液排出管6を介して排水貯蔵槽
7に排出される。これら一連の処理によって、フロン1
13は化2に示すように分解される。
Next, the decomposition treatment of the low boiling point organic halogen in the decomposition apparatus having the above-mentioned structure will be specifically described. Here, a case where liquid CFC (CFC 113) is used as an example of the low boiling point organic halogen will be described. First, the raw water containing the Freon 113 flows from the hydrogen peroxide storage tank 2 through the hydrogen peroxide supply pump 4 and the hydrogen peroxide supply pipe 3 while flowing to the downstream side of the raw water supply pipe 1. Is added. Then, the raw water to which the hydrogen peroxide is added flows through the inlet 53 of the ultraviolet sterilizer 5a into the main body case 51, and enters the sterilization tank 55 through the small holes 57 of the sterilization tank 55. Then, after the ultraviolet ray is irradiated by the ultraviolet ray lamp as the sterilizing lamp 56 while flowing from the downstream side to the upstream side in the sterilization tank 55, the next ultraviolet ray sterilizer 5b is passed through the outlet 55a and the outlet 54. to go into. This ultraviolet irradiation is similarly repeated for the ultraviolet ray sterilizers 5b and 5c, and then discharged to the waste water storage tank 7 through the treatment liquid discharge pipe 6. By this series of processing, CFC 1
13 is decomposed as shown in Chemical formula 2.

【0017】[0017]

【化2】 [Chemical 2]

【0018】ここで、処理液排出管6を介して排水貯蔵
槽7に排出された処理液は、塩酸(HCl)やフッ化水
素(HF)を含むためpHが3〜4と酸性側に傾く。こ
の場合は、アルカリ貯蔵槽9内に貯蔵されたアルカリ水
溶液(例えば、水酸化ナトリウム水溶液)を添加し、攪
拌機11で攪拌してpH5.8〜8.6程度に中和させる必
要がある。そして、この中和処理後の排水は、排水放流
管13を介して外部に放流される。尚、過酸化水素は水
中で分解するため、分解処理後の処理液には含まれてい
ない。 〔実験1〕本発明の分解処理装置を用いて、液体フロン
(フロン113)の飽和水溶液400ml(濃度121
36μg/l,pH5.5)に過酸化水素10ml(2.5
%)を添加した後、紫外線を60分間照射した後の処理
液のpHを調べ、その結果を表1に示す。また、紫外線
を30分間及び60分間照射した直後の処理液をそれぞ
れ1ml採取し、これをヘキサン10mlで抽出し、こ
の抽出液を更に10倍希釈した後、ガスクロマトグラフ
ィーで分析を行うことにより、処理液中のフロンの残留
濃度と分解率とを調べ、その結果を表1及び図3に示
す。尚、実験は常圧下、室温14〜18℃で行うという
条件である。 〔実験2〕過酸化水素の添加量を4ml(1%)とする
他は、上記実験1と同様に試験を行い、その結果を表1
及び図3に示す。 〔実験3〕過酸化水素を添加しない他は、上記実験1と
同様に試験を行い、その結果を表1及び図3に示す。 〔実験4〕過酸化水素の添加を行わず、且つ、紫外線を
照射しない他は、上記実験1と同様に試験を行い、その
結果を表1に示す。
Here, the treatment liquid discharged to the waste water storage tank 7 through the treatment liquid discharge pipe 6 contains hydrochloric acid (HCl) and hydrogen fluoride (HF), and therefore has a pH of 3 to 4 and is inclined to the acidic side. .. In this case, it is necessary to add an alkaline aqueous solution (for example, an aqueous sodium hydroxide solution) stored in the alkaline storage tank 9 and stir with the stirrer 11 to neutralize the pH to about 5.8 to 8.6. Then, the drainage after the neutralization treatment is discharged to the outside through the drainage discharge pipe 13. Since hydrogen peroxide decomposes in water, it is not contained in the treatment liquid after the decomposition treatment. [Experiment 1] Using the decomposition treatment apparatus of the present invention, 400 ml of a saturated aqueous solution of liquid CFC (CFC 113) (concentration: 121
36 μg / l, pH 5.5, 10 ml of hydrogen peroxide (2.5
%) Was added, and the pH of the treatment liquid after irradiation with ultraviolet rays for 60 minutes was examined, and the results are shown in Table 1. In addition, 1 ml each of the treatment liquid immediately after being irradiated with ultraviolet rays for 30 minutes and 60 minutes was sampled, extracted with 10 ml of hexane, the extract was further diluted 10 times, and then analyzed by gas chromatography. The residual concentration of CFCs in the treatment liquid and the decomposition rate were investigated, and the results are shown in Table 1 and FIG. The experiment is performed under the conditions of normal pressure and room temperature of 14-18 ° C. [Experiment 2] A test was conducted in the same manner as in Experiment 1 except that the amount of hydrogen peroxide added was 4 ml (1%).
And shown in FIG. [Experiment 3] A test was conducted in the same manner as in Experiment 1 except that hydrogen peroxide was not added, and the results are shown in Table 1 and FIG. [Experiment 4] A test was conducted in the same manner as in Experiment 1 except that hydrogen peroxide was not added and ultraviolet rays were not irradiated, and the results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】表1及び図3から明らかなように、過酸化
水素を添加し、且つ、紫外線照射を行った実験1及び実
験2ではフロンの分解率が優れているのに対して、紫外
線照射のみを行った実験3,過酸化水素の添加・紫外線
照射のいずれも行わなかった実験4では、フロンの分解
率が非常に悪いのが認められる。以上のことから、本発
明の分解処理装置を用いて過酸化水素の添加・紫外線照
射を行った場合には、常温・常圧でフロンを効率良く分
解できることがわかる。
As is clear from Table 1 and FIG. 3, in Experiments 1 and 2 in which hydrogen peroxide was added and UV irradiation was performed, the decomposition rate of CFCs was excellent, whereas only UV irradiation was performed. In Experiment 3, which was conducted, and in Experiment 4, in which neither the addition of hydrogen peroxide nor the irradiation of ultraviolet rays was conducted, it is recognized that the decomposition rate of CFCs is very poor. From the above, it is understood that when hydrogen peroxide is added and ultraviolet rays are irradiated using the decomposition treatment apparatus of the present invention, CFC can be decomposed efficiently at room temperature and atmospheric pressure.

