JPH05264765A - Relaxation method of irradiation growth of nuclear fuel assembly for pwr and lower nozzle - Google Patents

Relaxation method of irradiation growth of nuclear fuel assembly for pwr and lower nozzle

Info

Publication number
JPH05264765A
JPH05264765A JP4090103A JP9010392A JPH05264765A JP H05264765 A JPH05264765 A JP H05264765A JP 4090103 A JP4090103 A JP 4090103A JP 9010392 A JP9010392 A JP 9010392A JP H05264765 A JPH05264765 A JP H05264765A
Authority
JP
Japan
Prior art keywords
nuclear fuel
fuel assembly
pwr
lower nozzle
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4090103A
Other languages
Japanese (ja)
Inventor
Tsuneomi Kikuchi
恒臣 菊池
Kazuma Mori
一麻 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP4090103A priority Critical patent/JPH05264765A/en
Publication of JPH05264765A publication Critical patent/JPH05264765A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To cancel irradiation growth and readjust the specific total length of a fuel assembly by measuring the total length of a nuclear fuel assembly for PWR again and then replacing the leg part of a lower nozzle with one with a shorter leg for those where irradiation growth occurs by a certain amount at least when replacing the fuel. CONSTITUTION:A lower nozzle N can be separated into a plate part P and a leg part K. When replacing fuel by using the nozzle N, an upper reactor core plate is eliminated and then a nuclear fuel assembly for an old PWR (pressurized water type reactor) which occupies 1/3 of the entire part is suspended upward and then is taken out of the reactor core. Then, the remaining fuel assembly for PWR is suspended upward and then is moved to the center in the order of older one and then the layout is changed. Then, a new nuclear fuel assembly for PWR which 1/3 of the entire part is filled into an outer- periphery part of the empty reactor core. At this time, the total length is remeasured while the nuclear fuel assembly for PWR whose layout is to be changed is being suspended and then a leg part K of the lower nozzle N is replaced depending on the degree of the irradiation growth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加圧水型原子炉(PW
R)用の核燃料集合体の炉心運転に伴なう照射成長を相
殺して、PWR用核燃料集合体の見掛けの全長をほぼ一
定に保つPWR用核燃料集合体の照射成長の緩和方法、
および該方法の実行に好適なPWR用核燃料集合体の下
部ノズルに関する。
BACKGROUND OF THE INVENTION The present invention relates to a pressurized water reactor (PW).
R), a method for mitigating irradiation growth of a PWR nuclear fuel assembly by offsetting the irradiation growth associated with the core operation of the nuclear fuel assembly for keeping the apparent total length of the PWR nuclear fuel assembly substantially constant,
And a lower nozzle of a PWR nuclear fuel assembly suitable for carrying out the method.

【0002】[0002]

【従来の技術】多数の核燃料集合体を配列させた炉心内
で、核燃料集合体に沿って未沸騰の加圧冷却水を強制的
に上昇させ、これにより核燃料集合体の熱交換(冷却除
熱)を行う加圧水型原子炉(PWR)は、現在、沸騰水
型原子炉(BWR)と並んで最も実用的で高実績な動力
炉である。運転中、炉心の上方から高温未沸騰水の出力
を取り出すPWRの核燃料集合体(以下PWR用核燃料
集合体)は、水蒸気出力を取り出すBWRの核燃料集合
体よりも強い水流下に曝されるため、PWR用核燃料集
合体は、浮き上がりを防止するため、上下に圧縮方向で
ばね付勢されて炉心に配列されている。この状態で炉心
運転がなされて、中性子や各種放射線の照射によってP
WR用核燃料集合体が照射成長を起すと、ばね付勢によ
る上下方向の圧縮力が増してPWR用核燃料集合体全体
が変形する可能性がある。PWR用核燃料集合体が変形
すると、隣接するPWR用核燃料集合体に干渉してPW
R用核燃料集合体を上方に取出すことが困難になる。ま
た、ばねに過度の荷重が働いてへたりを起し、浮き上が
り防止の作用が減じる可能性もある。
2. Description of the Related Art In a core in which a large number of nuclear fuel assemblies are arranged, unboiled pressurized cooling water is forcibly raised along the nuclear fuel assemblies, whereby heat exchange (cooling heat removal) of the nuclear fuel assemblies is performed. The pressurized water nuclear reactor (PWR) which carries out (1) is currently the most practical and highly proven power reactor alongside the boiling water nuclear reactor (BWR). During operation, the PWR nuclear fuel assembly (hereinafter referred to as PWR nuclear fuel assembly) that extracts the output of high-temperature unboiled water from above the core is exposed to a stronger water flow than the BWR nuclear fuel assembly that extracts the steam output. The PWR nuclear fuel assembly is arranged in the core while being spring-biased in the up-down direction in the compression direction in order to prevent floating. In this state, core operation is performed and P is generated by irradiation with neutrons and various radiations.
When the WR nuclear fuel assembly undergoes irradiation growth, the compressive force in the vertical direction due to the spring bias increases, and the entire PWR nuclear fuel assembly may be deformed. When the PWR nuclear fuel assembly is deformed, it interferes with the adjacent PWR nuclear fuel assembly and the PW
It becomes difficult to take out the R nuclear fuel assembly upward. Further, excessive load may be applied to the spring to cause sagging, which may reduce the lifting prevention function.

