JPH05265177A - Optical mask and its production and apparatus for production and exposing device - Google Patents

Optical mask and its production and apparatus for production and exposing device

Info

Publication number
JPH05265177A
JPH05265177A JP9210192A JP9210192A JPH05265177A JP H05265177 A JPH05265177 A JP H05265177A JP 9210192 A JP9210192 A JP 9210192A JP 9210192 A JP9210192 A JP 9210192A JP H05265177 A JPH05265177 A JP H05265177A
Authority
JP
Japan
Prior art keywords
light
optical mask
film
laser
organic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9210192A
Other languages
Japanese (ja)
Inventor
Seiji Umemoto
清司 梅本
Yasuo Fujimura
保夫 藤村
Kazutaka Hara
和孝 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP9210192A priority Critical patent/JPH05265177A/en
Publication of JPH05265177A publication Critical patent/JPH05265177A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE:To obtain the optical mask having a region where light transmittance changes continuously in an arbitrary shape, the process and apparatus for production of the optical mask and the exposing device which can execute the exposing processing delicately controlled in light intensity by one time of exposing operation. CONSTITUTION:This optical mask is controlled in the light transmittance by forming a recessed part 11 where its thickness changes on a non-light transmission org. film 1. The optical mask consists of the non-light transmission org. film controlled in the light transmittance by the concn. distribution of a light absorptive material. The process for production of the optical mask consists in irradiating the non-light transmission org. film with a laser beam to partially remove the film forming material or irradiating the light absorptive material in the non-light transmission org. film with the laser beam to sublimate or decomposed the irradiated parts, thereby forming the concn. distribution. This apparatus for production of the optical mask has a laser oscillating section, a shutter for controlling the laser beam, a light condensing section, and an optical system for scanning operating cooperatively with the shutter. This exposing device has such optical mask.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光の透過率を連続的に
変化させて光強度の微妙な制御を可能とした光マスク、
及びその製造方法と製造装置、並びにかかる光マスクを
有する露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical mask capable of finely controlling the light intensity by continuously changing the light transmittance.
The present invention also relates to a manufacturing method and a manufacturing apparatus thereof, and an exposure apparatus having such a photomask.

【0002】[0002]

【従来の技術】従来、蒸着領域の通過速度を変化させる
方法で蒸着膜の厚さが段階的に異なる領域を形成して光
の透過率に変化をもたせた光マスクが知られていた。し
かしながら、その光透過率の変化が階段的であり、かつ
長方形や円形以外の複雑な分布形状をもたせることが困
難であると共に、一定な透過率領域の占有面積が大きく
て各透過率領域のスケールが大きすぎる問題点があつ
た。そのため、光強度を微妙に制御する場合、光マスク
を交換して数ステップにわたる露光操作を要する難点が
あった。
2. Description of the Related Art Conventionally, there has been known an optical mask in which the transmittance of light is changed by forming regions in which the thickness of a vapor deposition film is changed stepwise by changing the passing speed of the vapor deposition region. However, the change in the light transmittance is stepwise, and it is difficult to have a complicated distribution shape other than rectangular or circular, and the constant transmittance area occupies a large area, and the scale of each transmittance area is large. There was a big problem. Therefore, in the case of finely controlling the light intensity, there is a problem that the light mask is exchanged and the exposure operation requires several steps.

【0003】[0003]

【発明が解決しようとする課題】本発明は、光透過率が
連続的に変化する領域を任意な形状で有する光マスク、
及びその製造方法と製造装置、並びに光強度が微妙に制
御された露光処理を一度の露光操作で行える露光装置の
開発を課題とする。
SUMMARY OF THE INVENTION The present invention is directed to a photomask having a region in which the light transmittance changes continuously in an arbitrary shape,
Another object of the present invention is to develop a manufacturing method and a manufacturing apparatus thereof, and an exposure apparatus that can perform an exposure process in which the light intensity is delicately controlled by one exposure operation.

【0004】[0004]

【課題を解決するための手段】本発明は、非透光性有機
膜に厚さ変化を伴う凹部を形成して光透過率を制御した
ことを特徴とする光マスク、及び非透光性有機膜にレー
ザー光を照射して膜形成物質を部分的に除去することを
特徴とする前記光マスクの製造方法を提供するものであ
る。
According to the present invention, a light mask is characterized in that a concave portion having a change in thickness is formed in a non-light-transmitting organic film to control the light transmittance, and a non-light-transmitting organic film. A method for manufacturing the above-mentioned photomask, which comprises irradiating a film with a laser beam to partially remove a film-forming substance.