【0021】また、実験1では60分後の処理液のpH
は4.0であった。これは、過酸化水素の添加及び紫外線
照射により、フロンが分解して処理液に塩酸やフッ化水
素が生じるためであると思われる。 〔実験5〕本発明の分解処理装置を用いて、トリクロロ
エチレン(トリクレン)の飽和水溶液400ml(濃度
704.8μg/l,pH5.8)に過酸化水素10mlを
添加し、紫外線を60分間照射した後の処理液のpH,
及び処理液の状態を調べたので、その結果を表2に示
す。また、紫外線を60分間照射した直後の処理液を1
ml採取し、これをヘキサン10mlで抽出し、この抽
出液を更に10倍希釈した後、ガスクロマトグラフィー
で分析を行うことにより、処理液中のトリクロロエチレ
ンの残留濃度を調べたので、その結果も表2に示す。
尚、実験は常圧下、室温14〜18℃で行うという条件
である。 〔実験6〕過酸化水素の代わりに酸化チタン1gを添加
する他は、上記実験5と同様に実験を行い、その結果を
表2に示す。 〔実験7〕過酸化水素を添加しない他は、上記実験5と
同様に実験を行い、その結果を表2に示す。
In Experiment 1, the pH of the treatment solution after 60 minutes
Was 4.0. It is considered that this is because the addition of hydrogen peroxide and the irradiation of ultraviolet rays cause the fluorocarbon to decompose and generate hydrochloric acid and hydrogen fluoride in the treatment liquid. [Experiment 5] Using the decomposition apparatus of the present invention, 10 ml of hydrogen peroxide was added to 400 ml of a saturated aqueous solution of trichlorethylene (trichlene) (concentration 704.8 μg / l, pH 5.8), and after irradiation with ultraviolet rays for 60 minutes PH of the treatment liquid of
The state of the treatment liquid was examined, and the results are shown in Table 2. In addition, the treatment liquid immediately after being irradiated with ultraviolet rays for 60 minutes
ml was collected, extracted with 10 ml of hexane, and the extract was further diluted 10-fold, and the residual concentration of trichlorethylene in the treated liquid was examined by analyzing with gas chromatography. 2 shows.
The experiment is performed under the conditions of normal pressure and room temperature of 14-18 ° C. [Experiment 6] An experiment was performed in the same manner as Experiment 5 except that 1 g of titanium oxide was added instead of hydrogen peroxide, and the results are shown in Table 2. [Experiment 7] An experiment was conducted in the same manner as Experiment 5 except that hydrogen peroxide was not added, and the results are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】実験6の結果から明らかなように、過酸化
水素の代わりに酸化チタンを添加した場合には、分解率
が最も悪いことが認められる。これは、酸化チタンを添
加すると水溶液が白濁するため、紫外線が透過しなくな
るからであると思われる。また、実験7の結果から明ら
かなように、過酸化水素を添加せずに、単に紫外線を照
射しただけでは、分解率が悪いことが認められる。
As is clear from the results of Experiment 6, it is recognized that the decomposition rate is the worst when titanium oxide is added instead of hydrogen peroxide. It is considered that this is because when the titanium oxide is added, the aqueous solution becomes cloudy and ultraviolet rays cannot pass through. Further, as is clear from the results of Experiment 7, it is recognized that the decomposition rate is poor only by irradiating ultraviolet rays without adding hydrogen peroxide.