【0003】現在、PWR用核燃料集合体では、従来よ
りも高濃縮の核燃料を用いて長時間の運転を可能にする
試みが行われており、長時間運転の条件下では、この照
射成長の問題がより深刻である。従って、この照射成長
を相殺してPWR用核燃料集合体の見掛けの全長をほぼ
一定に保ち、PWR用核燃料集合体に座屈変形や曲り変
形を起さないようにする方法が望まれている。
At present, in the nuclear fuel assembly for PWR, an attempt has been made to make it possible to operate for a long time by using a nuclear fuel having a higher concentration than before, and under the condition of a long time operation, there is a problem of this irradiation growth. Is more serious. Therefore, there is a demand for a method of canceling this irradiation growth to keep the apparent total length of the PWR nuclear fuel assembly substantially constant and prevent buckling or bending deformation of the PWR nuclear fuel assembly.

【0004】PWR用核燃料集合体は、例えば17×1
7格子型の場合、上部ノズルと下部ノズルを長さ4m余
りの制御棒案内管(シンブル管)24本で一体に接続
し、制御棒案内管の中段高さに9個の支持格子を固定し
て籠体を形成し、この籠体の枠組み内に口径約9mm、長
さ約3.9mの燃料棒264本と中心に計装用案内管1
本とを格子状に配置して支持したものである。PWR用
核燃料集合体の上下方向の荷重は、専らシンブル管24
本で負担しており、燃料棒は、シンブル管24本と支持
格子で構成される籠体中にこの荷重と無関係に把持され
ている。PWR用核燃料集合体は、上部ノズルに設けた
ホ−ルドダウンスプリングがもたらす下向きの反発力に
よって、炉心の上部炉心板と下部炉心板の間に拘束され
ており、PWRの炉心内には、約200体のPWR用核
燃料集合体が相互の間隔を詰めて格子状に配列される。
(図1参照)
A nuclear fuel assembly for PWR is, for example, 17 × 1.
In the case of 7-grid type, the upper nozzle and the lower nozzle are connected integrally with 24 control rod guide tubes (thimble pipes) with a length of 4 m or more, and 9 support grids are fixed at the middle height of the control rod guide tubes. To form a basket, and inside the framework of this basket, there are 264 fuel rods with a diameter of about 9 mm and a length of about 3.9 m, and an instrumentation guide tube 1 at the center.
The book and the book are arranged and supported in a grid pattern. The vertical load of the PWR nuclear fuel assembly is limited to the thimble tube 24.
It is carried by a book, and the fuel rods are held in a cage composed of 24 thimble tubes and a supporting grid regardless of this load. The nuclear fuel assembly for PWR is constrained between the upper core plate and the lower core plate of the core by the downward repulsive force provided by the hold down spring provided in the upper nozzle, and about 200 bodies are contained in the core of the PWR. The nuclear fuel assemblies for PWRs are arranged in a grid pattern with a space between them.
(See Figure 1)

【0005】PWRの炉心運営管理としては、燃料交換
の際に、全体の1/3の古いPWR用核燃料集合体を炉
心から取り出し、残りのPWR用核燃料集合体を古い順
で中心部に移動し、空白となった炉心の外周部に新規の
PWR用核燃料集合体を全体の1/3補充している。こ
の際、炉心滞在時間の長いPWR用核燃料集合体ほど照
射成長量が大きく、取り出されるPWR用核燃料集合体
は新規のPWR用核燃料集合体に比較して5〜10mmも
その全長が伸びている。
For core management of the PWR, at the time of refueling, one third of the old PWR nuclear fuel assemblies are taken out of the core, and the remaining PWR nuclear fuel assemblies are moved to the center in the old order. A new PWR nuclear fuel assembly is replenished to the outer periphery of the blank core by a third. At this time, the irradiation growth amount is larger for the PWR nuclear fuel assembly having a longer core stay time, and the total length of the PWR nuclear fuel assembly to be taken out is 5 to 10 mm longer than that of the new PWR nuclear fuel assembly.

