JPH05264485A - Observation of surface atomic arrangement - Google Patents

Observation of surface atomic arrangement

Info

Publication number
JPH05264485A
JPH05264485A JP4091927A JP9192792A JPH05264485A JP H05264485 A JPH05264485 A JP H05264485A JP 4091927 A JP4091927 A JP 4091927A JP 9192792 A JP9192792 A JP 9192792A JP H05264485 A JPH05264485 A JP H05264485A
Authority
JP
Japan
Prior art keywords
atomic arrangement
sample
scanning
emitted
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4091927A
Other languages
Japanese (ja)
Inventor
Yoshikazu Honma
芳和 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4091927A priority Critical patent/JPH05264485A/en
Publication of JPH05264485A publication Critical patent/JPH05264485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To obtain a method for observing surface atomic arrangement which can observe actual space using a charged particle beam. CONSTITUTION:A charged particle beam is converged and become thin, and the surface of a sample is scanned, thus selectively taking only a secondary particles which are released in a specific direction out of the secondary particles which are generated in that case into a detection means. A signal from the detection means is displayed in synchronization with the charged particle beam, thus obtaining a scanning image reflecting an atomic arrangement of the surface of the sample.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は表面原子配列観察法に係
わり、結晶材料の表面構造を観察する表面構造観察技術
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface atomic arrangement observing method, and relates to a surface structure observing technique for observing a surface structure of a crystalline material.

【0002】[0002]

【従来の技術】従来、半導体、金属等の単結晶基板表面
の原子配列の分布を実空間の像として観察する方法とし
ては、反射電子顕微鏡または走査型反射電子顕微鏡が用
いられていた。
2. Description of the Related Art Conventionally, a reflection electron microscope or a scanning reflection electron microscope has been used as a method of observing the distribution of atomic arrangement on the surface of a single crystal substrate of semiconductor, metal or the like as an image in real space.

【0003】反射電子顕微鏡では電子ビームを試料表面
すれすれに入射させ、試料表面の原子列によって回折さ
れた電子を用いて表面の像を結像させる(八木、谷城、
高柳:「表面電子顕微鏡法」応用物理55(l986)
l036.)。
In the backscattered electron microscope, an electron beam is incident on the surface of the sample, and an image of the surface is formed by using the electrons diffracted by the atomic sequence on the surface of the sample (Yagi, Tanijo,
Takayanagi: "Surface electron microscopy" applied physics 55 (1986)
1036. ).

【0004】また、走査型反射電子顕微鏡では、同様に
電子ビームを試料表面すれすれに入射させたときに発生
する回折電子を用いるが、電子ビームを走査電子顕微鏡
と同じように試料表面を走査させ、これに同期させて回
折電子の強度をブラウン管に表示させることにより、表
面の走査像が得られる(市川、土井、早川:「マイクロ
プローブ反射電子回折法による結晶表面の観察」応用物
理54(1985)ll87.)。いずれも、結晶表面
の原子配列に敏感な手段で、表面に吸着した異種原子層
や、結晶構成原子が表面l〜3原子層で結晶内部(バル
ク)と異なった原子配列をとる表面再配列構造(例え
ば、Si(111)面における7×7構造やSi(l0
0)面におけるl×2構造)についての空間分布を鮮明
な像として観察できる。
Further, in a scanning reflection electron microscope, similarly, diffracted electrons generated when an electron beam is made to impinge on the sample surface are used. However, the electron beam scans the sample surface in the same manner as in the scanning electron microscope. By synchronizing with this and displaying the intensity of diffracted electrons on a cathode ray tube, a scanning image of the surface can be obtained (Ichikawa, Doi, Hayakawa: "Observation of Crystal Surface by Microprobe Reflection Electron Diffraction Method" Applied Physics 54 (1985)). ll87.). All of them are means of being sensitive to the atomic arrangement on the crystal surface, and a surface rearrangement structure in which a heteroatom layer adsorbed on the surface or a crystal constituent atom has an atomic arrangement different from the inside (bulk) of the crystal on the surface 1 to 3 atomic layers. (For example, a 7 × 7 structure on the Si (111) plane or Si (10)
It is possible to observe the spatial distribution of the 1 × 2 structure in the 0) plane as a clear image.