【0024】これらに対して、過酸化水素の添加及び紫
外線の照射を行った実験5では、分解率がはるかに優れ
ていることが認められる。この時のトリクロロエチレン
の分解反応は化3に示す通りである。
On the other hand, in Experiment 5 in which hydrogen peroxide was added and ultraviolet rays were irradiated, it was confirmed that the decomposition rate was far superior. The decomposition reaction of trichlorethylene at this time is as shown in Chemical formula 3.

【0025】[0025]

【化3】 [Chemical 3]

【0026】このように、過酸化水素は触媒として作用
するため常温・常圧で分解することができる。また、過
酸化水素は無色透明であるから、酸化チタンのように紫
外線の透過を妨げることがない。したがって、常温・常
圧でトリクロロエチレンを効率良く分解することができ
る。また、60分後の処理液のpHが1.75と最も酸性
側に傾いていることも認められる。これは、トリクロロ
エチレンが分解して、処理液中に塩酸が生じるためであ
ると思われる。 〔その他の事項〕 上記実施例においては過酸化水素を注入したが、次
亜塩素酸ナトリウム(NaClO)を使用した場合でも
上記実施例と同様の効果を奏することを実験により確認
している。 上記実施例においては、低沸点有機ハロゲンとし
て、液体フロン及びトリクロロエチレンを使用したが、
本発明は何らこれに限定されるものではなく、例えば、
テトラクロロエチレン,1,1,1-トリクロロエタン等の有
機塩素系溶剤やトリクロロメタン,ブロモジクロロメタ
ン,ジブロモクロロメタン,トリブロモメタン等のトリ
ハロメタンを使用した場合でも、上記実施例と同様の効
果を奏することを実験により確認している。 上記実施例においては、紫外線式殺菌器を3個用い
たが、原水の流量や使用する紫外線式殺菌器の性質等に
よって適宜変更することも可能である。
Thus, since hydrogen peroxide acts as a catalyst, it can be decomposed at room temperature and atmospheric pressure. Further, since hydrogen peroxide is colorless and transparent, it does not hinder the transmission of ultraviolet rays unlike titanium oxide. Therefore, trichlorethylene can be efficiently decomposed at room temperature and atmospheric pressure. It is also recognized that the pH of the treatment liquid after 60 minutes is 1.75, which is the most acidic side. This is probably because trichlorethylene decomposes to generate hydrochloric acid in the treatment liquid. [Other Matters] Although hydrogen peroxide was injected in the above examples, it has been confirmed by experiments that the same effects as in the above examples can be obtained even when sodium hypochlorite (NaClO) is used. In the above examples, liquid fluorocarbon and trichlorethylene were used as the low boiling organic halogen,
The present invention is not limited to this, for example,
Experiments were performed to obtain the same effect as in the above-mentioned examples even when an organic chlorine solvent such as tetrachloroethylene or 1,1,1-trichloroethane or trihalomethane such as trichloromethane, bromodichloromethane, dibromochloromethane or tribromomethane was used. Have confirmed by. Although three ultraviolet ray sterilizers are used in the above-mentioned embodiment, it is possible to appropriately change them depending on the flow rate of raw water, the characteristics of the ultraviolet ray sterilizer to be used and the like.