【0006】[0006]

【発明が解決しようとする課題】PWR用核燃料集合体
の照射成長は、炉心運転に伴なう長期間の中性子やα線
等の照射を経て、長さ4m余りのシンブル管の材料であ
るジルカロイ合金の最密六方晶構造が部分的に変形し
て、そのひずみが積重なったものである。照射成長の割
合は結晶構造の方向によってばらつき、最終的な成長量
は、圧延後のシンブル管における結晶方向の分布状態、
圧延後の熱処理温度、照射された中性子のエネルギ−分
布等に左右されるため、PWR用核燃料集合体の相互間
やシンブル管の相互間でも多少ばらついている。また、
同様にジルカロイ合金からなる燃料棒の被覆管も照射成
長を引き起こすが、燃料棒は一緒に照射成長するシンブ
ル管によって上下方向の荷重から無関係に支持されてい
るため、自身の照射成長によって燃料棒の上下方向の応
力が増すことは少ない。
Irradiation growth of a nuclear fuel assembly for PWR is carried out by irradiation of neutrons, α rays, etc. for a long period of time associated with core operation, and Zircaloy, which is a material for thimble tubes having a length of about 4 m. The close-packed hexagonal structure of the alloy is partially deformed and the strain is accumulated. The irradiation growth rate varies depending on the direction of the crystal structure, and the final growth amount is the distribution state of the crystal direction in the thimble tube after rolling,
Since it depends on the heat treatment temperature after rolling, the energy distribution of the irradiated neutrons, etc., there is some variation between the PWR nuclear fuel assemblies and among the thimble tubes. Also,
Similarly, the cladding of fuel rods made of Zircaloy alloy also causes irradiation growth.However, since the fuel rods are supported by the thimble tubes that grow together with irradiation regardless of the vertical load, the irradiation growth of the fuel rods causes the fuel rods to grow. Vertical stress is unlikely to increase.

【0007】一方、上部炉心板と下部炉心板とが固定さ
れた圧力容器は照射成長のごく少ない厚いステンレス製
であるから、上部炉心板と下部炉心板の間隔は、炉心運
転中を通じてほぼ一定不変である。従って、PWR用核
燃料集合体の重量とホ−ルドダウンスプリングの反発力
を負担するPWR用核燃料集合体のシンブル管の照射成
長は、ホ−ルドダウンスプリングをさらに圧縮変形させ
て、その反発力を増加させ、シンブル管に作用する圧縮
荷重を高めることとなる。そして、圧縮荷重の増加に屈
したシンブル管が曲り変形を起すと、この曲りに追従し
て支持格子がPWR用核燃料集合体の側方に飛出し、隣
接するPWR用核燃料集合体に干渉したり、燃料棒に曲
り変形を誘発して、支持格子と燃料棒の支持状態が変化
して両者間に摩擦や振動を引き起こす可能性もある。ま
た、ホ−ルドダウンスプリングのへたりにより、燃料集
合体の浮き上がりが防止できない事態も生じ得る。
On the other hand, since the pressure vessel to which the upper core plate and the lower core plate are fixed is made of thick stainless steel with very little irradiation growth, the distance between the upper core plate and the lower core plate remains almost constant throughout the core operation. Is. Therefore, the irradiation growth of the thimble tube of the PWR nuclear fuel assembly, which bears the weight of the PWR nuclear fuel assembly and the repulsive force of the hold down spring, causes the holddown spring to be further compressed and deformed, and its repulsive force is increased. The compressive load acting on the thimble tube is increased. Then, when the thimble tube that bends due to an increase in compressive load bends and deforms, the support grid follows the bend and pops out to the side of the PWR nuclear fuel assembly and interferes with the adjacent PWR nuclear fuel assembly. There is also a possibility that bending deformation is induced in the fuel rods, the supporting state of the support grid and the fuel rods is changed, and friction and vibration are caused between them. Further, due to the fatigue of the hold-down spring, it may not be possible to prevent the fuel assembly from rising.

【0008】このようなPWR用核燃料集合体の照射成
長の問題を鑑みて、シンブル管の長手方向にジルカロ
イの成長の少ない結晶軸を配向させる、PWR用核燃
料集合体の全長を照射成長の見込み分もともと短くして
おく等の対策が提案されているが、では、ジルカロイ
圧延時の結晶軸の管理がほとんど不可能で、製品検査に
も手間取り、では、ホ−ルドダウンスプリングや燃料
棒の設計を始めからやり直す必要がある。
In view of the above problem of irradiation growth of the PWR nuclear fuel assembly, the total length of the PWR nuclear fuel assembly in which the crystal axis with less growth of zircaloy is oriented in the longitudinal direction of the thimble tube is the expected amount of irradiation growth. Originally, measures such as shortening have been proposed, but it is almost impossible to control the crystal axis during Zircaloy rolling, and it takes time to inspect the product. You need to start over.

【0009】本発明は、シンブル管が照射成長した場合
でもPWR用核燃料集合体に作用する圧縮荷重を高めな
いで済む、正確には、少なくとも燃料交換の際に、照射
成長分を相殺してPWR用核燃料集合体の見掛けの全長
を一定に再調整するPWR用核燃料集合体の照射成長の
緩和方法、およびPWR用核燃料集合体の見掛けの全長
を一定に再調整でき、ホ−ルドダウンスプリングや燃料
棒の設計を変更する必要のないPWR用核燃料集合体の
照射成長の緩和方法、および該方法に用いられる下部ノ
ズルを提供することを目的としている。
According to the present invention, it is not necessary to increase the compressive load acting on the PWR nuclear fuel assembly even when the thimble tube is irradiated and grown. To be precise, at least at the time of refueling, the irradiation growth portion is offset to cancel out the PWR. Method for re-adjusting the apparent total length of the nuclear fuel assemblies for PWRs to a constant value, and the apparent total length of the nuclear fuel assemblies for PWRs can be readjusted to a constant value. An object of the present invention is to provide a method for mitigating irradiation growth of a nuclear fuel assembly for PWR, which does not require a change in rod design, and a lower nozzle used in the method.