【0005】また本発明は、光吸収性物質の濃度分布に
より光透過率を制御した非透光性有機膜からなることを
特徴とする光マスク、及び非透光性有機膜における光吸
収性物質をレーザー光の照射で昇華又は分解処理して濃
度分布を形成することを特徴とする前記光マスクの製造
方法を提供するものである。
Further, the present invention is a photomask comprising a non-translucent organic film whose light transmittance is controlled by the concentration distribution of the light-absorbing substance, and the light-absorbing substance in the non-translucent organic film. The present invention provides a method for manufacturing the above-mentioned photomask, which comprises subjecting the above to sublimation or decomposition treatment by irradiation with laser light to form a concentration distribution.

【0006】さらに本発明は、レーザー発振部と、その
レーザー光を制御するシャッターと、シャッターを透過
したレーザー光の集光部と、集光されたレーザー光を走
査する光学系からなり、そのシャッターと走査用の光学
系が連動することを特徴とする光マスクの製造装置、及
びかかる光マスクを有することを特徴とする露光装置を
提供するものである。
Further, the present invention comprises a laser oscillating section, a shutter for controlling the laser beam, a focusing section for the laser beam transmitted through the shutter, and an optical system for scanning the focused laser beam. The present invention provides an optical mask manufacturing apparatus characterized by interlocking with a scanning optical system, and an exposure apparatus having the optical mask.

【0007】[0007]

【作用】非透光性有機膜にレーザー光を照射して膜形成
物質を部分的に除去することにより、レーザー光の光強
度のガウス分布に基づいて厚さ変化を伴う凹部を形成す
ることができ、これにより非透光性有機膜に光透過率が
実質的に連続変化する領域を形成することができる。非
透光性有機膜に形成する凹部の厚さ分布の状態は、ガウ
ス分布に基づくレーザー光の照射量や走査で任意に制御
でき、その照射量は照射時間、レーザー光のビーム位
置、照射スポットの大きさなどにより調節することがで
きる。
[Function] By irradiating the non-translucent organic film with laser light to partially remove the film-forming substance, it is possible to form a concave portion with a thickness change based on the Gaussian distribution of the light intensity of the laser light. This makes it possible to form a region where the light transmittance changes substantially continuously in the non-translucent organic film. The thickness distribution state of the recesses formed in the non-translucent organic film can be arbitrarily controlled by the laser light irradiation amount and scanning based on the Gaussian distribution. The irradiation amount is the irradiation time, the laser light beam position, and the irradiation spot. It can be adjusted according to the size of the.

【0008】一方、光吸収性物質にレーザー光を照射す
ることによりその光吸収性物質を昇華又は分解処理で
き、かつその場合に前記したレーザー光の光強度のガウ
ス分布に基づく部分的な処理量の相違により濃度分布を
もたせることができ、これにより光透過率が実質的に連
続変化する領域を有する非透光性有機膜を形成すること
ができる。
On the other hand, by irradiating the light-absorbing substance with laser light, the light-absorbing substance can be sublimated or decomposed, and in that case, the partial treatment amount based on the Gaussian distribution of the light intensity of the laser light described above. It is possible to provide a concentration distribution due to the difference in the above, and thus it is possible to form a non-translucent organic film having a region where the light transmittance changes substantially continuously.

【0009】[0009]

【実施例】図1、図2に本発明の光マスクを例示した。
図1に例示のものは、非透光性有機膜1に厚さ変化を伴
う凹部11を形成したものである。図2に例示のもの
は、非透光性有機膜2における光吸収性物質の濃度を部
分的に変化させたものである。なお21は非透光性有機
膜2を支持する透明基材である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The photomask of the present invention is illustrated in FIGS.
In the example illustrated in FIG. 1, the non-light-transmitting organic film 1 is formed with the concave portion 11 with a change in thickness. In the example illustrated in FIG. 2, the concentration of the light absorbing substance in the non-translucent organic film 2 is partially changed. Reference numeral 21 is a transparent base material that supports the non-translucent organic film 2.

【0010】非透光性有機膜に凹部を形成してなる光マ
スク(1)における光透過率の変化(分布)は、凹部の
厚さ変化により付与される。一方、光吸収性物質を用い
てなる光マスク(2)における光透過率の変化(分布)
は、光吸収性物質の濃度変化により付与される。本発明
においては前記した凹部の厚さ変化と光吸収性物質の濃
度変化の双方に基づいて光透過率に分布をもたせた光マ
スクとすることもできる。
The change (distribution) of the light transmittance in the optical mask (1) formed by forming the recess in the non-translucent organic film is given by the change in the thickness of the recess. On the other hand, the change (distribution) of light transmittance in the photomask (2) made of a light-absorbing substance
Is given by a change in the concentration of the light absorbing substance. In the present invention, an optical mask having a distribution of light transmittance based on both the change in the thickness of the recess and the change in the concentration of the light absorbing substance can be used.

