JPH0526554A - Vacuum gasification cooling device - Google Patents

Vacuum gasification cooling device

Info

Publication number
JPH0526554A
JPH0526554A JP20128691A JP20128691A JPH0526554A JP H0526554 A JPH0526554 A JP H0526554A JP 20128691 A JP20128691 A JP 20128691A JP 20128691 A JP20128691 A JP 20128691A JP H0526554 A JPH0526554 A JP H0526554A
Authority
JP
Japan
Prior art keywords
cooling
vacuum pump
cooling chamber
ejector
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20128691A
Other languages
Japanese (ja)
Other versions
JP2729417B2 (en
Inventor
Takayuki Morii
高之 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP3201286A priority Critical patent/JP2729417B2/en
Publication of JPH0526554A publication Critical patent/JPH0526554A/en
Application granted granted Critical
Publication of JP2729417B2 publication Critical patent/JP2729417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To prevent a degree of reducing pressure within a gasification cooling chamber from being reduced by a method wherein gasified steam within the gasification cooling chamber is positively sucked. CONSTITUTION:Fluid discharging ports 15 and 7 are disposed above and below a jacket part 5 of a reaction container 21. A fluid discharging port 15 is connected to a suction pipe 17 and communicated with an ejector 32 through a heat exchanger 10 and a lowering part 11. A vacuum pump device 22 is comprised of the ejector 32, a tank 31, a pump 30 and a nozzle 33. A cooling water fluid pipe 28 is connected to the jacket part 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷却室内を減圧状態に
し、供給した冷却水を蒸発せしめ、その蒸発潜熱でもっ
て被冷却物を冷却するものに関する。上記の減圧気化冷
却装置としては、各種反応釜の冷却、食品の冷却装置等
がある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system in which a cooling chamber is depressurized to evaporate supplied cooling water and the latent heat of evaporation cools an object to be cooled. Examples of the reduced pressure evaporative cooling device include cooling devices for various reaction vessels and food cooling devices.

【0002】[0002]

【従来技術】従来の減圧気化冷却装置として、例えば実
開平3−48683号公報に示されたものがある。これ
は、気化冷却室を真空ポンプで減圧し、冷却室に冷却水
を供給して、被冷却物を気化冷却し、気化した蒸気を気
化冷却室の上部からも真空ポンプで吸引するものであ
る。気化蒸気を気化冷却室の上部からも吸引することに
より、気化冷却室に蒸気が滞留することなく、新たな気
化が生じやすくなり、効率的な気化冷却を行うことがで
きる。
2. Description of the Related Art As a conventional reduced pressure evaporative cooling device, for example, there is one shown in Japanese Utility Model Laid-Open No. 3-48683. This is to reduce the pressure in the evaporative cooling chamber with a vacuum pump, supply cooling water to the cooling chamber to evaporatively cool the object to be cooled, and suck the vaporized vapor from the upper part of the evaporative cooling chamber with a vacuum pump. .. By sucking the vaporized vapor also from the upper part of the vaporization cooling chamber, new vaporization easily occurs without the vapor remaining in the vaporization cooling chamber, and efficient vaporization cooling can be performed.

【0003】[0003]

【本発明が解決しようとする課題】上記従来の減圧気化
冷却装置は、減圧度合が不安定となり、従って、蒸発気
化の度合も不安定となり、冷却ムラが発生し、被冷却物
としての製品の品質を一定に維持し難い問題があった。
この原因は、気化冷却室の下部に滞留した冷却水がその
水頭圧により真空ポンプへ優先的に吸引されるために、
ジャケット上部の蒸気あるいは残留空気を必ずしも効果
的に吸引することができないためである。
In the above conventional reduced pressure evaporative cooling apparatus, the degree of reduced pressure becomes unstable, so that the degree of evaporation and vaporization becomes unstable, and uneven cooling occurs. There was a problem that it was difficult to keep the quality constant.
The reason for this is that the cooling water that has accumulated in the lower part of the evaporative cooling chamber is preferentially sucked into the vacuum pump by its head pressure,
This is because vapor or residual air in the upper part of the jacket cannot be effectively sucked.

【0004】従って本発明の技術的課題は、気化冷却に
より生じた蒸気を確実に真空ポンプで吸引して、気化冷
却室の減圧度合の低下を防止することである。
Therefore, a technical object of the present invention is to reliably suck the vapor generated by the evaporative cooling with a vacuum pump to prevent the degree of decompression of the evaporative cooling chamber from being lowered.