【0010】[0010]

【課題を解決するための手段】請求項1のPWR用核燃
料集合体の照射成長の緩和方法は、炉心運転に伴なう照
射成長を相殺してPWR用核燃料集合体の見掛けの全長
をほぼ一定に保つPWR用核燃料集合体の照射成長の緩
和方法において、制御棒案内管を固定したプレ−ト部か
らプレ−ト部を支承する脚部を分離可能な下部ノズルを
PWR用核燃料集合体に取付け、照射成長を起したPW
R用核燃料集合体について、その前記下部ノズルの脚部
を短い脚部に交換してなる方法である。
According to a method of mitigating irradiation growth of a PWR nuclear fuel assembly according to claim 1, the irradiation growth accompanying the core operation is offset to make the apparent total length of the PWR nuclear fuel assembly substantially constant. In the method of mitigating irradiation growth of a PWR nuclear fuel assembly, the lower nozzle capable of separating the leg supporting the plate from the plate fixed to the control rod guide tube is attached to the PWR nuclear fuel assembly. , PW with irradiation growth
In the R nuclear fuel assembly, the leg portion of the lower nozzle is replaced with a short leg portion.

【0011】請求項2のPWR用核燃料集合体の下部ノ
ズルは、制御棒案内管を固定したプレ−ト部からプレ−
ト部を支承する脚部を分離可能なPWR用核燃料集合体
の下部ノズルにおいて、制御棒案内管を固定したプレ−
ト部に対して、プレ−ト部の周囲を囲む枠部分と、枠部
分から内側に突出してプレ−ト部を支承するせり出し部
分と、枠部分の外側面からの操作でプレ−ト部を固定お
よび分離可能な固定手段と、枠部分の4隅から下方向に
伸びた4本の脚部分と、からなる脚部を組合せたもので
ある。
The lower nozzle of the PWR nuclear fuel assembly according to a second aspect of the present invention comprises a plate portion from which a control rod guide tube is fixed and which is a plate.
In the lower nozzle of the PWR nuclear fuel assembly in which the legs supporting the tongue can be separated, a pre-fixed control rod guide tube is fixed.
With respect to the plate portion, the frame portion surrounding the plate portion, the protruding portion that projects inward from the frame portion to support the plate portion, and the plate portion by operating from the outer surface of the frame portion. This is a combination of a fixing means that can be fixed and separated, and a leg portion including four leg portions extending downward from four corners of the frame portion.

【0012】[0012]

【作用】請求項1のPWR用核燃料集合体の照射成長の
緩和方法においては、少なくとも燃料交換の際に、PW
R用核燃料集合体の全長を再計測し、照射成長を一定以
上起しているものについては、その下部ノズルの脚部を
短いものに交換して照射成長分を相殺し、これによりP
WR用核燃料集合体の見掛けの全長を一定に再調整す
る。
According to the method for alleviating irradiation growth of a PWR nuclear fuel assembly according to claim 1, at least during the fuel exchange, the PW
The total length of the R nuclear fuel assembly was remeasured, and if the irradiation growth occurred for a certain amount or more, the leg portion of the lower nozzle was replaced with a shorter one to offset the irradiation growth amount.
Readjust the apparent total length of the WR nuclear fuel assembly.

【0013】請求項2のPWR用核燃料集合体の下部ノ
ズルは、下部ノズルの脚部の交換を容易かつ確実にする
ものである。すなわち、下部ノズルの脚部の交換は、P
WR用核燃料集合体を炉心から引上げた状態で、枠部分
の外側面から固定手段を操作して、プレ−ト部と脚部と
を分離し、この枠部分を脚部分が短い別の脚部に交換し
て置換え、この別の脚部の枠部分の外側面から固定手段
を操作してプレ−ト部と脚部とを再度固定する。
The lower nozzle of the PWR nuclear fuel assembly according to the second aspect of the present invention facilitates and surely replaces the leg portion of the lower nozzle. That is, the leg of the lower nozzle is replaced by P
With the WR nuclear fuel assembly pulled up from the core, the fixing means is operated from the outer surface of the frame part to separate the plate part and the leg part, and this frame part is another leg part having a short leg part. The plate portion and the leg portion are fixed again by operating the fixing means from the outer surface of the frame portion of the other leg portion.