【0005】しかし、いずれの場合にも表面からの反射
回折電子を利用するため電子ビームを試料表面すれすれ
(数度以下)に入射させる必要があり、得られる像は電
子ビームの入射方向に極端な寸詰まりを起こしたものと
なる(縦横比が数十対l)。一方、反射回折電子を用い
ずに二次電子で結晶表面の走査像を得ようとする試みも
ある(市ノ川:「低エネルギー走査型電子顕微鏡」日本
結晶学会誌29(l987)l30.、井野:「超高真
空走査電子顕微鏡による表面吸着層の観察」日本物理学
会1990年秋の分科会講演予講集第二分冊P46
0.)。この方法は、垂直入射の電子ビームを使用でき
るため、走査像の寸詰まりはない。しかしながら、この
方法では、表面に存在する、基板原子とは異なる原子の
層を識別することはできるが、表面再配列層のような基
板原子自体の原子配列の違いを識別することはできなか
った。
However, in any case, the electron beam must be made to strike the surface of the sample (several degrees or less) in order to utilize the reflected and diffracted electrons from the surface, and the obtained image is extremely sharp in the incident direction of the electron beam. It becomes a clogged one (aspect ratio is several tens to l). On the other hand, there is also an attempt to obtain a scanning image of a crystal surface by secondary electrons without using reflected diffraction electrons (Ichinokawa: “Low Energy Scanning Electron Microscope” Journal of the Crystallographic Society of Japan 29 (l987) l30., Ino: "Observation of surface adsorbed layer by ultra-high vacuum scanning electron microscope" Preliminary Lecture 2nd volume P46
0. ). Since this method can use a vertically incident electron beam, the scanning image is not clogged. However, this method was able to discriminate a layer of atoms different from the substrate atoms existing on the surface, but could not discriminate the difference in atomic arrangement of the substrate atoms themselves such as the surface rearrangement layer. ..

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来の表面
原子配列観察法における上記の欠点を改善するために提
案されたもので、その目的は、実空間分布観察が可能
な、荷電ビームを用いた表面原子配列観察法を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been proposed in order to improve the above-mentioned drawbacks in the conventional surface atomic arrangement observation method, and its purpose is to provide a charged beam capable of observing a real space distribution. It is to provide a method for observing the surface atomic arrangement used.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、荷電ビームを細く収束して試料表面を走
査し、その際に表面から二次的に発生する二次電子、オ
ージェ電子、散乱粒子あるいはスパッタ粒子等の二次粒
子のうち特定の方向に放出されるもののみを選択的に検
出し、試料表面の原子配列を反映した走査像を得ること
を特徴とする表面原子配列観察法を要旨とするものであ
る。
In order to achieve the above object, the present invention provides a secondary electron, an auger, which is a secondary electron generated from the surface of a sample by scanning a sample surface by finely converging the charged beam. Surface atomic arrangement characterized by selectively detecting only secondary particles such as electrons, scattered particles or sputtered particles that are emitted in a specific direction to obtain a scanning image that reflects the atomic arrangement on the sample surface The observation method is the main point.

【0008】[0008]

【作用】表面原子配列を反映した走査像を得る原理は、
荷電ビーム照射に伴い表面から二次的に発生するオージ
ェ電子や二次イオン等が結晶方位依存性、即ち、原子配
列依存性を持つことを利用したものである。
[Function] The principle of obtaining a scanning image reflecting the surface atomic arrangement is
It utilizes that the Auger electrons and secondary ions that are secondarily generated from the surface due to the charged beam irradiation have crystal orientation dependence, that is, atomic arrangement dependence.