【0005】[0005]

【課題を解決する為の手段】本発明の減圧気化冷却装置
の構成は次の通りである。気化冷却室を真空ポンプで減
圧し、該気化冷却室に冷却水を供給して、被冷却物を気
化冷却するものにおいて、気化冷却室の上部に気化蒸気
を吸引するための吸引管を設け、該吸引管を熱交換器と
立下げ部とを介して真空ポンプと連通したものである。
The structure of the reduced pressure evaporative cooling apparatus of the present invention is as follows. The evaporative cooling chamber is decompressed by a vacuum pump, cooling water is supplied to the evaporative cooling chamber to evaporatively cool an object to be cooled, and a suction pipe for sucking vaporized vapor is provided in the upper part of the evaporative cooling chamber. The suction pipe is connected to a vacuum pump via a heat exchanger and a falling portion.

【0006】[0006]

【作用】気化冷却室で冷却により生じた気化蒸気は、気
化冷却室の上部から吸引管を経て熱交換器に至る。熱交
換器で気化蒸気は熱交換すなわち冷却され、凝縮水とな
り、立下げ部に流下して溜る。立下げ部に溜った凝縮水
は、その溜った水位に応じて水頭圧が作用することにな
り、真空ポンプに確実に吸引される。
The vaporized steam generated by cooling in the vaporization cooling chamber reaches the heat exchanger from the upper portion of the vaporization cooling chamber through the suction pipe. The vaporized steam is heat-exchanged, that is, cooled in the heat exchanger to become condensed water, which flows down and accumulates in the falling portion. Condensed water accumulated in the falling portion has a head pressure acting according to the accumulated water level, and is reliably sucked into the vacuum pump.

【0007】[0007]

【実施例】本実施例においては、冷却装置として反応釜
を用いた例を示す。図1において、反応釜21と真空ポ
ンプ装置22と冷却水供給管28と熱交換器10と立下
げ部11とで減圧気化冷却装置を構成する。反応釜21
は、従来のものと同様に、原料入口2、製品出口3、撹
拌器4、気化冷却室としてのジャケット部5を有してお
り、ジャケット部5には冷却水供給口12,13と下部
流体排出口7及び上部流体排出口15を設ける。
EXAMPLE In this example, an example using a reaction vessel as a cooling device is shown. In FIG. 1, the reaction vessel 21, the vacuum pump device 22, the cooling water supply pipe 28, the heat exchanger 10, and the falling portion 11 constitute a reduced pressure evaporative cooling device. Reaction kettle 21
Has a raw material inlet 2, a product outlet 3, a stirrer 4, and a jacket portion 5 as an evaporative cooling chamber, like the conventional one. The jacket portion 5 has cooling water supply ports 12 and 13 and a lower fluid. An outlet 7 and an upper fluid outlet 15 are provided.

【0008】真空ポンプ装置22はエゼクタ32とポン
プ30を組合せた組合せポンプから成り、ポンプ30が
タンク31に吸込側を接続され吐出側をエゼクタ32の
ノズル33に接続し、エゼクタ32のディフュ―ザ34
がタンク31の上部空間に接続された構成のものであ
り、エゼクタ32とジャケット部5の流体排出口7,1
5とが連通路16,17で接続する。連通路17がジャ
ケット部5から気化蒸気を吸引する吸引管となる。連通
路17は、熱交換器10と立下げ部11を介してエゼク
タ32と接続する。
The vacuum pump device 22 comprises a combined pump in which an ejector 32 and a pump 30 are combined. The pump 30 has a suction side connected to a tank 31 and a discharge side connected to a nozzle 33 of the ejector 32, and a diffuser of the ejector 32. 34
Is connected to the upper space of the tank 31, and the fluid discharge ports 7, 1 of the ejector 32 and the jacket 5 are connected.
5 are connected by communication passages 16 and 17. The communication passage 17 serves as a suction pipe for sucking vaporized vapor from the jacket 5. The communication passage 17 is connected to the ejector 32 via the heat exchanger 10 and the falling portion 11.