【0011】前記した厚さ変化を伴う凹部の形成領域、
又は光吸収性物質の濃度変化をもたせる領域の形態は任
意である。またかかる領域は、光マスクの全体を占めて
いてもよいし、一部のみを占めていてもよく、複数の領
域として形成されていてもよい。
A region for forming a concave portion accompanied by the above-mentioned thickness change,
Alternatively, the form of the region in which the concentration of the light absorbing substance is changed is arbitrary. Further, such a region may occupy the whole of the photomask, may occupy only a part thereof, or may be formed as a plurality of regions.

【0012】前記の領域における光透過率の好ましい分
布は、光学的に連続的に変化する分布であり、実用上支
障とならない微小な光透過率のステップは許容される。
また例えば異なる分布曲線で近似される領域の界面で光
透過率が等しい場合も連続分布を与える。なおかかる領
域における光の等透過率線は、直線であってもよいし、
曲線であってもよく、閉曲線の如く閉じている必要はな
い。また光の等透過率線はいくつあってもよい。
The preferable distribution of the light transmittance in the above region is an optically continuously changing distribution, and a minute light transmittance step which does not hinder practical use is allowed.
Further, for example, a continuous distribution is given also when the light transmittances are equal at the interfaces of the regions approximated by different distribution curves. Incidentally, the light isotransmittance line in such a region may be a straight line,
It may be a curve and need not be closed like a closed curve. Further, there may be any number of equal transmissivity lines of light.

【0013】厚さ変化を伴う凹部を有するタイプの光マ
スクの製造は例えば、非透光性有機膜にレーザー光を照
射して膜形成物質を部分的に除去することにより行うこ
とができる。従って非透光性有機膜は、光マスクとして
使用する場合の波長光においてその光透過率が膜厚に基
づいて変化するものであればよい。
The photomask of the type having a concave portion with a change in thickness can be manufactured, for example, by irradiating the non-translucent organic film with a laser beam to partially remove the film forming substance. Therefore, the non-translucent organic film may be any film whose light transmittance changes in accordance with the film thickness in the wavelength light when used as a photomask.

【0014】かかる非透光性有機膜の例としては、紫外
線用のものとしてポリイミド膜やポリカーボネート膜な
どがあげられる。また可視光用や赤外線用のものとし
は、ポリイミド膜などの高分子膜などがあげられる。非
透光性有機膜は、ベンゾフェノン系化合物の如き紫外線
吸収剤、光吸収性ないし光反射性の顔料や染料、あるい
は金属の酸化物、硫化物、ハロゲン化物など、膜の不透
明化や半透明化などに有効な適宜な添加剤を含有してい
てもよい。
Examples of such a non-translucent organic film include polyimide film and polycarbonate film for ultraviolet rays. Examples of visible light and infrared light include polymer films such as polyimide films. The non-translucent organic film is made of an ultraviolet absorber such as a benzophenone-based compound, a light-absorbing or light-reflecting pigment or dye, or a metal oxide, sulfide or halide, which makes the film opaque or semi-transparent. It may contain an appropriate additive effective for the above.

【0015】光吸収性物質の濃度分布を有するタイプの
光マスクの製造は例えば、非透光性有機膜における光吸
収性物質をレーザー光の照射で部分的に昇華又は分解処
理することにより行うことができる。従って光吸収性物
質としては、光マスクとして使用する場合の波長光にお
いてその光透過率がかかる物質の濃度に基づいて変化す
るものであればよい。
The photomask of the type having a concentration distribution of the light-absorbing substance is produced, for example, by partially sublimating or decomposing the light-absorbing substance in the non-translucent organic film by irradiating laser light. You can Therefore, the light absorbing substance may be any substance as long as its light transmittance changes in accordance with the concentration of the substance in the wavelength light when used as a photomask.

【0016】光吸収性物質の例としては、スチリル系骨
格を有する染料やインドアニリン系染料の如く、光の照
射やそれによる熱で分解したり、昇華したりする染料や
顔料などがあげられる。光吸収性物質は通例、有機高分
子などと配合して非透光性有機膜とされるが、フィルム
等の支持基材に付着、ないし含浸させて非透光性有機膜
とすることもでき、本発明においては適宜な膜形態を有
していてよい。
Examples of the light-absorbing substance include dyes and pigments which are decomposed or sublimated by irradiation with light and heat generated by the irradiation, such as dyes having a styryl skeleton and indoaniline dyes. The light-absorbing substance is usually blended with an organic polymer or the like to form a non-translucent organic film, but it can also be attached to or impregnated with a supporting substrate such as a film to form a non-translucent organic film. In the present invention, it may have an appropriate film form.