【0027】[0027]

【発明の効果】以上の本発明によれば、液体フロン,有
機塩素系溶剤,トリハロメタン等の低沸点有機ハロゲン
を常温・常圧で効率良く分解することができるといった
優れた効果を奏する。加えて、本発明の低沸点有機ハロ
ゲン分解装置は、オゾン発生器等の特別な装置が不要で
あるため装置が小型で、且つ、製造コストも安いという
効果も有する。
According to the present invention as described above, it is possible to efficiently decompose low boiling point organic halogens such as liquid CFCs, organic chlorine-based solvents and trihalomethanes at room temperature and atmospheric pressure. In addition, the low-boiling-point organic halogen decomposing apparatus of the present invention does not require a special apparatus such as an ozone generator, so that the apparatus is small and the manufacturing cost is low.

【0028】更には、少量の過酸化水素又は次亜塩素酸
ナトリウムで低沸点有機ハロゲンを分解することができ
るため、排水の後処理が容易である。
Furthermore, since the low-boiling organic halogen can be decomposed with a small amount of hydrogen peroxide or sodium hypochlorite, the post-treatment of waste water is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る低沸点有機ハロゲン分
解装置の概略を示すフローシートである。
FIG. 1 is a flow sheet showing an outline of a low boiling point organic halogen decomposing apparatus according to an embodiment of the present invention.

【図2】図1における紫外線式殺菌器の概略断面図であ
る。
FIG. 2 is a schematic sectional view of the ultraviolet sterilizer in FIG.

【図3】過酸化水素の添加量と分解率との関係を示すグ
ラフである。
FIG. 3 is a graph showing the relationship between the amount of hydrogen peroxide added and the decomposition rate.

【符号の説明】[Explanation of symbols]

2 過酸化水素貯蔵槽 3 過酸化水素供給管 4 過酸化水素供給ポンプ 5a・5b・5c 紫外線式殺菌器 2 Hydrogen peroxide storage tank 3 Hydrogen peroxide supply pipe 4 Hydrogen peroxide supply pump 5a ・ 5b ・ 5c UV sterilizer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 低沸点有機ハロゲンに過酸化水素又は
次亜塩素酸ナトリウムを注入する注入手段と,上記注入
手段により過酸化水素又は次亜塩素酸ナトリウムが注入
された低沸点有機ハロゲンに、紫外線を照射する紫外線
照射手段とを具備することを特徴とする低沸点有機ハロ
ゲン分解装置。
1. Injecting means for injecting hydrogen peroxide or sodium hypochlorite into low-boiling organic halogen, and low-boiling organic halogen into which hydrogen peroxide or sodium hypochlorite is injected by the injecting means, An apparatus for decomposing low-boiling-point organic halogen, which comprises:
【請求項2】 上記低沸点有機ハロゲンは、液体フロ
ン,有機塩素系溶剤,又はトリハロメタンであることを
特徴とする請求項1記載の低沸点有機ハロゲン分解装
置。
2. The low-boiling organic halogen decomposing apparatus according to claim 1, wherein the low-boiling organic halogen is liquid fluorocarbon, an organic chlorine-based solvent, or trihalomethane.
JP7126892A 1992-03-27 1992-03-27 Device for decomposing low boiling point organic halogen Pending JPH05269374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7126892A JPH05269374A (en) 1992-03-27 1992-03-27 Device for decomposing low boiling point organic halogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7126892A JPH05269374A (en) 1992-03-27 1992-03-27 Device for decomposing low boiling point organic halogen

Publications (1)

Publication Number Publication Date
JPH05269374A true JPH05269374A (en) 1993-10-19

Family

ID=13455807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7126892A Pending JPH05269374A (en) 1992-03-27 1992-03-27 Device for decomposing low boiling point organic halogen

Country Status (1)