【0009】熱交換器10はコイル式のもので、内部を
連通路17がコイル状に貫通して、その外周を冷却媒体
供給管18から供給される冷却媒体が通過して連通路1
7を冷却する。立下げ部11は縦長の密閉容器で形成
し、下端からエゼクタ32に連通する。
The heat exchanger 10 is of a coil type, and a communication passage 17 penetrates the inside in a coil shape, and a cooling medium supplied from a cooling medium supply pipe 18 passes through the outer periphery of the communication passage 1.
Cool 7. The standing portion 11 is formed of a vertically long closed container, and communicates with the ejector 32 from the lower end.

【0010】連通路16にはスチ―ムトラップ51と自
動弁52を並列に取り付ける。真空ポンプ装置22は、
ポンプ30の作動によりタンク31内の水をエゼクタ3
2に供給して吸引作用させ、タンク31に戻すようにな
っている。
A steam trap 51 and an automatic valve 52 are mounted in parallel in the communication passage 16. The vacuum pump device 22 is
By operating the pump 30, the water in the tank 31 is ejected by the ejector 3.
It is configured to be supplied to No. 2 to be suctioned and returned to the tank 31.

【0011】冷却水供給管28は、弁70を介してタン
ク31に接続すると共に、弁26を介して冷却水供給口
12,13と接続する。冷却水供給口12,13は、よ
り冷却ムラを防止するために反応釜21の全周にわたっ
て設けることが望ましい。また、冷却水供給口12,1
3部には図示していないが冷却水を噴霧するためのノズ
ルを配置することが望ましい。冷却水の一部は弁70を
介しタンク31に供給される。タンク31内に冷却水を
供給することによってタンク31内の水温を制御するよ
うになっている。タンク31内の水温を検出する温度セ
ンサ―41からの信号により弁70は開閉する。
The cooling water supply pipe 28 is connected to the tank 31 via the valve 70 and is connected to the cooling water supply ports 12 and 13 via the valve 26. The cooling water supply ports 12 and 13 are preferably provided over the entire circumference of the reaction vessel 21 in order to prevent uneven cooling. Also, the cooling water supply ports 12, 1
Although not shown, it is desirable to arrange a nozzle for spraying cooling water in the third part. Part of the cooling water is supplied to the tank 31 via the valve 70. By supplying cooling water into the tank 31, the water temperature in the tank 31 is controlled. The valve 70 opens and closes in response to a signal from a temperature sensor 41 that detects the water temperature in the tank 31.

【0012】真空ポンプ装置22に余剰水排出手段25
を設ける。余剰水排出手段25は弁71を取付けタンク
31内の水位センサ―60,61からの信号により、タ
ンク31内の水位を所定範囲に保つものである。
Excess water discharging means 25 is attached to the vacuum pump device 22.
To provide. The surplus water discharging means 25 is provided with a valve 71, and keeps the water level in the tank 31 within a predetermined range in response to signals from water level sensors 60, 61 in the tank 31.

【0013】弁75は、真空ポンプ装置22を循環する
循環水の一部を反応釜21の冷却水として用いる場合に
使用するためのもので、真空ポンプ装置22とジャケッ
ト部5の冷却水供給口12とを接続する管路に介在させ
る。また弁76は、冷却のみならず加熱をも行なう場合
に、加熱用蒸気供給管27の開閉を行なうためのもので
ある。
The valve 75 is used when a part of the circulating water circulating through the vacuum pump device 22 is used as the cooling water for the reaction vessel 21, and the cooling water supply port for the vacuum pump device 22 and the jacket portion 5 is used. It is intervened in the pipe line connecting with 12. Further, the valve 76 is for opening and closing the heating steam supply pipe 27 when performing heating as well as cooling.