【0017】本発明において非透光性有機膜は、独立し
た膜として形成されていてもよいし、透明基材に付設さ
れた状態で存在してもよい。前者の場合には非透光性有
機膜そのものが光マスクを形成することとなり、後者の
場合には透明基材と共に光マスクを形成することとな
る。かかる付設物は例えば、非透光性有機膜の形成材を
透明基材にコーティング方式、キャスティング方式、デ
ィッピング方式等の適宜な方式で塗布、ないし含浸させ
ることにより得ることができる。
In the present invention, the non-translucent organic film may be formed as an independent film or may be present in a state of being attached to the transparent substrate. In the former case, the non-translucent organic film itself forms the photomask, and in the latter case, it forms the photomask together with the transparent substrate. Such an accessory can be obtained, for example, by applying or impregnating a material for forming a non-translucent organic film on a transparent substrate by an appropriate method such as a coating method, a casting method, or a dipping method.

【0018】なお透明基材としては、光マスクとして使
用する場合の波長光に対して透明性を示す適宜なものを
用いうる。一般には、光学ガラス、石英、無機結晶、樹
脂、それらの複合物などからなるものが用いられる。表
面が平滑で均一厚のものが好ましい。また表面が傷付き
にくいものが好ましい。厚さは任意であるが、反射光が
干渉しない厚さが望ましい。
As the transparent base material, an appropriate base material which is transparent to the wavelength light when used as a photomask can be used. In general, those made of optical glass, quartz, inorganic crystals, resins, composites thereof, and the like are used. It is preferable that the surface is smooth and has a uniform thickness. Further, it is preferable that the surface is not easily scratched. Although the thickness is arbitrary, a thickness that does not interfere with reflected light is desirable.

【0019】非透光性有機膜に対するレーザー光の照射
は、適宜なレーザー発振器を用いて行うことができる。
好ましくは、円形状のビーム断面を形成できて、光の強
度分布として0次又は1次のガウス分布を示すものであ
る。その例としては、エキシマレーザー、YAGレーザ
ー、アルゴンレーザーなどがあげられる。
Irradiation of the laser light to the non-translucent organic film can be performed by using an appropriate laser oscillator.
Preferably, it is possible to form a circular beam cross section and exhibit a 0th-order or 1st-order Gaussian distribution as the light intensity distribution. Examples thereof include an excimer laser, a YAG laser, an argon laser and the like.

【0020】非透光性有機膜の除去処理は、例えばエキ
シマレーザーによるアブレーション方式や、YAGレー
ザーによる加熱蒸発方式などにより行うことができる。
一方、光吸収性物質の昇華ないし分解処理は、エキシマ
レーザー、YAGレーザー、アルゴンレーザーなどによ
り行うことができる。
The non-translucent organic film can be removed by an ablation method using an excimer laser, a heating evaporation method using a YAG laser, or the like.
On the other hand, the sublimation or decomposition treatment of the light absorbing substance can be performed by an excimer laser, a YAG laser, an argon laser or the like.

【0021】本発明の光マスクの製造に好ましく用いう
る装置を図3に例示した。これは、レーザー発振部3
と、シャッター4と、レンズ等からなる集光部5と、ミ
ラー等からなる走査用光学系6よりなる。なおかかる装
置は、レーザー光を用いて本発明以外の光マスクを製造
する場合にも好ましく用いうる。
An apparatus preferably used for manufacturing the photomask of the present invention is illustrated in FIG. This is the laser oscillator 3
A shutter 4, a light condensing unit 5 including a lens and the like, and a scanning optical system 6 including a mirror and the like. Such an apparatus can be preferably used also when manufacturing a photomask other than the present invention using laser light.