【0009】結晶面から放出される粒子の強度が、結晶
構造に依存すること自体は、例えば、二次イオン(G.Sl
odzian,"SOME PROBLEM ENCOUNTERED IN SECONDARY ION
EMISSION APPLIED TO ELEMENTARY ANALYSIS", Surface
Science, 48(1975)161)やオージェ電子(D.G.Frank,N.
Batiina,J.W.McCargar and A.T.Hubbard、"Direct Imagi
ng of Surface Atomic Structure by angular Distribu
tion Auger Microscopy: The Bare Pt(111) Surface",
Langmuir 5 (1989) 1141.)についての報告があるよう
に、放出強度が結晶面の対称性を反映して変化すること
が知られている。
The fact that the strength of the particles emitted from the crystal plane depends on the crystal structure itself is, for example, secondary ion (G.Sl).
odzian, "SOME PROBLEM ENCOUNTERED IN SECONDARY ION
EMISSION APPLIED TO ELEMENTARY ANALYSIS ", Surface
Science, 48 (1975) 161) and Auger Electronics (DGFrank, N.
Batiina, JWMcCargar and ATHubbard, "Direct Imagi
ng of Surface Atomic Structure by angular Distribu
tion Auger Microscopy: The Bare Pt (111) Surface ",
As reported in Langmuir 5 (1989) 1141.), it is known that the emission intensity changes reflecting the symmetry of the crystal plane.

【0010】しかしながら、これらは、バルクとしての
結晶構造の対称性を反映した結果を示したにすぎず、単
結晶の表面再配列層に関する知見は全くなく、単結晶表
面の再配列層から放出される二次粒子がその原子配列に
依存することは、本発明者らによって初めて見いだされ
たものである。即ち、本発明者らは、表面1〜3層だけ
がバルク結晶とは異なる原子配列をとる表面再配列層か
らの二次イオンやオージェ電子の放出強度・放出方向
が、その原子配列に依存して変化することを見いだし、
これを基に本発明の表面原子配列観察法の発明に至った
わけである。
However, these only show the result reflecting the symmetry of the crystal structure as a bulk, and there is no knowledge about the surface rearrangement layer of the single crystal, and the emission is from the rearrangement layer of the single crystal surface. It was first discovered by the present inventors that the secondary particles depending on their atomic arrangement. That is, the inventors have determined that the emission intensity and the emission direction of secondary ions and Auger electrons from the surface rearrangement layer in which only the first to third layers have an atomic arrangement different from that of the bulk crystal depend on the atomic arrangement. To change and
Based on this, the invention of the surface atom arrangement observation method of the present invention was reached.

【0011】本発明においては、例えば表面に原子配列
の異なる複数の領域が混在する場合(例えば、Si(1
00)面のl×2領域と2×1領域)、各々の領域から
特定方向に放出される二次イオンやオージェ電子の強度
が僅かに異なることを利用し、表面原子配列を反映した
走査像を得ることが可能となる。
In the present invention, for example, when a plurality of regions having different atomic arrangements are mixed on the surface (for example, Si (1
(1) 2 × 1 region and 2 × 1 region of the (00) plane) and the slightly different intensities of secondary ions and Auger electrons emitted from each region in a specific direction are used to make a scanning image that reflects the surface atomic arrangement. Can be obtained.

【0012】即ち、ある特定の原子配列の表面から放出
された二次粒子の強度は、検出する方向により異なるた
め、例えばマスク等の角度制限手段を用いて検出器に入
射する方向を定め、微少径(好ましくは、最小の同一原
子配列領域の面積より小さい面積のビーム径)の荷電ビ
ームで表面を走査することにより、表面上の異なる原子
配列の分布を観察することができる。ここで、放出粒子
を検出する特定方向は、試料表面の異なる原子配列の領
域から放出される粒子強度のコントラストが大きくなる
ように選べば良い。
That is, since the intensity of the secondary particles emitted from the surface of a certain specific atomic arrangement varies depending on the direction of detection, the direction of incidence on the detector is determined by using an angle limiting means such as a mask and the By scanning the surface with a charged beam having a diameter (preferably a beam diameter smaller than the area of the smallest identical atomic arrangement region), the distribution of different atomic arrangements on the surface can be observed. Here, the specific direction in which the emitted particles are detected may be selected so that the contrast of the intensity of the particles emitted from the regions of different atomic arrangement on the sample surface becomes large.

