JPH05264343A - Far-infrared spectral light detector - Google Patents

Far-infrared spectral light detector

Info

Publication number
JPH05264343A
JPH05264343A JP9242392A JP9242392A JPH05264343A JP H05264343 A JPH05264343 A JP H05264343A JP 9242392 A JP9242392 A JP 9242392A JP 9242392 A JP9242392 A JP 9242392A JP H05264343 A JPH05264343 A JP H05264343A
Authority
JP
Japan
Prior art keywords
far
infrared
ray
resistor
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9242392A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishibashi
広 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advance Co Ltd
Original Assignee
Advance Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advance Co Ltd filed Critical Advance Co Ltd
Priority to JP9242392A priority Critical patent/JPH05264343A/en
Publication of JPH05264343A publication Critical patent/JPH05264343A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable detection of a weak far-infrared ray for each wave-length to be conducted by disposing a plurality of antennas of high electrical conductivity having different lengths set in accordance with wavelengths and by conducting spectral detection of the far-infrared ray from a detected signal strength. CONSTITUTION:The respective lengths of linear antenna arrays 1a to 1g are so set as to be wavelengths of far-infrared rays to be objects of measurement and the widths thereof are set to be 1/2 of the wavelengths. The infrared-ray to be measured is condensed by an appropriate condensing device such as a parabolic mirror and applied. Thereby maximum absorption occurs in a place corresponding to the wavelength of the incident far-infrared ray, out of the antenna elements 1a to 1g, and a temperature rise occurs in a resistor 3 annexed to the place. The resistance value of the resistor 3 changes with the rise of the temperature, and by making a weak current flow through a lead wire 4 and by measuring the resistance value of the resistor 3, therefore, the antenna element which the infrared-ray enters and the strength of this infrared-ray can be known. Accordingly, the weak far-infrared rays can be detected for each wavelength.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、遠赤外線を検出する為
の素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element for detecting far infrared rays.

【0002】[0002]

【従来の技術】遠赤外線測定器には、熱エネルギーを電
気エネルギーに変換する熱電変換素子、遠赤外線の光量
子を電気エネルギーに変換する量子型変換素子等が知ら
れている。
2. Description of the Related Art As far-infrared ray measuring devices, a thermoelectric conversion element for converting heat energy into electric energy, a quantum conversion element for converting photons of far infrared rays into electric energy, and the like are known.

【0003】[0003]

【発明が解決しようとする課題】然るに上述した変換素
子に対し、強い遠赤外線にあっては問題なくその量、波
長、強さ等を測定できるが、常温程度の弱い遠赤外線に
あっては測定誤差が大きく、まして、特定波長の微弱遠
赤外線を定量的にとらえることは現在のところ困難であ
る。
However, the intensity, wavelength, intensity, etc. of the conversion element described above can be measured without problems in the case of strong far infrared rays, but it can be measured in the case of weak far infrared rays at room temperature. There is a large error, and it is currently difficult to quantitatively capture weak far infrared rays of a specific wavelength.

【0004】[0004]

【課題を解決する為の手段】本発明は、上記に鑑みなさ
れたものであり、遠赤外線を電磁波の一形態として捕ら
え、測定対称となる遠赤外線の波長に対応した長さを有
する電気的良導性を有するアンテナを構成することによ
って、波長ごとの遠赤外線の強度を感度良く測定するこ
とを実現した。
The present invention has been made in view of the above, and it captures far infrared rays as a form of electromagnetic waves, and has an electrical quality having a length corresponding to the wavelength of far infrared rays which is a measurement symmetry. By constructing an antenna with conductivity, we have been able to measure the intensity of far infrared rays at each wavelength with high sensitivity.