【0022】非透光性有機膜からなる被照射体1へのレ
ーザー光(矢印)の照射は、レーザー発振部3より発振
させたレーザー光を集光部5を介し集光して照射スポッ
トの大きさを調節し、それを走査用光学系6を介し被照
射体側に反射させることにより行うことができる。走査
用光学系6の制御で照射位置や走査軌跡が調節される。
シャッター4は、レーザー発振部3より発振させたレー
ザー光の集光部5への通過を制御するためのものであ
り、かかるシャッターは集光部や走査用光学系と連動し
て制御できることが好ましい。その制御は、パーソナル
コンピューター程度の装置で容易に行うことができる。
Irradiation of the laser beam (arrow) to the irradiation target 1 made of a non-translucent organic film is performed by converging the laser beam oscillated by the laser oscillating unit 3 through the condensing unit 5 to form an irradiation spot. This can be performed by adjusting the size and reflecting it to the irradiation target side through the scanning optical system 6. The irradiation position and the scanning locus are adjusted by the control of the scanning optical system 6.
The shutter 4 is for controlling the passage of the laser light oscillated by the laser oscillation unit 3 to the condensing unit 5. It is preferable that the shutter can be controlled in conjunction with the condensing unit and the scanning optical system. .. The control can be easily performed by a device such as a personal computer.

【0023】非透光性有機膜に形成する光透過率の変化
領域の制御は、例えばレーザー光の照射時間や強度、レ
ーザー光のビーム位置、照射スポットの大きさ、走査の
経路や速度などにより行うことができる。本発明におい
ては、非走査で所定時間照射することによりガウス分布
に基づく滑らかなカーブを有して光透過率が連続的に変
化する領域を形成することもできるし、レーザー光を走
査させて任意な領域を形成することもできる。
Control of the light transmittance changing region formed on the non-translucent organic film is performed by, for example, the irradiation time and intensity of the laser light, the beam position of the laser light, the size of the irradiation spot, the scanning path and speed, and the like. It can be carried out. In the present invention, it is also possible to form a region having a smooth curve based on a Gaussian distribution and continuously changing the light transmittance by irradiating for a predetermined time without scanning, or by scanning with a laser beam and arbitrarily It is also possible to form a large area.

【0024】後者の場合には、走査経路に応じて光透過
率の変化部分が連続した領域が形成される。その場合、
単位距離あたりの照射量はレーザー光の集光度の制御や
走査速度で調節でき、これにより走査経路に形成される
光透過率が変化する領域の幅を制御することができる。
そして通例、走査方向に沿ってその両側に光透過率が連
続的に変化する部分が形成される。なお走査経路をクロ
スさせることにより、その交点において他の走査部分と
は異なる光透過率状態の部分を形成することもできる。
In the latter case, a region in which the light transmittance changes continuously is formed according to the scanning path. In that case,
The irradiation amount per unit distance can be adjusted by controlling the condensing degree of the laser light and the scanning speed, and by this, the width of the region where the light transmittance changes formed in the scanning path can be controlled.
Then, usually, portions where the light transmittance continuously changes are formed on both sides thereof along the scanning direction. By crossing the scanning paths, it is possible to form a portion having a light transmittance different from that of the other scanning portions at the intersection.

【0025】本発明の光マスクは、フォトリソグラフィ
ーや照明システムなどの種々の光制御システムに用いる
ことができる。特に露光装置に用いることにより、一度
の露光で光強度の分布を非常に細かく制御できる装置を
形成することができる。露光装置は、光マスクと光源を
必須のものとして形成することができる。
The photomask of the present invention can be used in various light control systems such as photolithography and illumination systems. In particular, by using it in an exposure device, it is possible to form a device in which the distribution of light intensity can be controlled very finely by one exposure. The exposure device can be formed by using an optical mask and a light source as essential components.

【0026】実施例1 石英ガラス基材の上に、ベンゾフェノン系紫外線吸収剤
を10重量%含有する厚さ25μmのポリイミド膜を形
成し、それにエキシマレーザー(ポトマク社製)を用い
てビームを140mJ/shot、200Hzで15秒間照射
し、光マスクを得た。なお図4に光マスクにおける形成
領域の等透過率線の概略を示した。12が光透過率0%
の等透過率線、13が光透過率50%の等透過率線であ
る。
Example 1 A 25 μm-thick polyimide film containing 10% by weight of a benzophenone-based ultraviolet absorber was formed on a quartz glass substrate, and a beam of 140 mJ / was produced by using an excimer laser (manufactured by Potomac). A photomask was obtained by irradiating shot at 200 Hz for 15 seconds. It is to be noted that FIG. 4 shows an outline of the isotransmittance line of the formation region in the optical mask. 12 is 0% light transmittance
Is the iso-transmittance line, and 13 is the iso-transmittance line with a light transmittance of 50%.

【0027】実施例2 ビームを1mm/秒の速度で走査したほかは実施例1に準
じて光マスクを得た。なお図5に光マスクにおける形成
領域の等透過率線の概略を示した。14が光透過率0%
の等透過率線、15が光透過率50%の等透過率線であ
る。
Example 2 An optical mask was obtained in the same manner as in Example 1 except that the beam was scanned at a speed of 1 mm / sec. It is to be noted that FIG. 5 shows an outline of the isotransmittance line of the formation region in the optical mask. 14 has a light transmittance of 0%
Is a constant transmittance line of, and 15 is a constant transmittance line of 50% light transmittance.