【0014】炉心に戻されて下部炉心板上に載置された
PWR用核燃料集合体では、プレ−ト部にかかるシンブ
ル管からの荷重は、せり出し部分を介して4本の脚部分
に分配され、この荷重が固定手段に作用することはな
い。
In the PWR nuclear fuel assembly which has been returned to the core and placed on the lower core plate, the load from the thimble tube applied to the plate portion is distributed to the four leg portions through the protruding portions. , This load does not act on the fixing means.

【0015】[0015]

【発明の実施例】本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described with reference to the drawings.

【0016】図1は加圧水型原子炉(PWR)用核燃料
集合体の説明図、図2は実施例の下部ノズルの模式図で
ある。図2は図1のPWR用核燃料集合体の下部ノズル
部分を拡大して、一部断面図示したものである。
FIG. 1 is an explanatory view of a nuclear fuel assembly for a pressurized water reactor (PWR), and FIG. 2 is a schematic view of a lower nozzle of an embodiment. FIG. 2 is an enlarged partial cross-sectional view of a lower nozzle portion of the PWR nuclear fuel assembly of FIG.

【0017】図1において、外側の図示しない圧力容器
に固定された上部炉心板Iと下部炉心板Jの間には、数
200体のPWR用核燃料集合体R(ただし、ここでは
2体のみを示して他は省略)が相互の間隔を詰めて格子
状に配置されている。
In FIG. 1, between the upper core plate I and the lower core plate J, which are fixed to a pressure vessel (not shown) on the outside, several hundreds of PWR nuclear fuel assemblies R (here, only two are included). (Others are omitted in the drawing) are arranged in a grid pattern with a narrow space between them.

【0018】PWR用核燃料集合体Rは、上部ノズルM
と下部ノズルNを24本の制御棒案内管(シンブル管
A)で一体に接続し、シンブル管Aの中段高さに9個の
支持格子Cを固定して籠体を形成し、この籠体の枠組み
内に多数の燃料棒Bを格子状に配置して支持したもので
ある。PWR用核燃料集合体Rは、上部ノズルMに設け
たホ−ルドダウンスプリングS1がもたらす下向きの反
発力によって、上部炉心板Iと下部炉心板Jの間隔に拘
束されており、ホ−ルドダウンスプリングS1が作用す
るPWR用核燃料集合体Rを上下方向に圧縮する荷重は
専らシンブル管Aが負担しており、シンブル管Aと支持
格子Cで構成される籠体中に把持された燃料棒Bに、こ
の荷重は直接には作用していない。
The nuclear fuel assembly R for PWR has an upper nozzle M.
The lower nozzle N and the lower nozzle N are integrally connected with 24 control rod guide tubes (thimble tubes A), and nine support grids C are fixed to the middle height of the thimble tubes A to form a cage. A large number of fuel rods B are arranged and supported in a lattice shape within the framework of FIG. The nuclear fuel assembly R for PWR is constrained in the space between the upper core plate I and the lower core plate J by the downward repulsive force provided by the hold down spring S1 provided in the upper nozzle M. The thimble tube A exclusively bears the load for vertically compressing the PWR nuclear fuel assembly R on which the S1 acts, and the fuel rod B held in the cage composed of the thimble tube A and the support grid C , This load is not acting directly.

【0019】このように構成されたPWR用核燃料集合
体Rは、運転中、炉心の上方から高温未沸騰水の出力を
取り出すときPWR用核燃料集合体Rに沿って上方に向
う強い水流に曝されるが、ホ−ルドダウンスプリングS
1によって上下方向に拘束されているため位置ずれや振
動は起さない。一方、運転期間中、中性子や各種放射線
の照射によって、ジルカロイ合金からなるシンブル管A
は照射成長を起してPWR用核燃料集合体Rの全長(高
さ)を増加させる。これにより、ホ−ルドダウンスプリ
ングS1の変形量が増して、シンブル管Aに作用する上
下方向の圧縮力が高まり、シンブル管Aに曲げ変形また
は座屈変形を発生させる可能性がある。
During operation, the PWR nuclear fuel assembly R thus constructed is exposed to a strong upward flow of water along the PWR nuclear fuel assembly R when the output of high temperature unboiled water is taken out from above the core. Hold down spring S
Since it is constrained in the vertical direction by 1, there is no displacement or vibration. On the other hand, during operation, the thimble tube A made of Zircaloy alloy is irradiated with neutrons and various radiations.
Causes irradiation growth to increase the total length (height) of the PWR nuclear fuel assembly R. As a result, the deformation amount of the hold-down spring S1 increases, and the vertical compressive force acting on the thimble tube A increases, which may cause bending or buckling deformation of the thimble tube A.