【0013】また、本発明では、放出粒子のエネルギー
分析あるいは質量分析を同時に行うことにより、表面原
子配列の分布観察のみならず元素の分布観察あるいは原
子配列解析も同時に行うことが可能となる。
Further, in the present invention, by simultaneously performing energy analysis or mass analysis of emitted particles, it becomes possible to observe not only the distribution of surface atomic arrangement but also the distribution of elements or atomic arrangement.

【0014】[0014]

【実施例】【Example】

(実施例l)図1に本発明の第lの実施例における表面
原子配列観察法の手順を示す。
(Example 1) FIG. 1 shows the procedure of the surface atomic arrangement observation method in Example 1 of the present invention.

【0015】荷電ビーム(電子ビームまたはイオンビー
ム)を細く(例えば直径50nm以下)収束し、この荷
電ビームで試料表面上の所望の領域を走査する。これに
よって試料表面から放出される二次電子のうち、角度制
限手段を用いて特定の方向に放出される二次電子を選択
的に検出する。そして、荷電ビームの走査に同期させて
二次電子強度をCRT等の表示手段上に表示することに
より走査像を得る。
A charged beam (electron beam or ion beam) is converged into a narrow beam (for example, having a diameter of 50 nm or less), and a desired region on the sample surface is scanned with this charged beam. Thereby, among the secondary electrons emitted from the surface of the sample, the secondary electrons emitted in a specific direction are selectively detected by using the angle limiting means. Then, a secondary electron intensity is displayed on a display means such as a CRT in synchronization with the scanning of the charged beam to obtain a scan image.

【0016】この時、走査像が表面原子配列分布を反映
したものになる理由を以下に説明する。二次電子の放出
方向は完全には等方的ではなく、原子配列の異方性を反
映した空間分布を持つ。この様子を2回対称性を持つS
i(100)面のl×2構造を例に図2を用いて説明す
る。
At this time, the reason why the scan image reflects the surface atomic arrangement distribution will be described below. The emission direction of secondary electrons is not completely isotropic and has a spatial distribution that reflects the anisotropy of atomic arrangement. This state is S with two-fold symmetry
The 1 × 2 structure of the i (100) plane will be described as an example with reference to FIG.

【0017】l×2構造の原子配列を横から眺めると、
図中でA方向と示した方向と、これに垂直なB方向では
原子配列が異なる。このため、二次電子の放出強度にも
A方向とB方向との間で僅かな差が生じる。従って、放
出される二次電子の全部ではなく、ある制限された方位
角内にのみ放出されるものを検出すると、二次電子強度
は原子配列と同じ2回対称性を持つ。この二次電子の放
出強度の2回対称性における山と谷の強度差は、表面に
垂直な方向の二次電子まで検出するよりも、表面に対し
て低角に放出される二次電子だけを検出した方が大きく
なる。
Looking at the atomic arrangement of the l × 2 structure from the side,
The atomic arrangement is different between the direction shown as A direction in the figure and the B direction perpendicular to this direction. Therefore, the emission intensity of secondary electrons also has a slight difference between the A direction and the B direction. Therefore, when not all of the emitted secondary electrons but only those emitted within a limited azimuth angle are detected, the secondary electron intensity has the same two-fold symmetry as the atomic arrangement. The intensity difference between the peak and the valley in the two-fold symmetry of the emission intensity of the secondary electrons is only the secondary electrons emitted at a low angle with respect to the surface, rather than detecting the secondary electrons in the direction perpendicular to the surface. Is larger when detected.

【0018】いま、図3(1)に示すように、図2の原
子配列のA方向の向きが90゜異なる二つの領域が共存
している場合を考える(Si(100)面ではl×2領
域と2×1領域に対応する)。これを図中a方向に放出
される二次電子を選択的に検出すると、図3(2)に示
すように、それぞれの原子配列の領域の分布を反映した
像を得ることができる。
As shown in FIG. 3A, consider the case where two regions in which the orientation of the atomic arrangement in FIG. 2 in the direction A differs by 90 ° coexist (1 × 2 on the Si (100) plane). Region and 2x1 region). By selectively detecting the secondary electrons emitted in the direction a in the figure, an image reflecting the distribution of the respective atomic arrangement regions can be obtained, as shown in FIG. 3B.