【0028】実施例3 ビームをレンズ系で集光してスポット径を2/3倍とし
て10秒間照射したほかは実施例1に準じ光マスクを得
た。
Example 3 An optical mask was obtained in the same manner as in Example 1 except that the beam was condensed by a lens system and the spot diameter was ⅔ times for irradiation for 10 seconds.

【0029】実施例4 石英ガラス基材の上に、スチリル系骨格染料を40重量
%含有する厚さ10μmのポリカーボネート膜を形成
し、それに光強度20Wのアルゴンレーザーを用いてビ
ームを1500秒間照射し、光マスクを得た。
Example 4 A 10 μm thick polycarbonate film containing 40% by weight of a styryl skeletal dye was formed on a quartz glass substrate and irradiated with a beam for 1500 seconds using an argon laser having a light intensity of 20 W. Got a light mask.

【0030】実施例5 石英ガラス基材の上に、インドアニリン系昇華性染料を
40重量%含有する厚さ10μmのポリカーボネート膜
を形成し、それに光強度10WのYAGレーザーを用い
てビームを1/10倍に減衰させて15秒間照射し、光
マスクを得た。
Example 5 A 10 μm thick polycarbonate film containing 40% by weight of an indoaniline type sublimable dye was formed on a quartz glass substrate, and a 1 / beam was formed using a YAG laser with a light intensity of 10 W. It was attenuated 10 times and irradiated for 15 seconds to obtain a photomask.

【0031】実施例6 直径10mmの円を描くように走査して実施例2に準じ光
マスクを得た。なお図6に光マスクにおける形成領域の
等透過率線の概略を示した。16が光透過率0%の等透
過率線、17,18が光透過率50%の等透過率線であ
る。
Example 6 An optical mask was obtained according to Example 2 by scanning so as to draw a circle having a diameter of 10 mm. It is to be noted that FIG. 6 shows an outline of the isotransmittance line of the formation region in the optical mask. Reference numeral 16 is a constant transmittance line having a light transmittance of 0%, and 17 and 18 are constant transmittance lines having a light transmittance of 50%.

【0032】比較例 ポリエチレンテレフタレートフィルムを直径40mmの円
柱に巻き付け、それにアルミニウムを圧力3.2/10
3Pa、速度5nm/秒で20秒間真空蒸着して光マスクを
得た。
Comparative Example A polyethylene terephthalate film was wrapped around a cylinder having a diameter of 40 mm, and aluminum was applied thereto at a pressure of 3.2 / 10.
An optical mask was obtained by vacuum vapor deposition for 20 seconds at 3 Pa and a speed of 5 nm / sec.

【0033】評価試験 実施例、比較例で得た光マスクにおける光透過率の分布
を顕微分光計(大塚電子社製)で測定した。その結果を
図7に示した。図7において、実施例2では走査方向の
変化を、比較例では等透過率線に垂直な方向の変化を示
している。なお測定に使用した波長は実施例4,5では
600nm、他は350nmである。
Evaluation Test The light transmittance distributions of the optical masks obtained in Examples and Comparative Examples were measured with a microspectroscope (manufactured by Otsuka Electronics Co., Ltd.). The results are shown in Fig. 7. In FIG. 7, the change in the scanning direction is shown in Example 2, and the change in the direction perpendicular to the isotransmittance line is shown in Comparative Example. The wavelength used for measurement is 600 nm in Examples 4 and 5, and 350 nm in others.

【0034】前記の測定結果より、実施例1,3,4,
5,6ではほぼ完全な円形の等透過率線を示す領域が、
実施例2では走査方向に長径をもつ長円形の等透過率線
を示す領域が形成されていることがわかった。これに対
して比較例の光マスクの等透過率線は直線であった。
From the above measurement results, Examples 1, 3, 4,
In 5 and 6, the area showing the almost perfect circular iso-transmission line is
In Example 2, it was found that a region showing an elliptical isotransmittance line having a major axis in the scanning direction was formed. On the other hand, the equal transmittance line of the photomask of the comparative example was a straight line.