【0005】本発明の特徴は次の通りである。遠赤外線
は約25〜1000(μm)の波長を有する電磁波であ
る。そこで、その波長に応じて設定した長さの電気的良
導性を有するアンテナに遠赤外線を入射させる。この時
アンテナは、例えばその長さが1/2波長であれば中心
で電流分布が最大となり、また、その長さが1波長であ
れば、両端間で電圧分布が最大とすることができ、特定
波長の遠赤外線に対し微弱であってもその利得を向上さ
せることができる。これに加え、アンテナの長さにより
検出される遠赤外線の波長を限定することができるの
で、波長別の強度を測定することができる。従って、本
発明ではこの電流乃至電圧を検出することにより遠赤外
線のスペクトルを測定可能とした。“電気的良導性”は
測定対称とされる遠赤外線が極微弱である場合は良導性
の高い素材(低インピーダンス)を要し、よって特殊環
境下における特殊素材(例えば、超電導素材の使用)、
アンテナ自身の各種損失を考慮した素材の使用を必要と
する場合もある。尚、一般的には金属、導電性セラミッ
クス等を使用してもよい。アンテナの種類は、ダイポー
ル状、ループ状、スリーブ状、パラボラ状及びこれらア
ンテナ類に反射板を備えたもの等が例示される。
The features of the present invention are as follows. Far infrared rays are electromagnetic waves having a wavelength of about 25 to 1000 (μm). Therefore, far-infrared rays are made incident on an antenna having electrical conductivity having a length set according to the wavelength. At this time, for example, if the length of the antenna is 1/2 wavelength, the current distribution becomes maximum at the center, and if the length is 1 wavelength, the voltage distribution between both ends can be maximized. The gain can be improved even if it is weak with respect to far infrared rays of a specific wavelength. In addition to this, since the wavelength of far infrared rays detected can be limited by the length of the antenna, the intensity for each wavelength can be measured. Therefore, in the present invention, the far infrared spectrum can be measured by detecting this current or voltage. “Electrical good conductivity” requires a material with high conductivity (low impedance) when the far-infrared, which is considered to be the measurement symmetry, is extremely weak. Therefore, special materials (for example, use of superconducting material) in a special environment are required. ),
In some cases, it is necessary to use materials that take into account various losses of the antenna itself. Generally, metal, conductive ceramics, etc. may be used. Examples of the type of antenna include a dipole shape, a loop shape, a sleeve shape, a parabolic shape, and those antennas provided with a reflector.

【0006】[0006]

【実施例】図1乃至図1を側面から見た図2において、
(1a)〜(1g)は、線状アンテナアレイであり、各
々の長さ(k)は、測定対称となる遠赤外線の波長の
となる様設定されている。各々の幅は1/2波長となる
様設定されている。その素材は例えばNb等である。
(2)は、基板でありSiO2等の素材より成形されて
いる。(3)は、抵抗体であり、主に炭素系塗料、導電
性高分子、銀ペースト白金抵抗体サーミスタ等の半導体
等々を主成分とし、各アンテナが受信した遠赤外線を熱
化し、赤外線強度を温度上昇に変換する。温度上昇は、
抵抗体の抵抗変化をリード線(4)を通して計測する。
この素子の具体的製法例としては、次に挙げられる。ま
ず、Si基盤を酸化して表面にSiO2膜を付け、その
上にNbをスパッタリングにより付ける。このNb膜を
図1に示されるようなパターンにパターニングし、さら
に、アルミニウム・金などを蒸着してこの蒸着薄膜上に
リード線(4)をパターニングする。その上にスクリー
ン印刷の手法により抵抗体(3)をつける。最後に裏面
よりSiをエッチングで溶かし去れば、素子が完成す
る。尚、ここでSiを溶かし去るのは、Siによる赤外
線の反射・吸収などを避けるため、および抵抗体により
発生した熱が伝導により逃げ去るのを防ぐためである。
1 is a side view of FIG. 1 to FIG.
(1a) to (1g) are linear antenna arrays, and the length (k) of each is the wavelength of the far-infrared ray that is symmetrical to the measurement.
It is set so that Each width is set to be 1/2 wavelength. The material is Nb, for example.
(2) is a substrate, which is molded from a material such as SiO2. (3) is a resistor, which is mainly composed of a carbon-based paint, a conductive polymer, a semiconductor such as a silver paste platinum resistor thermistor, etc. as main components, and heats far infrared rays received by each antenna to increase infrared intensity. Convert to temperature rise. The temperature rise is
The resistance change of the resistor is measured through the lead wire (4).
The following is an example of a specific manufacturing method of this element. First, the Si substrate is oxidized to form a SiO2 film on the surface, and Nb is formed thereon by sputtering. This Nb film is patterned into a pattern as shown in FIG. 1, and aluminum / gold or the like is further vapor deposited to pattern the lead wire (4) on the vapor deposited thin film. A resistor (3) is attached on it by a screen printing technique. Finally, the element is completed by removing Si by etching from the back surface. The reason why Si is melted away here is to avoid reflection and absorption of infrared rays by Si, and to prevent heat generated by the resistor from escaping due to conduction.