【0019】図4にSi(100)面の観察に本方法を
適用した結果を示す。よく知られているようにSi(l
00)面には1×2領域と2×l領域とが共存してい
る。25keVの電子ビームを表面に垂直に入射し、検
出器を試料の真横に置いて二次電子を検出した。検出器
を試料の真横に置くことにより、検出器に向かって放出
される二次電子の捕獲効率を他の方向に放出される二次
電子に比べて大きくすることができる。
FIG. 4 shows the result of applying this method to the observation of the Si (100) plane. As is well known, Si (l
The 1 × 2 region and the 2 × 1 region coexist on the (00) plane. A 25 keV electron beam was incident vertically on the surface, and a detector was placed right next to the sample to detect secondary electrons. By placing the detector directly beside the sample, the trapping efficiency of secondary electrons emitted toward the detector can be made higher than that of secondary electrons emitted in other directions.

【0020】この結果、図4に示すように、l×2領域
と2×1領域とで二次電子強度に差が生じ、両者の分布
を反映した走査像を得ることができた。
As a result, as shown in FIG. 4, there was a difference in secondary electron intensity between the 1 × 2 region and the 2 × 1 region, and it was possible to obtain a scanned image reflecting the distribution of the two.

【0021】(実施例2)図5に、本発明の第2の実施
例における表面原子配列観察法の手順を示す。
(Embodiment 2) FIG. 5 shows the procedure of the surface atomic arrangement observation method in the second embodiment of the present invention.

【0022】荷電ビーム(電子ビームまたはイオンビー
ム)を細く(例えば直径50nm以下)収束し、この荷
電ビームで試料表面上の所望の領域を走査する。これに
よって試料表面から放出されるオージェ電子のうち、角
度制限手段を用いて特定の方向に放出されるオージェ電
子を選択的に取り込み、かつエネルギ分析手段によって
特定のエネルギのオージェ電子を検出する。そして、荷
電ビームの走査に同期させてオージェ電子強度をCRT
等の表示手段上に表示することにより走査像を得る。
A charged beam (electron beam or ion beam) is converged into a narrow beam (for example, having a diameter of 50 nm or less), and a desired region on the sample surface is scanned with this charged beam. As a result, of the Auger electrons emitted from the surface of the sample, the Auger electrons emitted in the specific direction are selectively taken in by using the angle limiting means, and the energy analyzing means detects the Auger electrons having the specific energy. Then, the Auger electron intensity is synchronized with the CRT in synchronization with the scanning of the charged beam.
A scanning image is obtained by displaying on a display means such as.

【0023】本実施例ではオージェ電子分光による表面
元素の空間分布の観察と、原子配列分布観察を同時に行
えるという利点がある。
This embodiment has an advantage that the spatial distribution of surface elements by Auger electron spectroscopy and the atomic arrangement distribution can be observed simultaneously.

【0024】(実施例3)図6に、本発明の第3の実施
例における表面原子配列観察法の手順を示す。
(Embodiment 3) FIG. 6 shows the procedure of the surface atom arrangement observation method in the third embodiment of the present invention.

【0025】イオンビームを細く(例えば直径50nm
以下)収束し、このイオンビームで試料表面上の所望の
領域を走査する。これによってイオンビーム自身が試料
表面から散乱されて発生する散乱イオン、あるいはイオ
ンビームが中性化して散乱された中性粒子(両者を併せ
て散乱粒子と呼ぶ)のうち、角度制限手段を用いて特定
の方向に散乱される散乱粒子を選択的に取り込み、取り
込んだ散乱粒子の全部あるいはエネルギ分析手段によっ
て分別した特定のエネルギの散乱粒子を検出する。
The ion beam is made thin (for example, 50 nm in diameter).
(Hereinafter) converge and scan a desired area on the sample surface with this ion beam. As a result, scattered ions generated by scattering the ion beam itself from the sample surface, or neutral particles scattered by neutralization of the ion beam (both are called scattering particles), using the angle limiting means. The scattered particles scattered in a specific direction are selectively taken in, and all of the taken-in scattered particles or the scattered particles having a specific energy separated by the energy analysis means are detected.