【0035】また実施例において、初期状態より光透過
率が向上した部分(形成領域)は、レーザー光の照射範
囲とほぼ同じであり、光透過率の分布はレーザー光の中
心部ほど大きくなっていることが確認できた。これに対
して比較例の光マスクでは直線の等透過率線の両側で光
透過率が向上(薄膜化)していた。なお実施例1と実施
例3の対比より光透過率の分布状態を制御できることも
わかる。
Further, in the embodiment, the portion where the light transmittance is improved from the initial state (formation area) is almost the same as the irradiation range of the laser light, and the distribution of the light transmittance becomes larger toward the central portion of the laser light. I was able to confirm that On the other hand, in the optical mask of the comparative example, the light transmittance was improved (thinned) on both sides of the straight line of equal transmittance. It is also understood from the comparison between Example 1 and Example 3 that the distribution state of the light transmittance can be controlled.

【0036】さらに図4、図5、図6より、レーザー光
の走査等により任意な形状の領域を形成でき、走査速度
やスポット径の調節で形成領域における光透過率の分布
パターンを容易に制御できることもわかる。これらの制
御は、従来方法では不可能である。
Further, from FIGS. 4, 5 and 6, it is possible to form a region having an arbitrary shape by scanning with a laser beam, etc., and easily control the distribution pattern of the light transmittance in the formed region by adjusting the scanning speed and the spot diameter. I know what I can do. These controls are impossible with conventional methods.

【0037】[0037]

【発明の効果】本発明によれば、厚さ変化を伴う凹部、
又は光吸収性物質の濃度変化に基づき、光透過率が実質
的に連続変化する分布状態を示す領域を任意な形状で有
する光マスクを得ることができ、光強度が微妙に制御さ
れた露光処理を一度の露光操作で行える露光装置を得る
ことができる。また本発明の製造方法によれば、かかる
光マスクを効率的に量産することができる。
According to the present invention, a recess having a change in thickness,
Alternatively, it is possible to obtain a photomask having a region having a distribution state in which the light transmittance changes substantially continuously based on the change in the concentration of the light-absorbing substance, and it is possible to obtain an exposure mask in which the light intensity is delicately controlled. It is possible to obtain an exposure apparatus that can perform the above-mentioned steps with a single exposure operation. Further, according to the manufacturing method of the present invention, such an optical mask can be efficiently mass-produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】光マスクの実施例の断面図。FIG. 1 is a cross-sectional view of an example of a photomask.

【図2】光マスクの他の実施例の断面図。FIG. 2 is a sectional view of another embodiment of the photomask.

【図3】製造装置の実施例の説明図。FIG. 3 is an explanatory diagram of an embodiment of a manufacturing apparatus.

【図4】実施例1で得た光マスクの形成領域における等
透過率線の概略図。
FIG. 4 is a schematic diagram of isotransmittance lines in a formation region of a photomask obtained in Example 1.

【図5】実施例2で得た光マスクの形成領域における等
透過率線の概略図。
FIG. 5 is a schematic diagram of isotransmittance lines in a formation region of a photomask obtained in Example 2.

【図6】実施例6で得た光マスクの形成領域における等
透過率線の概略図。
FIG. 6 is a schematic diagram of isotransmittance lines in a formation region of a photomask obtained in Example 6;

【図7】光透過率の分布状態を示したグラフ。FIG. 7 is a graph showing a distribution state of light transmittance.

【符号の説明】[Explanation of symbols]

1,2:非透光性有機膜 11:厚さ変化を伴う凹部 21:透明基材 3:レーザー発振器 4:シャッター 5:集光部 6:走査用光学系 1, 2: Non-translucent organic film 11: Recessed portion with thickness change 21: Transparent base material 3: Laser oscillator 4: Shutter 5: Condensing part 6: Scanning optical system