【0007】次に、動作を説明する。測定される赤外線
は、パラボラ鏡などの適当な集光装置により集められ、
本装置上に照射される。すると、アンテナ素子(1a−
1g)のうち、入射した赤外線の波長に相当するところ
で最大の吸収が起こり、そこに付随した抵抗体(3)に
温度上昇が生じる。抵抗体は温度の上昇に伴いその抵抗
値が変化するので、リード線(4)を通して微弱な電流
を通じて抵抗体の抵抗値を測定すれば、どのアンテナ素
子にどれだけの強度の赤外線が入射したかがわかる。す
なわち、入射赤外線の波長ごとの強度を知ることができ
る。尚、上記した実施例はあくまで一例にすぎず、アン
テナで検出される分布電流、電圧を検出できるものであ
ればいかなるものであってもよい。また、アンテナの形
状も図のような1/2波長直線形に限定されるものでは
なく、例えば多素子の組み合わせにより受信バンドを尖
鋭化させることも可能である。
Next, the operation will be described. The infrared rays to be measured are collected by an appropriate condensing device such as a parabolic mirror,
It is irradiated onto the device. Then, the antenna element (1a-
Of the 1 g), the maximum absorption occurs at a wavelength corresponding to the wavelength of the incident infrared ray, and the temperature of the resistor (3) attached thereto rises. Since the resistance value of the resistor changes as the temperature rises, if the resistance value of the resistor is measured through a weak current through the lead wire (4), what intensity of infrared ray is incident on which antenna element I understand. That is, it is possible to know the intensity of the incident infrared ray for each wavelength. The above-described embodiment is merely an example, and may be any as long as it can detect the distributed current and voltage detected by the antenna. Further, the shape of the antenna is not limited to the ½ wavelength linear shape as shown in the figure, and it is possible to sharpen the reception band by combining multiple elements, for example.

【0008】[0008]

【発明の効果】上述の通り、本発明は微弱な遠赤外線を
波長ごとに検出可能とする等の効果を有する。
As described above, the present invention has an effect that weak far infrared rays can be detected for each wavelength.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】図1の側面を示す図。FIG. 2 is a diagram showing a side surface of FIG.

【符号の説明】[Explanation of symbols]

1a〜1g アンテナ素子 2 基板 3 抵抗体 4 リード線 1a to 1g Antenna element 2 Substrate 3 Resistor 4 Lead wire

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 波長に応じて設定した長さの異なる電気
的良導性アンテナを複数乃至単数個配置し、これらによ
って検出される信号強度により遠赤外線の分光検出を行
なうことを特徴とする遠赤外線分光素子。
1. A far-infrared spectroscopic detection is performed by arranging a plurality of or a plurality of electrically conductive antennas having different lengths set according to wavelengths and observing the signal intensity detected by these antennas. Infrared spectroscopic element.
【請求項2】 上記の遠赤外線分光検出素子において、
アンテナ群と検出用抵抗体群を微細加工技術により一体
化したことを特徴とする請求項1に記載の遠赤外線分光
検出素子。
2. The far infrared spectroscopic detection device as described above,
The far infrared spectroscopic detection element according to claim 1, wherein the antenna group and the detection resistor group are integrated by a fine processing technique.
【請求項3】 遠赤外線分光検出素子において、アンテ
ナのインピーダンスとマッチングがとれた抵抗値の検出
用抵抗体を用いることを特徴とする請求項1〜請求項2
に記載の遠赤外線分光検出素子。
3. The far infrared spectroscopic detection element uses a detection resistor having a resistance value matched with the impedance of the antenna.
The far-infrared spectroscopic detection element described in 1.
JP9242392A 1992-03-19 1992-03-19 Far-infrared spectral light detector Pending JPH05264343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9242392A JPH05264343A (en) 1992-03-19 1992-03-19 Far-infrared spectral light detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9242392A JPH05264343A (en) 1992-03-19 1992-03-19 Far-infrared spectral light detector

Publications (1)

Publication Number Publication Date
JPH05264343A true JPH05264343A (en) 1993-10-12

Family

ID=14054020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9242392A Pending JPH05264343A (en) 1992-03-19 1992-03-19 Far-infrared spectral light detector

Country Status (1)