【0026】そして、イオンビームの走査に同期させて
散乱粒子強度をCRT等の表示手段上に表示することに
より走査像を得る。
Then, in synchronization with the scanning of the ion beam, the scattered particle intensity is displayed on a display means such as a CRT to obtain a scanned image.

【0027】本実施例ではイオン散乱分光による原子配
列解析と原子配列分布の空間分布観察を組み合わせるこ
とができる。
In the present embodiment, atomic array analysis by ion scattering spectroscopy and observation of spatial distribution of atomic array distribution can be combined.

【0028】(実施例4)図7に、本発明の第4の実施
例における表面原子配列観察法の手順を示す。イオンビ
ームを細く(例えば直径50nm以下)収束し、このイ
オンビームで試料表面上の所望の領域を走査する。これ
によって試料表面原子がスパッタされて発生する二次イ
オンあるいは中性スパッタ粒子(両者を併せてスパッタ
粒子と呼ぶ)のうち、角度制限手段を用いて特定の方向
に放出されるスパツタ粒子を選択的に取り込み、取り込
んだスパッタ粒子の全部あるいは質量分析手段によって
分別した特定の質量のスパッタ粒子を検出する。そし
て、イオンビームの走査に同期させてスパツタ粒子強度
をCRT等の表示手段に表示することにより走査像を得
る。
(Embodiment 4) FIG. 7 shows the procedure of the surface atom arrangement observation method in the fourth embodiment of the present invention. The ion beam is focused narrowly (for example, having a diameter of 50 nm or less), and a desired region on the sample surface is scanned with this ion beam. As a result, secondary particles or neutral sputtered particles (both are collectively called sputtered particles) generated by sputtering the sample surface atoms are selectively sputtered particles emitted in a specific direction by using an angle limiting means. All of the sputtered particles taken in and the sputtered particles of a specific mass separated by the mass spectrometric means are detected. Then, in synchronization with the scanning of the ion beam, the intensity of the spatter particles is displayed on a display means such as a CRT to obtain a scanned image.

【0029】本実施例では二次イオン質重分析あるいは
二次中性粒子質量分析による元素分布観察と原子配列分
布観察を同時に行うことができる。
In this embodiment, the element distribution observation and the atomic arrangement distribution observation by the secondary ion mass analysis or the secondary neutral particle mass spectrometry can be simultaneously performed.

【0030】[0030]

【発明の効果】本発明により、即ち、荷電ビームを細く
収束して試料表面を走査し、その際に表面から二次的に
発生する二次電子やオージェ電子等の二次粒子のうち特
定の方向に放出されるもののみを選択的に検出して走査
像を得ることにより、従来は困難であった荷電ビームを
用いた表面原子配列の実空間分布観察が容易になる。
EFFECTS OF THE INVENTION According to the present invention, that is, a charged beam is converged finely to scan the surface of a sample, and at this time, a specific particle among secondary particles such as secondary electrons or Auger electrons secondary generated from the surface is sampled. By selectively detecting only those emitted in the direction to obtain a scanning image, it becomes easy to observe the real spatial distribution of the surface atomic arrangement using a charged beam, which has been difficult in the past.

【0031】しかも、表面原子配列の分布観察と同時
に、構成元素の分布観察あるいは原子配列解析も同時に
行うことが可能となる。
Moreover, it is possible to observe the distribution of the constituent elements or analyze the atomic arrangement simultaneously with the observation of the distribution of the surface atomic arrangement.

【0032】従って、本発明の表面原子配列観察法は、
結晶材料の表面構造の研究に多大な進歩をもたらし、材
料開発及び素子開発に大きく貢献することは疑う余地の
ないところである。
Therefore, the surface atomic arrangement observation method of the present invention is
There is no doubt that it will make a great deal of progress in the study of the surface structure of crystalline materials, and will greatly contribute to material development and device development.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例における表面原子配列観
察法の工程図。
FIG. 1 is a process diagram of a surface atomic arrangement observation method according to a first embodiment of the present invention.