【0020】図2において、下部ノズルNはプレ−ト部
Pと脚部Kに分離可能である。プレ−ト部Pには、シン
ブル管Aを固定するための貫通孔(図示せず)と、運転
中の冷却水の貫通孔Hとが格子状に規則正しく多数形成
されており、シンブル管Aは前述の貫通孔に挿入されて
固定されている。一方、脚部Kは、プレ−ト部Pの周囲
を囲む枠部分Eと、枠部分Eから内側に突出してプレ−
ト部Pを支承するせり出し部分Gと、枠部分Eの4隅か
ら下方向に伸ばして一体に形成した4本の脚部分Fとを
有する。このプレ−ト部Pと脚部Kとは、枠部分Eの外
側面から締結および解除可能なねじDにより固定されて
いる。プレ−ト部Pにかかるシンブル管Aからの荷重
は、せり出し部分Gを介して4本の脚部分Fに分配され
てねじDには直接作用しないから、ねじDの強度は、P
WR用核燃料集合体Rを上方から吊り下げた際にプレ−
ト部Pから脚部Kが脱落しない程度でよい。
In FIG. 2, the lower nozzle N can be separated into a plate portion P and a leg portion K. In the plate portion P, a large number of through holes (not shown) for fixing the thimble tube A and through holes H of the cooling water during operation are regularly formed in a grid pattern. It is inserted and fixed in the aforementioned through hole. On the other hand, the leg portion K projects from the frame portion E to the inside by a frame portion E that surrounds the periphery of the plate portion P.
It has a protruding portion G for supporting the toe portion P and four leg portions F which are integrally formed by extending downward from four corners of the frame portion E. The plate portion P and the leg portion K are fixed to each other by a screw D that can be fastened and released from the outer surface of the frame portion E. The load applied from the thimble tube A to the plate portion P is distributed to the four leg portions F through the protruding portion G and does not directly act on the screw D, so that the strength of the screw D is P
When the WR nuclear fuel assembly R is suspended from above,
It is sufficient that the leg K does not fall off from the toe P.

【0021】このように構成された下部ノズルNを用い
て、燃料交換の際には、図1の上部炉心板Iを取除い
て、全体の1/3の古いPWR用核燃料集合体Rを上方
に吊り上げて炉心から取り出し、残りのPWR用核燃料
集合体Rを上方に吊り上げて古い順で中心部に移動して
配置替えし、空白となった炉心の外周部に新規のPWR
用核燃料集合体Rを全体の1/3補充する。このとき、
配置替えされるPWR用核燃料集合体Rについて、上方
に吊り上げた状態でその全長を再測定し、その照射成長
の程度に応じて下部ノズルNの脚部Kを交換する。交換
用の脚部Kとしては、その高さが元の−5mm、−10mm
である2段階2種類のものを用いる。上方に吊り上げた
PWR用核燃料集合体Rに対して遠隔操作のロボットア
−ムを用いて下部ノズルNの側方からねじDを解除して
脚部Kを交換し、再度ねじDを締結し直す。なお、これ
ら一連の作業はすべて水中で行われる。
When the fuel is exchanged by using the lower nozzle N constructed as described above, the upper core plate I of FIG. 1 is removed and 1/3 of the whole old PWR nuclear fuel assembly R is moved upward. The remaining PWR nuclear fuel assembly R is lifted up and moved to the center part in the old order and rearranged, and a new PWR is attached to the outer periphery of the empty core.
1/3 of the whole nuclear fuel assembly R is replenished. At this time,
With respect to the PWR nuclear fuel assembly R to be rearranged, the entire length is remeasured in a state of being lifted upward, and the leg K of the lower nozzle N is exchanged according to the degree of irradiation growth. The height of the replacement leg K is originally -5 mm and -10 mm.
The following two types of two types are used. Using a remote-controlled robot arm for the PWR nuclear fuel assembly R lifted upward, the screw D is released from the side of the lower nozzle N, the leg K is replaced, and the screw D is refastened. .. In addition, all of these series of operations are performed in water.

【0022】図3は、別の実施例の下部ノズルの説明図
である。ここで、(a) 、(b) はいずれも図2の実施例の
せり出し部分の変形例であって、せり出し部分を含む下
部ノズルの左肩部分の断面が示される。
FIG. 3 is an explanatory view of the lower nozzle of another embodiment. Here, both (a) and (b) are modifications of the protruding portion of the embodiment of FIG. 2, and a cross section of the left shoulder portion of the lower nozzle including the protruding portion is shown.

【0023】図3(a) において、下部ノズルN2はプレ
−ト部P2と脚部K2に分離可能である。脚部K2は、
プレ−ト部P2の周囲を囲む階段状の枠部分E2と、枠
部分E2から内側に突出してプレ−ト部Pを支承する階
段面G2とを有する。プレ−ト部P2と脚部K2とは、
枠部分E2の外側面から締結および解除可能な図示しな
い手段により固定されている。
In FIG. 3A, the lower nozzle N2 can be separated into a plate portion P2 and a leg portion K2. The leg K2 is
It has a stepped frame portion E2 that surrounds the periphery of the plate portion P2, and a step surface G2 that projects inward from the frame portion E2 and supports the plate portion P. The plate portion P2 and the leg portion K2 are
It is fixed by means (not shown) that can be fastened and released from the outer surface of the frame portion E2.