【0014】反応釜21を冷却する場合、真空ポンプ装
置22を駆動すると共に、弁52,58を開弁してジャ
ケット部5内を所定の減圧状態に維持する。次いで弁2
6を開弁して冷却水をジャケット部5に供給する。供給
される冷却水は、ジャケット部5内が減圧状態であるた
めに反応釜21の熱により直ちに気化して反応釜21を
冷却する。冷却により気化した蒸気と、気化しきれなか
った冷却水は、それぞれ流体排出口15,7から連通路
17,16に至る。連通路17に至った気化蒸気は、熱
交換器10で冷却され凝縮水となり、立下げ部11に至
ってエゼクタ32に吸引される。この場合、立下げ部1
1に溜った水位に応じた水頭圧が作用することにより、
凝縮水は確実にエゼクタ32に吸引され、ひいては気化
蒸気の滞留は生じない。連通路16に至った冷却水は、
同じくエゼクタ32に吸引される。
When the reaction vessel 21 is cooled, the vacuum pump device 22 is driven and the valves 52 and 58 are opened to maintain the inside of the jacket portion 5 at a predetermined depressurized state. Then valve 2
6 is opened to supply cooling water to the jacket portion 5. The supplied cooling water immediately evaporates by the heat of the reaction kettle 21 and cools the reaction kettle 21 because the inside of the jacket portion 5 is in a depressurized state. The vapor that has been vaporized by cooling and the cooling water that has not been vaporized reach the communication passages 17 and 16 from the fluid discharge ports 15 and 7, respectively. The vaporized vapor that has reached the communication passage 17 is cooled by the heat exchanger 10 to become condensed water, reaches the falling portion 11, and is sucked by the ejector 32. In this case, the falling unit 1
By the action of the head pressure according to the water level accumulated in 1,
The condensed water is surely sucked into the ejector 32, and as a result, no vaporized vapor is accumulated. The cooling water that has reached the communication passage 16 is
Similarly, the ejector 32 is sucked.

【0015】エゼクタ32に吸引された冷却水及び凝縮
水はタンク31に至る。タンク31の水位が所定量にな
ると、水位センサ―60により弁71が開弁して余剰水
として系外に排除する。真空ポンプ装置22の真空度す
なわちエゼクタ32の減圧度合は、ノズル33を通過す
る流体の温度に対する飽和圧力となるために、タンク3
1内の水の温度を冷却水を供給することにより調節すれ
ばほぼ任意にコントロ―ルできる。
The cooling water and the condensed water sucked by the ejector 32 reach the tank 31. When the water level of the tank 31 reaches a predetermined amount, the valve 71 is opened by the water level sensor 60 to remove it as excess water outside the system. Since the degree of vacuum of the vacuum pump device 22, that is, the degree of decompression of the ejector 32 becomes a saturated pressure with respect to the temperature of the fluid passing through the nozzle 33, the tank 3
If the temperature of the water in 1 is adjusted by supplying cooling water, it can be controlled almost arbitrarily.

【0016】[0016]

【発明の効果】本発明によれば、気化冷却室で発生した
気化蒸気を真空ポンプへ確実に吸引することができ、気
化冷却室の減圧度合が低下することを防止することがで
きる。従って、冷却ムラを生じることがなく、被冷却物
の製品品質を一定に維持することができる。
According to the present invention, the vaporized vapor generated in the vaporization cooling chamber can be reliably sucked into the vacuum pump, and the degree of pressure reduction in the vaporization cooling chamber can be prevented from decreasing. Therefore, it is possible to maintain a constant product quality of the object to be cooled without causing uneven cooling.

【0017】また本発明によれば、気化冷却室で発生し
た気化蒸気を熱交換器で冷却して凝縮水とすることによ
り、気化蒸気の対流が速まり、効率良く気化冷却を行う
ことができる。
Further, according to the present invention, the vaporized steam generated in the vaporized cooling chamber is cooled by the heat exchanger to be condensed water, whereby the convection of the vaporized steam is accelerated, and the vaporized cooling can be efficiently performed. ..

【0018】また本発明によれば、立下げ部に溜った凝
縮水を真空ポンプで吸引することにより、立下げ部上方
においてはその吸引された凝縮水の量に応じて容積が拡
大して真空の度合が高まり、連通している熱交換器内か
ら気化冷却室内の減圧度も高まり、更に気化冷却を効率
良く行うことができる。
Further, according to the present invention, the condensed water accumulated in the lowering portion is sucked by the vacuum pump, so that the volume is increased above the lowering portion in accordance with the amount of the sucked condensed water to form a vacuum. And the degree of pressure reduction in the evaporative cooling chamber from within the communicating heat exchanger is increased, and evaporative cooling can be performed efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の減圧気化冷却装置の実施例の構成図で
ある。
FIG. 1 is a configuration diagram of an embodiment of a reduced pressure evaporative cooling device of the present invention.