【図2】Si(100)面の1×2構造の原子配列の異
方性を説明する図。
FIG. 2 is a diagram for explaining anisotropy of atomic arrangement of 1 × 2 structure of Si (100) plane.

【図3】2種類の原子配列が混在する場合の二次電子像
を説明する図。
FIG. 3 is a diagram for explaining a secondary electron image when two types of atomic arrangements are mixed.

【図4】本発明の第lの実施例によるSi(100)面
の1×2領域と2×1領域の観察結果を示す写真。
FIG. 4 is a photograph showing an observation result of a 1 × 2 region and a 2 × 1 region of a Si (100) plane according to a first example of the present invention.

【図5】本発明の第2の実施例における表面原子配列観
察法を説明する図。
FIG. 5 is a diagram illustrating a surface atom arrangement observation method according to a second embodiment of the present invention.

【図6】本発明の第3の実施例における表面原子配列観
察法を説明する図。
FIG. 6 is a diagram illustrating a surface atomic arrangement observation method according to a third embodiment of the present invention.

【図7】本発明の第4の実施例における表面原子配列観
察法を説明する図。
FIG. 7 is a diagram illustrating a surface atom arrangement observation method according to a fourth embodiment of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 荷電ビームを細く収束して試料表面を走
査し、その際に発生する二次電子のうち特定の方向に放
出される二次電子のみを選択的に検出手段に取り込み、
該検出手段からの信号を前記荷電ビームの走査と同期さ
せて表示することにより試料表面の原子配列を反映した
走査像を得ることを特徴とする表面原子配列観察法。
1. A sample surface is scanned by converging a charged beam finely, and only secondary electrons emitted in a specific direction out of secondary electrons generated at that time are selectively taken into a detection means,
A surface atomic arrangement observing method, characterized in that a scanning image reflecting the atomic arrangement on the sample surface is obtained by displaying a signal from the detecting means in synchronization with the scanning of the charged beam.
【請求項2】 荷電ビームを細く収束して試料表面を走
査し、その際に発生するオージェ電子のうち特定の方向
に放出されるオージェ電子のみを選択的に検出手段に取
り込み、該検出手段からの信号を前記荷電ビームの走査
と同期させて表示することにより試料表面の原子配列を
反映した走査像を得ることを特徴とする表面原子配列観
察法。
2. A sample surface is scanned by converging a charged beam finely, and only Auger electrons emitted in a specific direction out of Auger electrons generated at that time are selectively taken into a detecting unit, and the Auger electron is emitted from the detecting unit. The surface atomic arrangement observing method is characterized in that a scanning image reflecting the atomic arrangement on the surface of the sample is obtained by displaying the signal of 1) in synchronization with the scanning of the charged beam.
【請求項3】 イオンビームを細く収束して試料表面を
走査し、その際に前記イオンビームが散乱されて発生す
る散乱粒子のうち特定の方向に放出される散乱粒子のみ
を選択的に検出手段に取り込み、該検出手段からの信号
を前記イオンビームの走査と同期させて表示することに
より試料表面の原子配列を反映した走査像を得ることを
特徴とする表面原子配列観察法。
3. A means for selectively detecting only the scattering particles emitted in a specific direction among the scattering particles generated when the ion beam is finely focused to scan the sample surface and the ion beam is scattered at that time. And a signal from the detection means is displayed in synchronism with the scanning of the ion beam to obtain a scanning image reflecting the atomic arrangement on the surface of the sample.
【請求項4】 イオンビームを細く収束して試料表面を
走査し、その際に前記イオンビームによって試料構成原
子がスパッタされて発生するスパツタ粒子のうち特定の
方向に放出されるスパツタ粒子のみを選択的に検出手段
に取り込み、該検出手段からの信号を前記イオンビーム
の走査と同期させて表示することにより試料表面の原子
配列を反映した走査像を得ることを特徴とする表面原子
配列観察法。
4. An ion beam is converged finely to scan the sample surface, and only the sputter particles emitted in a specific direction are selected from the sputter particles generated when the constituent atoms of the sample are sputtered by the ion beam at that time. A method for observing a surface atomic arrangement characterized in that a scanning image reflecting the atomic arrangement on the surface of a sample is obtained by selectively incorporating the signal into the detecting means and displaying the signal from the detecting means in synchronization with the scanning of the ion beam.
JP4091927A 1992-03-17 1992-03-17 Observation of surface atomic arrangement Pending JPH05264485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4091927A JPH05264485A (en) 1992-03-17 1992-03-17 Observation of surface atomic arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4091927A JPH05264485A (en) 1992-03-17 1992-03-17 Observation of surface atomic arrangement