Country Link
JP (1) JPH05264343A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2826007A1 (en) * 1978-06-14 1979-12-20 Braun Ag Electrically heated hair curling tongs - consist of rod with cavity between double walls, and conductors between walls
JPH11225016A (en) * 1997-09-16 1999-08-17 Metorex Internatl Oy Image pickup system functioning by submillimeter wave
JP2000097765A (en) * 1998-09-25 2000-04-07 Matsushita Electric Works Ltd Sensor
JP2001320629A (en) * 1992-04-20 2001-11-16 Loral Vought Systems Corp Non-cooling infrared ray detector
JP2009133824A (en) * 2007-09-13 2009-06-18 Honeywell Internatl Inc Nanowire multispectral imaging array
JP2009141661A (en) * 2007-12-06 2009-06-25 Optical Comb Inc Electromagnetic wave detecting element and electromagnetic wave detecting device
JP2012109652A (en) * 2010-11-15 2012-06-07 Nippon Signal Co Ltd:The Terahertz detector
JP2012156286A (en) * 2011-01-26 2012-08-16 Tateyama Kagaku Kogyo Kk Infrared sensor
JP2019518194A (en) * 2016-03-22 2019-06-27 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Terahertz detector, method for forming the same, and spectral detector
WO2019207927A1 (en) * 2018-04-27 2019-10-31 ソニーセミコンダクタソリューションズ株式会社 Array antenna, solid-state imaging device and electronic apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2826007A1 (en) * 1978-06-14 1979-12-20 Braun Ag Electrically heated hair curling tongs - consist of rod with cavity between double walls, and conductors between walls
JP2001320629A (en) * 1992-04-20 2001-11-16 Loral Vought Systems Corp Non-cooling infrared ray detector
JPH11225016A (en) * 1997-09-16 1999-08-17 Metorex Internatl Oy Image pickup system functioning by submillimeter wave
JP2000097765A (en) * 1998-09-25 2000-04-07 Matsushita Electric Works Ltd Sensor
JP2009133824A (en) * 2007-09-13 2009-06-18 Honeywell Internatl Inc Nanowire multispectral imaging array
JP2009141661A (en) * 2007-12-06 2009-06-25 Optical Comb Inc Electromagnetic wave detecting element and electromagnetic wave detecting device
JP2012109652A (en) * 2010-11-15 2012-06-07 Nippon Signal Co Ltd:The Terahertz detector
JP2012156286A (en) * 2011-01-26 2012-08-16 Tateyama Kagaku Kogyo Kk Infrared sensor
JP2019518194A (en) * 2016-03-22 2019-06-27 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Terahertz detector, method for forming the same, and spectral detector
WO2019207927A1 (en) * 2018-04-27 2019-10-31 ソニーセミコンダクタソリューションズ株式会社 Array antenna, solid-state imaging device and electronic apparatus
US11469518B2 (en) 2018-04-27 2022-10-11 Sony Semiconductor Solutions Corporation Array antenna, solid-state imaging device, and electronic apparatus

Similar Documents

Publication Publication Date Title
USRE36615E (en) Use of vanadium oxide in microbolometer sensors
US4654622A (en) Monolithic integrated dual mode IR/mm-wave focal plane sensor
US7442934B2 (en) Bolometric detector, device for detecting submillimetric and millimetric electromagnetic waves that uses such a detector
US6297511B1 (en) High frequency infrared emitter
KR101910573B1 (en) Infrared detector including broadband light absorber
JP2015042981A (en) Bolometric detector for detecting electromagnetic radiation in terahertz frequency band from infrared and array detection device including the same
Schwarz et al. Antenna‐coupled infrared detectors
JP4006727B2 (en) Photodetector and manufacturing method thereof
JPH05264343A (en) Far-infrared spectral light detector
Dem’yanenko et al. Application of uncooled microbolometer detector arrays for recording radiation of the terahertz spectral range
US20170241836A1 (en) Apparatus for spectrometrically capturing light with a photodiode which is monolithically integrated in the layer structure of a wavelength-selective filter
US20140353506A1 (en) Electromagnetic wave spectrum analyzer and infrared thermal image analyzer including multiple resonance structures each having different resonance frequency
EP1369673B1 (en) A superconducting antenna-coupled hot-spot microbolometer, methods for its manufacture and use, and a bolometric imaging arrangement
CA2133081C (en) Use of abx in microbolometer sensors
JP2013122451A (en) Bolometric detector of electromagnetic radiation of terahertz region
JPH11258038A (en) Infrared ray sensor
Ryger et al. Uncooled antenna-coupled microbolometer for detection of terahertz radiation
JP5076051B2 (en) Electromagnetic wave detecting element and electromagnetic wave detecting device using the same
CN110767769A (en) Detection unit, ultra-wideband photodetector and detection method
JP5442648B2 (en) Infrared sensor
Wentworth et al. Composite microbolometers with tellurium detector elements
US3405273A (en) Detector arrangement having a collector with electrically insulating porous material thereon
Nolen et al. Antenna-coupled niobium bolometers for millimeter-wave imaging arrays
Middleton et al. Passive millimeter-wave focal plane array
EP3811043B1 (en) A high bandwidth thermoelectric thin film uv, visible light and infrared radiation sensor and a method for manufacturing thereof