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 非透光性有機膜に厚さ変化を伴う凹部を
形成して光透過率を制御したことを特徴とする光マス
ク。
1. An optical mask characterized in that a light transmissivity is controlled by forming a concave portion with a thickness change in a non-translucent organic film.
【請求項2】 非透光性有機膜にレーザー光を照射して
膜形成物質を部分的に除去することを特徴とする請求項
1に記載の光マスクの製造方法。
2. The method for producing a photomask according to claim 1, wherein the non-translucent organic film is irradiated with laser light to partially remove the film-forming substance.
【請求項3】 光吸収性物質の濃度分布により光透過率
を制御した非透光性有機膜からなることを特徴とする光
マスク。
3. An optical mask comprising a non-translucent organic film whose light transmittance is controlled by the concentration distribution of a light absorbing substance.
【請求項4】 非透光性有機膜における光吸収性物質を
レーザー光の照射で昇華又は分解処理して濃度分布を形
成することを特徴とする請求項2に記載の光マスクの製
造方法。
4. The method for producing a photomask according to claim 2, wherein the light absorbing substance in the non-translucent organic film is subjected to sublimation or decomposition treatment by irradiation with laser light to form a concentration distribution.
【請求項5】 レーザー発振部と、そのレーザー光を制
御するシャッターと、シャッターを透過したレーザー光
の集光部と、集光されたレーザー光を走査する光学系か
らなり、そのシャッターと走査用の光学系が連動するこ
とを特徴とする光マスクの製造装置。
5. A laser oscillating unit, a shutter for controlling the laser beam, a focusing unit for the laser beam transmitted through the shutter, and an optical system for scanning the focused laser beam. An optical mask manufacturing apparatus characterized in that the optical system of the above is interlocked.
【請求項6】 請求項1又は請求項2に記載の光マスク
を有することを特徴とする露光装置。
6. An exposure apparatus comprising the photomask according to claim 1 or 2.
JP9210192A 1992-03-17 1992-03-17 Optical mask and its production and apparatus for production and exposing device Pending JPH05265177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9210192A JPH05265177A (en) 1992-03-17 1992-03-17 Optical mask and its production and apparatus for production and exposing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9210192A JPH05265177A (en) 1992-03-17 1992-03-17 Optical mask and its production and apparatus for production and exposing device

Publications (1)

Publication Number Publication Date
JPH05265177A true JPH05265177A (en) 1993-10-15

Family

ID=14045059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9210192A Pending JPH05265177A (en) 1992-03-17 1992-03-17 Optical mask and its production and apparatus for production and exposing device

Country Status (1)

Country Link
JP (1) JPH05265177A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113270A (en) * 2008-11-10 2010-05-20 Toppan Printing Co Ltd Method for manufacturing minute three-dimensional structure, and exposure mask used for same
CN105404093A (en) * 2016-01-06 2016-03-16 京东方科技集团股份有限公司 Mask plate, display substrate and preparation method thereof, display panel and display device
JP2018508835A (en) * 2015-01-05 2018-03-29 マーシュピアル ホールディングス エルエルシー Multitone level photomask {MULTI-TONE AMPLITUDE PHOTOMASK}

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113270A (en) * 2008-11-10 2010-05-20 Toppan Printing Co Ltd Method for manufacturing minute three-dimensional structure, and exposure mask used for same
JP2018508835A (en) * 2015-01-05 2018-03-29 マーシュピアル ホールディングス エルエルシー Multitone level photomask {MULTI-TONE AMPLITUDE PHOTOMASK}
US10859911B2 (en) 2015-01-05 2020-12-08 Marsupial Holdings, Inc. Multi-tone amplitude photomask
CN105404093A (en) * 2016-01-06 2016-03-16 京东方科技集团股份有限公司 Mask plate, display substrate and preparation method thereof, display panel and display device

Similar Documents

Publication Publication Date Title
US5910256A (en) Method for manufacturing a diffraction type optical element
US6291797B1 (en) Laser machining method for glass substrate, diffraction type optical device fabricated by the machining method, and method of manufacturing optical device
US4543270A (en) Method for depositing a micron-size metallic film on a transparent substrate utilizing a visible laser
US20030230560A1 (en) Method for creating laser-induced color images within three-dimensional transparent media
Veiko et al. Study of the spatial resolution of laser thermochemical technology for recording diffraction microstructures
EP3776020B1 (en) System and method for ablation assisted nanostructure formation for graded index surfaces for optics
Korolkov et al. Technological and optical methods for increasing the spatial resolution of thermochemical laser writing on thin metal films
JP3969197B2 (en) Laser irradiation device
CA2137632A1 (en) Ablative flashlamp imaging
JPH05265177A (en) Optical mask and its production and apparatus for production and exposing device
US5159169A (en) Laser sputtering apparatus
JPH0577068A (en) Method for forming graphic pattern of article
JPH0632922A (en) Method for processing light-transmitting material with high-energy light
JP3736791B2 (en) Laser processing method
JP3518351B2 (en) Method of forming composite shape on workpiece surface by energy beam and article obtained by this method
JP3635701B2 (en) Processing equipment
JPH05303192A (en) Photomask and its production and exposure system
US7205076B2 (en) Mask for laser irradiation and apparatus for laser crystallization using the same
JPH06198466A (en) Rainbow color development processing method
JPH097935A (en) Resist exposure method
JPH05265178A (en) Optical mask and its production and exposing device
JPH03100655A (en) Device for correcting defect of emulsion mask or the like
JP3050556B2 (en) Defect repair method such as emulsion mask
JP2599508B2 (en) Opaque processing method and apparatus
JPS586128A (en) Method and apparatus for correcting defect of photo-mask