Country Link
JP (1) JPH05269374A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0968739A1 (en) 1998-06-22 2000-01-05 Canon Kabushiki Kaisha Method and apparatus for decomposing halogenated aliphatic and aromatic compounds
EP1005881A1 (en) * 1998-11-30 2000-06-07 Canon Kabushiki Kaisha Method and apparatus for decomposing halogenated aliphatic hydrocarbon compounds or aromatic compounds
EP1010453A1 (en) * 1998-12-16 2000-06-21 Canon Kabushiki Kaisha Method and apparatus for decomposing gaseous aliphatic hydrocarbon halide compound
EP1163946A1 (en) * 2000-06-16 2001-12-19 Canon Kabushiki Kaisha Process and system for decomposing pollutants
JP2002045436A (en) * 2000-08-03 2002-02-12 Noritsu Koki Co Ltd Cracking treatment method for hazardous material and apparatus for the same
US7018514B2 (en) 2001-11-12 2006-03-28 Canon Kabushiki Kaisha Method and apparatus for processing substances to be decomposed
US7163615B2 (en) 2001-11-12 2007-01-16 Canon Kabushiki Kaisha Method of treating substance to be degraded and its apparatus
US7364710B2 (en) 2002-03-28 2008-04-29 Koken Ltd. System for decomposing organic compound
JP2017104773A (en) * 2015-12-07 2017-06-15 旭化成株式会社 Ultraviolet irradiation module cell, ultraviolet irradiation module, and ultraviolet irradiation module installing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0968739A1 (en) 1998-06-22 2000-01-05 Canon Kabushiki Kaisha Method and apparatus for decomposing halogenated aliphatic and aromatic compounds
EP1005881A1 (en) * 1998-11-30 2000-06-07 Canon Kabushiki Kaisha Method and apparatus for decomposing halogenated aliphatic hydrocarbon compounds or aromatic compounds
EP1010453A1 (en) * 1998-12-16 2000-06-21 Canon Kabushiki Kaisha Method and apparatus for decomposing gaseous aliphatic hydrocarbon halide compound
EP1163946A1 (en) * 2000-06-16 2001-12-19 Canon Kabushiki Kaisha Process and system for decomposing pollutants
US6699370B2 (en) 2000-06-16 2004-03-02 Canon Kabushiki Kaisha Process and system for decomposing pollutants
JP2002045436A (en) * 2000-08-03 2002-02-12 Noritsu Koki Co Ltd Cracking treatment method for hazardous material and apparatus for the same
US7018514B2 (en) 2001-11-12 2006-03-28 Canon Kabushiki Kaisha Method and apparatus for processing substances to be decomposed
US7163615B2 (en) 2001-11-12 2007-01-16 Canon Kabushiki Kaisha Method of treating substance to be degraded and its apparatus
US7364710B2 (en) 2002-03-28 2008-04-29 Koken Ltd. System for decomposing organic compound
US7722830B2 (en) 2002-03-28 2010-05-25 Koken Ltd. System for decomposing organic compound
JP2017104773A (en) * 2015-12-07 2017-06-15 旭化成株式会社 Ultraviolet irradiation module cell, ultraviolet irradiation module, and ultraviolet irradiation module installing method

Similar Documents

Publication Publication Date Title
US4402836A (en) Method for treating contaminated wastewater
Xiao et al. Photodegradation of iodinated trihalomethanes in aqueous solution by UV 254 irradiation
Iovino et al. Photodegradation of diclofenac in wastewaters
US7722830B2 (en) System for decomposing organic compound
JPH05269374A (en) Device for decomposing low boiling point organic halogen
Guo et al. Theoretical and experimental insights into electron-induced efficient defluorination of perfluorooctanoic acid and perfluorooctane sulfonate by mesoporous plasma
JPS62191095A (en) Drain treatment apparatus
EP0242941B1 (en) Process and apparatus for the deodorization of air
RU2636076C2 (en) Method of photochemical purifying water and device for its implementation
JPH09234338A (en) Photolysis of organochlorine compound
JP3699055B2 (en) Equipment for decomposing gaseous organic compounds
Kudlek et al. Impact of the UV lamp power on the formation of swimming pool water treatment by-products
JP2002079195A (en) Device and method for cleaning ultraviolet reactor
JPWO2007058285A1 (en) Fluid purification method and purification device
US6833115B2 (en) Method of decomposing pollutants and apparatus for the same
Ji et al. Thermodynamic study on the reactivity of trace organic contaminant with the hydroxyl radicals in waters by advanced oxidation processes
JPH06182151A (en) Treatment of exhaust gas
US20070110611A1 (en) Method of Disinfecting Items In a Vacuum Using Ozone
JP3688651B2 (en) Liquid organic compound decomposition equipment
Mustafa et al. Removing of Pesticides From water using Advanced Oxidation Processes including: O3, H2O2 and UV in combination
JP2001017832A (en) Exhaust gas deotoxification apparatus
JP2000051874A (en) Method and apparatus for treating harmful substance
Mustafa et al. Removing of atrazine from water using advanced oxidation processes
JP2001220358A (en) Method for photolyzing organochlorine compound and photolyzing apparatus
Topolovec et al. Pathways of organic micropollutants degradation in atmospheric pressure plasma processing