【0024】図3(b) において、下部ノズルN3はプレ
−ト部P3と脚部K3に分離可能である。脚部K3は、
プレ−ト部P3の周囲を囲む枠部分E3と、枠部分E3
から内側に突出してプレ−ト部Pを支承する斜面G3と
を有する。プレ−ト部P3と脚部K3とは、枠部分E3
の外側面から締結および解除可能な図示しない手段によ
り固定されている。
In FIG. 3 (b), the lower nozzle N3 can be separated into a plate portion P3 and a leg portion K3. The leg K3 is
A frame portion E3 surrounding the plate portion P3 and a frame portion E3
And an inclined surface G3 that projects inward from and supports the plate portion P. The plate portion P3 and the leg portion K3 form a frame portion E3.
It is fixed by means (not shown) that can be fastened and released from the outer surface of the.

【0025】[0025]

【発明の効果】請求項1のPWR用核燃料集合体の照射
成長の緩和方法によれば、少なくとも燃料交換の際にP
WR用核燃料集合体の見掛けの全長を再調整して、PW
R用核燃料集合体の照射成長を相殺して、ホ−ルドダウ
ンスプリングによる上下方向の圧縮力を減少できるか
ら、高濃縮の核燃料を用いて長時間の運転をさせる場合
でも、PWR用核燃料集合体に座屈変形や曲り変形を起
さないで済み、また、ホ−ルドダウンスプリングのへた
りを防止できる。
According to the method of relaxing the irradiation growth of the PWR nuclear fuel assembly according to the first aspect of the present invention, at least during the fuel exchange, the P
Readjust the apparent total length of the nuclear fuel assembly for WR
Since the irradiation growth of the R nuclear fuel assembly can be canceled out and the vertical compressive force by the hold down spring can be reduced, even when operating for a long time with the highly concentrated nuclear fuel, the PWR nuclear fuel assembly The buckling deformation and the bending deformation do not occur, and the holddown spring can be prevented from settling.

【0026】請求項2のPWR用核燃料集合体の下部ノ
ズルによれば、下部ノズルの側方から固定手段を操作で
きるから、PWR用核燃料集合体を上方に吊り下げた状
態で脚部を交換する作業に都合が良い。また、プレ−ト
部にかかるシンブル管からの荷重が固定手段に作用しな
いで済むから、固定手段が簡単な最小限のものでよく、
せり出し部分とプレ−ト部が接触していればPWR用核
燃料集合体の全長に誤差を生じる心配がない。
According to the lower nozzle of the PWR nuclear fuel assembly of claim 2, since the fixing means can be operated from the side of the lower nozzle, the legs are exchanged while the PWR nuclear fuel assembly is suspended upward. It is convenient for work. Further, since the load from the thimble tube applied to the plate portion does not have to act on the fixing means, the fixing means may be simple and minimal,
If the protruding portion and the plate portion are in contact with each other, there is no risk of causing an error in the total length of the PWR nuclear fuel assembly.

【図面の簡単な説明】[Brief description of drawings]

【図1】PWR用核燃料集合体の説明図である。FIG. 1 is an explanatory diagram of a nuclear fuel assembly for PWR.

【図2】実施例の下部ノズルの模式図である。FIG. 2 is a schematic diagram of a lower nozzle according to an embodiment.

【図3】別の実施例の下部ノズルの説明図である。FIG. 3 is an explanatory diagram of a lower nozzle according to another embodiment.

【符号の説明】[Explanation of symbols]

A シンブル管 B 燃料棒 C 支持格子 D ねじ E 枠部分 F 脚部分 H 貫通孔 G せり出し部分 K 脚部 I 上部炉心板 J 下部炉心板 M 上部ノズル N 下部ノズル P プレ−ト部 S1 ホ−ルドダウンスプリング A thimble tube B fuel rod C support lattice D screw E frame part F leg part H through hole G protruding part K leg part I upper core plate J lower core plate M upper nozzle N lower nozzle P plate part S1 hold down spring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炉心運転に伴なう照射成長を相殺してP
WR用核燃料集合体の見掛けの全長をほぼ一定に保つP
WR用核燃料集合体の照射成長の緩和方法において、制
御棒案内管を固定したプレ−ト部からプレ−ト部を支承
する脚部を分離可能な下部ノズルをPWR用核燃料集合
体に取付け、照射成長を起したPWR用核燃料集合体に
ついて、その前記下部ノズルの脚部を短い脚部に交換し
てなることを特徴とするPWR用核燃料集合体の照射成
長の緩和方法。
1. The irradiation growth caused by the core operation is canceled out to obtain P.
Keeping the apparent total length of WR nuclear fuel assemblies almost constant P
In a method of mitigating irradiation growth of a WR nuclear fuel assembly, a lower nozzle capable of separating a leg supporting the plate from a plate fixed to a control rod guide tube is attached to the PWR nuclear fuel assembly, and irradiation is performed. A method of mitigating irradiation growth of a PWR nuclear fuel assembly, characterized in that the leg portion of the lower nozzle of the grown PWR nuclear fuel assembly is replaced with a short leg portion.
【請求項2】 制御棒案内管を固定したプレ−ト部から
プレ−ト部を支承する脚部を分離可能なPWR用核燃料
集合体の下部ノズルにおいて、制御棒案内管を固定した
プレ−ト部に対して、プレ−ト部の周囲を囲む枠部分
と、枠部分から内側に突出してプレ−ト部を支承するせ
り出し部分と、枠部分の外側面からの操作でプレ−ト部
を固定および分離可能な固定手段と、枠部分の4隅から
下方向に伸びた4本の脚部分と、からなる脚部を組合せ
たことを特徴とするPWR用核燃料集合体の下部ノズ
ル。
2. A plate having a control rod guide tube fixed in a lower nozzle of a PWR nuclear fuel assembly in which a leg supporting the plate portion can be separated from a plate portion fixing the control rod guide tube. The frame part surrounding the plate part, the protruding part that projects inward from the frame part to support the plate part, and the plate part is fixed by an operation from the outer surface of the frame part. A lower nozzle of a nuclear fuel assembly for a PWR, characterized in that a leg portion including a separable fixing means and four leg portions extending downward from four corners of the frame portion is combined.
JP4090103A 1992-03-17 1992-03-17 Relaxation method of irradiation growth of nuclear fuel assembly for pwr and lower nozzle Withdrawn JPH05264765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4090103A JPH05264765A (en) 1992-03-17 1992-03-17 Relaxation method of irradiation growth of nuclear fuel assembly for pwr and lower nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4090103A JPH05264765A (en) 1992-03-17 1992-03-17 Relaxation method of irradiation growth of nuclear fuel assembly for pwr and lower nozzle

Publications (1)

Publication Number Publication Date
JPH05264765A true JPH05264765A (en) 1993-10-12

Family

ID=13989188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4090103A Withdrawn JPH05264765A (en) 1992-03-17 1992-03-17 Relaxation method of irradiation growth of nuclear fuel assembly for pwr and lower nozzle

Country Status (1)

Country Link
JP (1) JPH05264765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7131717B2 (en) 1998-06-09 2006-11-07 Silverbrook Research Pty Ltd Printhead integrated circuit having ink ejecting thermal actuators

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7131717B2 (en) 1998-06-09 2006-11-07 Silverbrook Research Pty Ltd Printhead integrated circuit having ink ejecting thermal actuators

Similar Documents

Publication Publication Date Title
US4655995A (en) Reversible BWR fuel assembly and method of using same
EP0379947B2 (en) Fuel rod for use in a nuclear fuel assembly
JPS5844237B2 (en) Nuclear reactor core fuel loading and operation method
JPH11502022A (en) Fuel loading and operation method of reactor core
EP2088600A1 (en) Core of a boiling water reactor
KR100892638B1 (en) Top nozzle assembly having on-off holddown spring in nuclear fuel assembly
US20090196392A1 (en) Core Of A Boiling Water Reactor
JPH05264765A (en) Relaxation method of irradiation growth of nuclear fuel assembly for pwr and lower nozzle
KR101112457B1 (en) Fuel assembly for a pressurised water nuclear reactor containing plutonium-free enriched uranium
US4792428A (en) Nuclear fuel assembly with a free end grid
RU2748538C1 (en) Fuel element of pressurized water-moderated nuclear power reactor
Carter Experimental investigation of various pellet geometries to reduce strains in zirconium alloy cladding
US5126098A (en) Method of straightening a bowed nuclear fuel assembly
US4678625A (en) Method of straightening bowed irradiated fuel assemblies
USH722H (en) Nuclear reactor fuel with radially varying enrichment
RU2242810C2 (en) Fuel assembly for water-moderated water-cooled reactor
JPH05240984A (en) Method and apparatus for controlling nuclear reactor with minium limit adjustment of boron concentration in load change
JP4021519B2 (en) Method for supplying fuel to the reactor core
Barnes CDFR design and performance implications of extended burn-up
Kamerman et al. FEASIBILITY ASSESSMENT FOR DEVELOPING AN INTEGRAL LOCA TESTING CAPABILITY AT THE TRANSIENT RESEARCH TEST (TREAT) REACTOR
RU2143144C1 (en) Fuel assembly of water-cooled power reactor
Moatti et al. Failed Fuel Assemblies in EDF PWRS over the Last 25 Years: Main Causes, Mitigation and Failed Fuel Evacuation
Troyanov et al. Lessons learned from the computational simulation of thermomechanical behaviour of the WWER-1000 reactor cores: FA development and its implantation into the Balakovo NPP unit 1
RU2248629C2 (en) Water-moderated water cooled-reactor core
JPS6189581A (en) Soluble and combustible absorber rod of nuclear fuel aggregate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518