Publications (1)

Publication Number Publication Date
JPH05264485A true JPH05264485A (en) 1993-10-12

Family

ID=14040221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4091927A Pending JPH05264485A (en) 1992-03-17 1992-03-17 Observation of surface atomic arrangement

Country Status (1)

Country Link
JP (1) JPH05264485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529622A (en) * 2008-07-31 2011-12-08 ケーマック Spectroscopic analyzer using medium energy ion beam scattering.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192649A (en) * 1987-10-05 1989-04-11 Nippon Steel Corp Analyzing method for finely different phase
JPH0443541A (en) * 1990-06-08 1992-02-13 Nippon Telegr & Teleph Corp <Ntt> Surface analysis device and surface analysis method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192649A (en) * 1987-10-05 1989-04-11 Nippon Steel Corp Analyzing method for finely different phase
JPH0443541A (en) * 1990-06-08 1992-02-13 Nippon Telegr & Teleph Corp <Ntt> Surface analysis device and surface analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529622A (en) * 2008-07-31 2011-12-08 ケーマック Spectroscopic analyzer using medium energy ion beam scattering.

Similar Documents

Publication Publication Date Title
US5278408A (en) Instrument and method for 3-dimensional atomic arrangement observation
US7915583B2 (en) Method and system for ultrafast photoelectron microscope
US7022988B2 (en) Method and apparatus for measuring physical properties of micro region
Yaguchi et al. Observation of three-dimensional elemental distributions of a Si device using a 360°-tilt FIB and the cold field-emission STEM system
Yamane et al. Acceptance-cone-tunable electron spectrometer for highly-efficient constant energy mapping
US4724320A (en) Method of observing the arrangement of atoms on a surface and apparatus therefor
US10593511B2 (en) Method of determining the deflection of an electron beam resulting from an electric field and/or a magnetic field
US8232518B2 (en) Device and method for characterizing surfaces
Meieran et al. Analysis technology for VLSI fabrication
JPH05264485A (en) Observation of surface atomic arrangement
Frank et al. The scanning low‐energy electron microscope: First attainment of diffraction contrast in the scanning electron microscope
Clarke Image contrast in the scanning electron microscope
Drummond et al. Methodology, performance, and application of an imaging x‐ray photoelectron spectrometer
JP2790575B2 (en) Scanning electron microscope
JPH07226181A (en) Ion scattering surface analyzer
JP2002365248A (en) Method for analyzing sample
JPH0443541A (en) Surface analysis device and surface analysis method
JP2001289754A (en) Three-dimensional atomic arrangement observation sample forming method
Kirschner Surface Structure Analysis by Scanning LEED Microscopy T. Ichinokawa¹, Y. Ishikawa¹, Y. Hosokawa¹, I. Hamaguchi¹, and J. Kirschner2 ¹Department of Applied Physics, Waseda University
Meakin Structural and chemical characterization of photovoltaic materials and devices
Ichinokawa et al. Surface Structure Analysis by Scanning LEED Microscopy
JPH10321176A (en) Three-dimensional atomic arrangement observation method and device
Hatzistergos Materials Characterization Techniques for Solar Cell Devices: Imaging, Compositional and Structural Analysis
JPH0620634A (en) Scanning electron microscope
Markoulidis A Review on Surface Analysis Techniques