【符号の説明】[Explanation of symbols]

5 ジャケット部 10 熱交換器 11 立下げ部 12,13 冷却水供給口 17 吸引管 21 反応釜 22 真空ポンプ装置 28 冷却水供給管 30 ポンプ 31 タンク 32 エゼクタ 5 Jacket part 10 Heat exchanger 11 Falling part 12,13 Cooling water supply port 17 Suction pipe 21 Reactor 22 Vacuum pump device 28 Cooling water supply pipe 30 Pump 31 Tank 32 Ejector

Claims (1)

【特許請求の範囲】 【請求項1】 気化冷却室を真空ポンプで減圧し、該気
化冷却室に冷却水を供給して、被冷却物を気化冷却する
ものにおいて、気化冷却室の上部に気化蒸気を吸引する
ための吸引管を設け、該吸引管を熱交換器と立下げ部と
を介して真空ポンプと連通した減圧気化冷却装置。
Claim: What is claimed is: 1. A vaporization cooling chamber is decompressed by a vacuum pump, and cooling water is supplied to the vaporization cooling chamber to vaporize and cool an object to be cooled. A reduced pressure evaporative cooling device in which a suction pipe for sucking vapor is provided, and the suction pipe is connected to a vacuum pump through a heat exchanger and a falling portion.
JP3201286A 1991-07-15 1991-07-15 Decompression evaporative cooling equipment Expired - Fee Related JP2729417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3201286A JP2729417B2 (en) 1991-07-15 1991-07-15 Decompression evaporative cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3201286A JP2729417B2 (en) 1991-07-15 1991-07-15 Decompression evaporative cooling equipment

Publications (2)

Publication Number Publication Date
JPH0526554A true JPH0526554A (en) 1993-02-02
JP2729417B2 JP2729417B2 (en) 1998-03-18

Family

ID=16438459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3201286A Expired - Fee Related JP2729417B2 (en) 1991-07-15 1991-07-15 Decompression evaporative cooling equipment

Country Status (1)

Country Link
JP (1) JP2729417B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122597A (en) * 1997-04-04 2000-09-19 Fuji Jukogyo Kabushiki Kaisha Vehicle monitoring apparatus
JP2002370235A (en) * 2001-06-15 2002-12-24 Tlv Co Ltd Steam vulcanization apparatus
JP2006258317A (en) * 2005-03-15 2006-09-28 Tlv Co Ltd Evaporative cooling device
JP2007078276A (en) * 2005-09-15 2007-03-29 Tlv Co Ltd Evaporative cooling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252280U (en) * 1975-10-09 1977-04-14
JPH01315336A (en) * 1988-06-15 1989-12-20 Tlv Co Ltd Heating and cooling device for reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252280U (en) * 1975-10-09 1977-04-14
JPH01315336A (en) * 1988-06-15 1989-12-20 Tlv Co Ltd Heating and cooling device for reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6122597A (en) * 1997-04-04 2000-09-19 Fuji Jukogyo Kabushiki Kaisha Vehicle monitoring apparatus
JP2002370235A (en) * 2001-06-15 2002-12-24 Tlv Co Ltd Steam vulcanization apparatus
JP2006258317A (en) * 2005-03-15 2006-09-28 Tlv Co Ltd Evaporative cooling device
JP2007078276A (en) * 2005-09-15 2007-03-29 Tlv Co Ltd Evaporative cooling device

Also Published As

Publication number Publication date
JP2729417B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
JPH083906Y2 (en) Decompression evaporation cooling device
JPH0526554A (en) Vacuum gasification cooling device
JPH11216459A (en) Seawater desalting device
JPH0537181Y2 (en)
JPH07163865A (en) Heating and cooling apparatus
JP2665832B2 (en) Heating and cooling device
JP2764226B2 (en) Decompression evaporative cooling equipment
JPH0517575Y2 (en)
JP2729421B2 (en) Decompression evaporative cooling equipment
JP2681318B2 (en) Decompression evaporative cooling equipment
JP2840910B2 (en) Steam heating device
JP2665835B2 (en) Heating and cooling device
JP3245662B2 (en) Decompression evaporative cooling system
JPH0517572Y2 (en)
US5007582A (en) Reduced pressure steam heat treating device
JP3845192B2 (en) Evaporative cooling device
WO2004047924A1 (en) Deaeration apparatus for deaerating water used during ultrasonic focusing tumour treatment
JPH0517574Y2 (en)
JP2684266B2 (en) Decompression evaporative cooling equipment
JPH0517573Y2 (en)
JP2665838B2 (en) Heating and cooling device
JP3054990B2 (en) Steam heating device
JPH07139861A (en) Reduced pressure vaporizing cooler
CN214000925U (en) Corrugated paper printing machine
JP3256794B2 (en) Mold heating or cooling device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20091219

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees