JPH05263827A - Fluid sliding bearing - Google Patents

Fluid sliding bearing

Info

Publication number
JPH05263827A
JPH05263827A JP8951092A JP8951092A JPH05263827A JP H05263827 A JPH05263827 A JP H05263827A JP 8951092 A JP8951092 A JP 8951092A JP 8951092 A JP8951092 A JP 8951092A JP H05263827 A JPH05263827 A JP H05263827A
Authority
JP
Japan
Prior art keywords
sleeve
main shaft
fluid
slide bearing
fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8951092A
Other languages
Japanese (ja)
Inventor
幸三 ▲真▼武
Kozo Matake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP8951092A priority Critical patent/JPH05263827A/en
Publication of JPH05263827A publication Critical patent/JPH05263827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To provide a high-load capacity fluid sliding bearing which can ensure a wedge film for generating dynamic pressure even under a high load while bearing clearance is designed to the min. possible extent. CONSTITUTION:There is constituted that a sleeve 2 is engaged with and inserted in the outer peripheral part of a main shaft 1. The sleeve 2 is divided at its circumferential surface into a plurality of sliding surfaces by axially providing a lubricating groove on its outer periphery. A plurality of projections are formed on any one of the sleeve inside surface or tire main shaft outer peripheral surface in such a manner that the engaged and inserted part of the sleeve 2 may circumferentially and partially come in contact with the engaged and inserted part of the main shaft 1. The sleeve 2 is engaged with and inserted in the main shaft 1 by a means such as shrinkage fit or press fit and each sliding surface of the sleeve outer periphery is circumferentially deformed into unequal curvature compared to the curvature obtained before the sleeve is engaged with and inserted in the main shaft. A hole 2c is provided in the lubricating groove of tire sleeve. Thus, a fluid in a gap 4 between the main shaft 1 and the sleeve 2 flows to the sliding surface side by centrifugal force generated by the rotation of the main shaft.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水や油等で潤滑される回
転機械の主軸のラジアル方向の荷重を支持するジャーナ
ル流体滑り軸受で、荷重を主に固定側軸受ブッシュと主
軸ジャーナル部の間に形成される楔形流体膜の動圧によ
り支持する流体滑り軸受に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a journal fluid slide bearing for supporting a radial load of a main shaft of a rotary machine lubricated with water, oil, etc., and mainly between the fixed side bearing bush and the main shaft journal part. The present invention relates to a fluid slide bearing that is supported by the dynamic pressure of a wedge-shaped fluid film formed on the.

【0002】[0002]

【従来技術】従来この種の流体滑り軸受は、一般に真円
の内周面を持つ固定側の軸受ブッシュに若干のクリアラ
ンスを持ち真円に加工された回転側の主軸ジャーナル部
とから構成され、主軸ジャーナル部の回転中は荷重によ
る回転中心の偏心によりクリアランス中に1つのなだら
かな流体楔膜を形成することにより動圧を発生し、荷重
を支持している。
2. Description of the Related Art Conventionally, a fluid slide bearing of this type is generally composed of a fixed side bearing bush having a perfect circular inner peripheral surface and a rotary side main shaft journal portion machined into a perfect circle with a slight clearance. During the rotation of the main shaft journal portion, one eccentricity of the rotation center due to the load forms a smooth fluid wedge film in the clearance to generate a dynamic pressure to support the load.

【0003】ジャーナル部の材質としては、主軸材その
ものを使用する場合が大半で、即ち金属材料である。摺
動部は焼入等の処理で硬化させた後、研削等の加工手段
で表面粗さを小さく仕上げている。固定側ブッシュはな
じみ性の良いホワイトメタル等柔らかい金属材料を用い
ることも一般的であるが、特に水潤滑等低粘性溶液中に
おいては、カーボン材、ゴム樹脂等柔らかく自己潤滑性
の高い材料も多く使用されている。
In most cases, the main shaft material itself is used as the material of the journal portion, that is, a metal material. After the sliding portion is hardened by a treatment such as quenching, the surface roughness is finished by a processing means such as grinding. It is common to use soft metal materials such as white metal, which has good compatibility, for the fixed side bush, but many soft and highly self-lubricating materials such as carbon materials and rubber resins, especially in low viscosity solutions such as water lubrication. It is used.

【0004】[0004]

【発明が解決しようとする課題】上記のように主にカー
ボン等の非金属材を軸受ブッシュに使用する場合におい
ては、該材料のヤング率が1.000〜1.500kg
/mm2と弾性係数が小さいために高荷重下において
は、図11に示すようにブッシュ102の荷重を受けた
部分が比較的容易に変形し、主軸ジャーナル部101の
曲率に近くなってしまう。即ち、図11において、ブッ
シュ102のA〜B〜C部分は荷重Wにより変形し、主
軸ジャーナル部101の外周面曲率に近づく。そのため
本来動圧を発生しなければならない荷重直下の主軸ジャ
ーナル部101とブッシュ102の間の隙間に充分な楔
膜が形成されずに潤滑液膜が薄くなり、軸受としての負
荷容量を低下させていた。
When a non-metal material such as carbon is mainly used for the bearing bush as described above, the Young's modulus of the material is 1.000 to 1.500 kg.
Since the elastic modulus is as small as / mm 2 , under high load, the portion of the bush 102 subjected to the load is relatively easily deformed and becomes close to the curvature of the spindle journal portion 101 as shown in FIG. 11. That is, in FIG. 11, the portions A to B to C of the bush 102 are deformed by the load W and approach the curvature of the outer peripheral surface of the spindle journal portion 101. Therefore, a sufficient wedge film is not formed in the gap between the main shaft journal portion 101 and the bush 102 immediately below the load where the dynamic pressure should be originally generated, and the lubricating liquid film becomes thin, which lowers the load capacity of the bearing. It was

【0005】また、予め主軸ジャーナル部101の外周
面曲率とブッシュ102の内周面曲率を大きく違わせる
ような設計を行えば厚い楔膜は形成できるが、軸受クリ
アランスが必然的に大きくなり、軸中心の振れ廻りが大
きくなるので、精密な機械に対してはこのような設計は
不向きである。
A thick wedge film can be formed if the outer peripheral surface curvature of the main spindle journal portion 101 and the inner peripheral surface curvature of the bush 102 are designed to be largely different from each other, but the bearing clearance inevitably becomes large, and the shaft clearance increases. Such a design is not suitable for a precision machine because the swing around the center becomes large.

【0006】本発明は上述の点に鑑みてなされたもので
上記問題点を除去し、軸受クリアランスを極力小さく設
計しながらも高荷重下においても動圧を発生する楔膜を
確保することができる、高負荷容量の流体滑り軸受を提
供することを目的とする。
The present invention has been made in view of the above points, and eliminates the above-mentioned problems, and it is possible to secure a wedge film that generates dynamic pressure even under a high load while designing the bearing clearance to be as small as possible. An object of the present invention is to provide a fluid slide bearing having a high load capacity.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
本発明は、回転機主軸のラジアル方向の荷重を支える為
に、流体で潤滑される固定側の軸受ブッシュと該回転機
の主軸ジャーナル部で構成される流体滑り軸受であっ
て、主軸ジャーナル部は主軸の外周部に環状のスリーブ
を嵌入した構成であり、該スリーブはその外周に軸方向
に潤滑溝を設けることにより円周面を複数の摺動面に分
割し、且つ該スリーブ内側面と主軸との嵌め合い寸法に
締め代を持ち、更に該スリーブと主軸との嵌入部が円周
上に部分的に接触するようにスリーブ内側面又は主軸外
周面のどちらかに複数の突起部を形成し、スリーブを主
軸に焼ばめ又は圧入等の手段により嵌入することによ
り、スリーブに部分的な内圧を与えて、スリーブ外周の
各摺動面が主軸嵌入前よりも円周方向に不均一な曲率に
変形させたことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention is directed to a bearing bush on a fixed side that is fluid-lubricated to support a radial load of a rotary shaft of a rotary machine, and a main shaft journal portion of the rotary machine. In the fluid slide bearing, the main shaft journal portion has a structure in which an annular sleeve is fitted in the outer peripheral portion of the main shaft, and the sleeve has a plurality of circumferential surfaces by providing a lubricating groove in the outer peripheral direction. Inner side surface of the sleeve so that the inner surface of the sleeve and the main shaft have a fitting margin, and the fitting portion of the sleeve and the main shaft partially contact each other on the circumference. Alternatively, by forming a plurality of protrusions on either the outer peripheral surface of the main shaft and fitting the sleeve onto the main shaft by means such as shrink-fitting or press-fitting, partial internal pressure is applied to the sleeve to allow each sliding of the outer periphery of the sleeve. Before the surface is fitted into the spindle Wherein the remote has circumferentially deformed into non-uniform curvature.

【0008】また、スリーブの潤滑溝部に穴を設け、主
軸とスリーブ間の隙間にある流体が主軸の回転による遠
心力により摺動面側へ流れるようにしたことを特徴とす
る。
Further, a hole is provided in the lubricating groove portion of the sleeve so that the fluid in the gap between the main shaft and the sleeve flows toward the sliding surface side by the centrifugal force generated by the rotation of the main shaft.

【0009】また、固定側の軸受ブッシュがカーボン・
セラミック等の非金属材料で作られていることを特徴と
する。
The bearing bush on the fixed side is made of carbon.
It is characterized by being made of non-metallic materials such as ceramics.

【0010】[0010]

【作用】本発明はスリーブの外周面を潤滑溝により複数
の摺動面に分割し、スリーブと主軸との嵌入部が円周上
に、且つ摺動面中央部のみ支持するように部分的に接触
するようにスリーブ内側面又は主軸外周面のどちらかに
複数の突起部を形成し、スリーブを主軸に焼ばめ又は圧
入等の手段により嵌入することにより、スリーブ外周を
円周方向に不均一な曲率に変形させるので、主軸ジャー
ナル部とブッシュ内面のトータルの軸受隙間が小さくて
も、各摺動面には常に大きな楔形流体膜を複数保持する
ことができる。従って回転体の軸受隙間の振れ廻り半径
を小さくすることが可能となる。
According to the present invention, the outer peripheral surface of the sleeve is divided into a plurality of sliding surfaces by the lubrication groove, and the fitting portion between the sleeve and the main shaft is partially supported on the circumference and only at the central portion of the sliding surface. By forming multiple protrusions on either the inner surface of the sleeve or the outer peripheral surface of the spindle so that they come into contact, and fitting the sleeve onto the spindle by means such as shrink fitting or press fitting, the outer circumference of the sleeve is uneven in the circumferential direction. Even if the total bearing clearance between the spindle journal and the inner surface of the bush is small, a plurality of large wedge-shaped fluid films can be held on each sliding surface at all times. Therefore, it becomes possible to reduce the whirling radius of the bearing gap of the rotating body.

【0011】また、スリーブを主軸に嵌入後、真円に加
工した場合においても、荷重に伴う軸受材変形時にもス
リーブ材の弾性変形により常に楔流体膜を保持すること
ができ、焼き付きにくく且つ耐荷重性能の高い軸受を提
供でき、更に潤滑溝に穴を設けることにより、主軸とス
リーブとの間の隙間にある流体は主軸1の回転による遠
心力により、潤滑液を強制的に摺動面に供給し、上記作
用を一層高める。
Further, even when the sleeve is fitted into the main shaft and then processed into a perfect circle, the wedge fluid film can always be held by the elastic deformation of the sleeve material even when the bearing material is deformed due to a load, so that it is hard to seize and resistant to seizure. A bearing with high load performance can be provided, and by providing a hole in the lubrication groove, the fluid in the gap between the spindle and the sleeve is forced to slide the lubricating liquid on the sliding surface by the centrifugal force due to the rotation of the spindle 1. Supply to further enhance the above action.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。 〔第1実施例〕図1は本発明の第1実施例である流体滑
り軸受の構造を示す図で、図1(a)は横断面図、図1
(b)は(a)X−X断面矢視図である。図1におい
て、1は回転機の主軸であり、該主軸1にはスリーブ2
が焼ばめ又は圧入等の手段により嵌入されている。3は
固定側の軸受ブッシュであり、該軸受ブッシュ3と主軸
1に嵌入させたスリーブ2で流体滑り軸受を構成する。
Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment] FIG. 1 is a view showing the structure of a fluid slide bearing according to a first embodiment of the present invention. FIG. 1 (a) is a cross-sectional view and FIG.
(B) is (a) XX sectional arrow line view. In FIG. 1, reference numeral 1 is a main shaft of a rotating machine, and a sleeve 2 is attached to the main shaft 1.
Is fitted by means such as shrink fitting or press fitting. Reference numeral 3 denotes a bearing bush on the fixed side, and the bearing bush 3 and the sleeve 2 fitted in the main shaft 1 constitute a fluid slide bearing.

【0013】スリーブ2は、図2(a),(b)に示す
ように、その外周に軸方向に潤滑溝2aを設けることに
より円周面を複数の摺動面2bに分割し、スリーブ2の
内側面と主軸1との嵌め合い寸法に締め代を持ってい
る。主軸1は図3に示すようにスリーブ2と嵌入部が円
周上に部分的に接触するように複数(図では6個)の突
起1aが形成されている。
As shown in FIGS. 2 (a) and 2 (b), the sleeve 2 is provided with an axial lubrication groove 2a on the outer circumference thereof to divide the circumferential surface into a plurality of sliding surfaces 2b. There is a tightening margin in the fitting dimension between the inner surface of the and the main shaft 1. As shown in FIG. 3, the main shaft 1 is formed with a plurality of (six in the figure) protrusions 1a so that the sleeve 2 and the fitting portion are partially in contact with each other on the circumference.

【0014】スリーブ2を主軸1に焼ばめ又は圧入等の
手段により嵌入することにより、スリーブ2に部分的な
内圧を与えて、後に詳述するようにスリーブ2の外周の
各摺動面2bを主軸1に嵌入前よりも円周方向に不均一
な曲率に変形させている。スリーブ2の潤滑溝2aの所
定の位置(図では略中央部)に穴2cが形成されてい
る。該穴は主軸1とスリーブ2の間に形成される隙間4
(図1参照)に開口している。
By fitting the sleeve 2 onto the main shaft 1 by means such as shrinkage fitting or press fitting, a partial internal pressure is applied to the sleeve 2, and each sliding surface 2b on the outer periphery of the sleeve 2 is described in detail later. Is deformed to have a non-uniform curvature in the circumferential direction as compared with before being fitted onto the main shaft 1. A hole 2c is formed at a predetermined position (generally central portion in the figure) of the lubricating groove 2a of the sleeve 2. The hole is a gap 4 formed between the spindle 1 and the sleeve 2.
(See FIG. 1).

【0015】水潤滑軸受等でよく使用されるカーボン・
セラミック等の材料は一般に圧縮応力が大きく、引張り
応力が小さい。従って、スリーブ2にカーボン材を使用
するとカーボン材の熱膨張係数が主軸1の金属材料より
かなり小さいから、熱膨張等による引張応力によりスリ
ーブ2が割れる恐れがあるため、本実施例ではカーボン
材は固定側のブッシュ3に用いる。そして回転側のスリ
ーブ2は金属材料で構成されている。
Carbon often used in water-lubricated bearings, etc.
Materials such as ceramics generally have large compressive stress and small tensile stress. Therefore, when a carbon material is used for the sleeve 2, the coefficient of thermal expansion of the carbon material is considerably smaller than that of the metal material of the main shaft 1. Therefore, the sleeve 2 may be cracked by tensile stress due to thermal expansion or the like. It is used for the bush 3 on the fixed side. The sleeve 2 on the rotating side is made of a metal material.

【0016】スリーブ2の外周面には前述の通り、複数
本(3〜12程度、本実施例では6本)の潤滑溝2aを
設けている。この潤滑溝2aはスリーブ2の回転中に摺
動面に流体を供給・排出するための溝である。また、ス
リーブ2の外周面は複数摺動面に分割してもなお回転中
の遠心力の影響を受けにくくする為、複数摺動面は潤滑
溝があっても環状に連結されている。
As described above, the outer peripheral surface of the sleeve 2 is provided with a plurality of (about 3 to 12, about 6 in this embodiment) lubricating grooves 2a. The lubricating groove 2a is a groove for supplying / discharging a fluid to / from the sliding surface while the sleeve 2 is rotating. Further, even if the outer peripheral surface of the sleeve 2 is divided into a plurality of sliding surfaces, it is less susceptible to the centrifugal force during rotation, so that the plurality of sliding surfaces are connected in an annular shape even if there are lubricating grooves.

【0017】スリーブ2を主軸1に焼ばめした際、各摺
動面が図4に示すように、焼ばめ前の曲率よりも円周方
向に小さく弾性変形するように各摺動面の略中央部分の
み局部的に主軸1と接触するように主軸1の外周面に軸
方向に突起1aを形成している。従って、スリーブ2の
外周の摺動面は加工時は真円に加工されるが主軸に焼ば
め後、各摺動面毎に円周方向に小さい曲率に変形する。
即ち、図4において、スリーブ2のB〜C間の曲率は焼
ばめ前と略同じであるが、A〜B間及びC〜D間の曲率
は大きくなる。A〜B〜C〜D間の曲率は全体的には小
さくなる。
When the sleeve 2 is shrink-fitted to the main shaft 1, each sliding surface is elastically deformed in the circumferential direction smaller than the curvature before shrink-fitting as shown in FIG. A protrusion 1a is formed on the outer peripheral surface of the spindle 1 in the axial direction so that only the substantially central portion locally contacts the spindle 1. Therefore, the outer peripheral sliding surface of the sleeve 2 is machined into a perfect circle at the time of machining, but after shrink fitting on the main shaft, each sliding surface is deformed into a small curvature in the circumferential direction.
That is, in FIG. 4, the curvature between B and C of the sleeve 2 is substantially the same as that before the shrink fitting, but the curvature between A and B and between C and D becomes large. The curvature between A to B to C to D becomes small as a whole.

【0018】主軸1の外周面に突起1aがあるので、ス
リーブ2の内周面と主軸1の外周面とが接触しない隙間
4が存在し、該隙間4の部分はスリーブ2が直接主軸1
に支持されていないので、回転中に荷重を受けた場合、
更に小さい曲率に弾性変形することが可能であり、スリ
ーブ2の内厚をうまく設定すれば高荷重下で固定側ブッ
シュ3が円周方向に弾性変形(凹状に変形)してもそれ
に応じてスリーブ2も変形(凸状に変形)し、常に楔形
流体膜を保持することができ、高荷重時にも焼付きを起
しにくくなる。また、スリーブを主軸嵌入後に真円に加
工した場合においても同様の効果が得られる。
Since the protrusion 1a is provided on the outer peripheral surface of the main shaft 1, there is a gap 4 in which the inner peripheral surface of the sleeve 2 and the outer peripheral surface of the main shaft 1 do not contact each other.
It is not supported by, so if a load is applied during rotation,
It is possible to elastically deform to a smaller curvature, and if the inner thickness of the sleeve 2 is properly set, even if the fixed side bush 3 is elastically deformed (deformed into a concave shape) in the circumferential direction under a high load, the sleeve can be correspondingly deformed. 2 is also deformed (deformed into a convex shape), the wedge-shaped fluid film can be always held, and seizure hardly occurs even under a high load. Further, the same effect can be obtained when the sleeve is processed into a perfect circle after being fitted into the spindle.

【0019】図9及び図10は上記作用を説明するため
の図である。図9において、主軸1の回転時(矢印G方
向に回転)、スリーブ2のA〜E間と対応するブッシュ
3の間に膜厚さ比h1/h0の楔状の潤滑流体膜が比較的
容易に形成され、動圧が発生する。また、逆にスリーブ
2のE〜D間と対応するブッシュ3の間には逆楔状とな
るが、各摺動面の潤滑溝2aに設けた穴2cより容易に
潤滑流体が矢印aに示すように供給され、次の摺動面が
荷重W方向にくる時の流体潤滑を助ける。また、図10
において、ブッシュ3は変形するが、スリーブ2は薄く
主軸1に支持されていないA〜B間は楔状膜圧を受けて
更に変形し、流体膜を保持する。
FIGS. 9 and 10 are views for explaining the above operation. In FIG. 9, when the main shaft 1 rotates (rotates in the direction of arrow G), a wedge-shaped lubricating fluid film having a film thickness ratio h 1 / h 0 is relatively present between the bushes 3 corresponding to A to E of the sleeve 2. It is easily formed and dynamic pressure is generated. On the contrary, a reverse wedge shape is formed between E and D of the sleeve 2 and the corresponding bush 3, but the lubricating fluid is easily indicated by the arrow a through the hole 2c provided in the lubricating groove 2a of each sliding surface. To assist fluid lubrication when the next sliding surface comes in the load W direction. In addition, FIG.
In, the bush 3 is deformed, but the sleeve 2 is thin and is further deformed by receiving a wedge-shaped membrane pressure between A and B not supported by the main shaft 1 to hold the fluid film.

【0020】また、スリーブ2の潤滑溝2aに穴2cを
設けているので、主軸1とスリーブ2間の隙間4にある
流体は、主軸1の回転による遠心力により、図1(b)
の矢印に示すように摺動面2bに流れ、容易に潤滑液を
供給できる。
Since the lubricating groove 2a of the sleeve 2 is provided with the hole 2c, the fluid in the gap 4 between the spindle 1 and the sleeve 2 is generated by the centrifugal force generated by the rotation of the spindle 1 as shown in FIG.
As indicated by the arrow, the lubricant flows to the sliding surface 2b, and the lubricating liquid can be easily supplied.

【0021】〔第2実施例〕図5は本発明の第2実施例
である流体滑り軸受の構造を示す図で、図5(a)は横
断面図、図5(b)は(a)Y−Y断面矢視図である。
図5において、11は回転機の主軸であり、該主軸11
にはスリーブ12が焼ばめ又は圧入等の手段により嵌入
している。13は固定側の軸受ブッシュであり、該軸受
ブッシュ13と主軸11に嵌入させたスリーブ12で流
体滑り軸受を構成する点は、図1に示す流体滑り軸受と
同一である。
[Second Embodiment] FIGS. 5A and 5B are views showing the structure of a fluid slide bearing according to a second embodiment of the present invention. FIG. 5A is a cross-sectional view and FIG. 5B is a view. It is a YY cross-section arrow line view.
In FIG. 5, 11 is the main shaft of the rotating machine, and the main shaft 11
The sleeve 12 is fitted into the housing by means such as shrink fitting or press fitting. Reference numeral 13 denotes a bearing bush on the fixed side, which is the same as the fluid slide bearing shown in FIG. 1 in that the bearing bush 13 and the sleeve 12 fitted into the main shaft 11 constitute a fluid slide bearing.

【0022】スリーブ12は、図6に示すように、その
外周に軸方向に潤滑溝12aを設けることにより円周面
を複数の摺動面12bに分割している。また、スリーブ
12の内側には主軸1の嵌入部が円周上に部分的に接触
するように複数(図では6個)の突起部12dが設けら
れている。スリーブ12を図7に示す断面真円の主軸1
1に焼ばめ又は圧入等の手段により嵌入することによ
り、スリーブ12に部分的な内圧を与えて、スリーブ1
2の外周の各摺動面12bが主軸11に嵌入前よりも円
周方向に不均一な曲率に変形させている。スリーブ12
の潤滑溝12aの所定の位置に穴12cが形成されてい
る。該穴は主軸11とスリーブ12の間に形成される隙
間14に開口している。
As shown in FIG. 6, the sleeve 12 has a circumferential surface divided into a plurality of sliding surfaces 12b by providing a lubricating groove 12a on the outer circumference thereof in the axial direction. Further, a plurality of (six in the figure) protrusions 12d are provided inside the sleeve 12 so that the fitting portion of the main shaft 1 partially contacts the circumference. The sleeve 12 is shown in FIG.
1 is fitted into the sleeve 12 by means such as shrinkage fitting or press fitting to give a partial internal pressure to the sleeve 12 and
Each of the sliding surfaces 12b on the outer circumference of 2 is deformed to have a nonuniform curvature in the circumferential direction as compared with before being fitted into the main shaft 11. Sleeve 12
A hole 12c is formed at a predetermined position of the lubricating groove 12a. The hole opens in a gap 14 formed between the main shaft 11 and the sleeve 12.

【0023】図8はスリーブ12を主軸11に焼ばめし
た後のスリーブ12の変形を説明するための図である。
スリーブ12を主軸11に焼ばめした後、スリーブ12
は弾性変形によりその外周のB〜C間の曲率は焼ばめ前
と略同じだがA〜B間,C〜D間の曲率は大きくなる。
そしてA〜B〜C〜D間の曲率は全体的に小さくなる。
図5に示す構造の流体滑り軸受において、その動作作用
は図1に示す構造の流体滑り軸受と略同一であるのでそ
の説明は省略する。
FIG. 8 is a diagram for explaining the deformation of the sleeve 12 after the sleeve 12 is shrink-fitted to the main shaft 11.
After shrink-fitting the sleeve 12 onto the spindle 11, the sleeve 12
Due to elastic deformation, the curvature between B and C on the outer circumference is substantially the same as that before shrinkage fitting, but the curvature between A and B and between C and D becomes large.
And the curvature between A to B to C to D becomes small as a whole.
Since the operation of the fluid slide bearing having the structure shown in FIG. 5 is substantially the same as that of the fluid slide bearing having the structure shown in FIG. 1, the description thereof will be omitted.

【0024】以上、上記実施例ではブッシュ3にカーボ
ン材を用いた水潤滑軸受例を説明したが、ブッシュ材に
ホワイトメタル等を用いた油潤滑軸受の場合でも略同様
となることは云うまでもない。
In the above embodiment, an example of a water lubricated bearing using a carbon material for the bush 3 has been described, but it goes without saying that the same applies to an oil lubricated bearing using a white metal or the like for the bush material. Absent.

【0025】[0025]

【発明の効果】以上、説明した本発明によれば下記のよ
うな優れた効果が得られる。 (1)スリーブの外周面を潤滑溝により複数の摺動面に
分割し、スリーブと主軸との嵌入部が円周上に部分的に
接触するようにスリーブ内側面又は主軸外周面のどちら
かに複数の突起部を形成し、スリーブを前記主軸に焼ば
め又は圧入等の手段により嵌入することにより、スリー
ブ外周を円周方向に不均一な曲率に変形させるという比
較的容易な方法で、主軸ジャーナル部とブッシュ内面の
トータルの軸受隙間が小さくても、各摺動面には常に大
きな楔形流体膜を複数保持することができ、その結果回
転体の軸受隙間の振れ廻り半径を小さくすることが可能
な流体滑り軸受、特に回転軸の精度を要求される精密機
械や振れ廻りによる磁気吸引力の増加を嫌う電動機の軸
受として好適な流体滑り軸受を提供できる。
According to the present invention described above, the following excellent effects can be obtained. (1) The outer peripheral surface of the sleeve is divided into a plurality of sliding surfaces by a lubrication groove, and either the inner surface of the sleeve or the outer peripheral surface of the main shaft is arranged so that the fitting portion between the sleeve and the main shaft partially contacts the circumference. By forming a plurality of protrusions and fitting the sleeve onto the main spindle by means such as shrink fitting or press fitting, the outer circumference of the sleeve is deformed to a non-uniform curvature in the circumferential direction by a relatively easy method. Even if the total bearing clearance between the journal part and the bush inner surface is small, a large number of large wedge-shaped fluid films can always be held on each sliding surface, and as a result, the whirling radius of the bearing clearance of the rotor can be reduced. It is possible to provide a fluid slide bearing that is suitable as a possible fluid slide bearing, particularly as a bearing for a precision machine that requires precision of a rotary shaft or an electric motor that dislikes an increase in magnetic attraction force due to whirling.

【0026】(2)更に荷重に伴う軸受材変形時にもス
リーブ材の弾性変形により常に楔流体膜を保持すること
ができ、また、スリーブが主軸嵌入後に真円に加工され
た形状であっても焼き付きにくく且つ耐荷重性能の高い
軸受を提供できる。
(2) Further, even when the bearing material is deformed due to the load, the wedge fluid film can be always held by the elastic deformation of the sleeve material, and even if the sleeve is formed into a perfect circle after the spindle is fitted. It is possible to provide a bearing that is resistant to seizure and has high load resistance.

【0027】(3)また、潤滑溝に設けた穴により潤滑
液を強制的に摺動面に供給し、上記(2)の効果を一層
高める。
(3) Further, the hole provided in the lubricating groove forcibly supplies the lubricating liquid to the sliding surface to further enhance the effect of the above (2).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例である流体滑り軸受の構造
を示す図で、図1(a)は横断面図、図1(b)は
(a)X−X断面矢視図である。
1A and 1B are views showing a structure of a fluid slide bearing which is a first embodiment of the present invention, FIG. 1A is a transverse sectional view, and FIG. 1B is a sectional view taken along line XX of FIG. is there.

【図2】図1の流体滑り軸受のスリーブの構造を示す図
で、図2(a)は平面図、図2(b)は正面図である。
2A and 2B are views showing a structure of a sleeve of the fluid slide bearing of FIG. 1, wherein FIG. 2A is a plan view and FIG. 2B is a front view.

【図3】図1の流体滑り軸受の主軸の断面図である。FIG. 3 is a sectional view of a main shaft of the fluid slide bearing of FIG.

【図4】図1の流体滑り軸受のスリーブを主軸に焼ばめ
した後のスリーブの変形を説明するための図である。
FIG. 4 is a diagram for explaining deformation of the sleeve of the fluid slide bearing of FIG. 1 after shrink fitting the sleeve on the main shaft.

【図5】本発明の第2実施例である流体滑り軸受の構造
を示す図で、図5(a)は横断面図、図5(b)は
(a)Y−Y断面矢視図である。
5A and 5B are views showing a structure of a fluid slide bearing which is a second embodiment of the present invention, FIG. 5A is a transverse sectional view, and FIG. 5B is a sectional view taken along line YY of FIG. is there.

【図6】図5の流体滑り軸受のスリーブの構造を示す断
面図である。
6 is a cross-sectional view showing the structure of the sleeve of the fluid slide bearing of FIG.

【図7】図5の流体滑り軸受の主軸の断面図である。7 is a sectional view of a main shaft of the fluid slide bearing of FIG.

【図8】図5の流体滑り軸受のスリーブを主軸に焼ばめ
した後のスリーブの変形を説明するための図である。
8 is a diagram for explaining the deformation of the sleeve of the fluid slide bearing of FIG. 5 after shrink-fitting the sleeve on the main shaft.

【図9】図1の流体滑り軸受の動作・作用を説明するた
めの図である。
9A and 9B are views for explaining the operation and action of the fluid slide bearing of FIG.

【図10】図1の流体滑り軸受の動作・作用を説明する
ための図である。
10 is a diagram for explaining the operation and action of the fluid slide bearing of FIG.

【図11】従来の流体滑り軸受の動作・作用を説明する
ための図である。
FIG. 11 is a view for explaining the operation and action of the conventional fluid slide bearing.

【符号の説明】[Explanation of symbols]

1 主軸 1a 突起 2 スリーブ 2a 潤滑溝 2b 摺動面 2c 穴 3 ブッシュ 4 隙間 11 主軸 12 スリーブ 12a 潤滑溝 12b 摺動面 12c 穴 12d 突起 13 ブッシュ 14 隙間 1 spindle 1a protrusion 2 sleeve 2a lubrication groove 2b sliding surface 2c hole 3 bush 4 gap 11 spindle 12 sleeve 12a lubricating groove 12b sliding surface 12c hole 12d protrusion 13 bush 14 gap

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回転機主軸のラジアル方向の荷重を支え
る為に、流体で潤滑される固定側の軸受ブッシュと該回
転機の主軸ジャーナル部で構成される流体滑り軸受であ
って、 主軸ジャーナル部は主軸の外周部に環状のスリーブを嵌
入した構成であり、 該スリーブはその外周に軸方向に潤滑溝を設けることに
より円周面を複数の摺動面に分割し、且つ該スリーブ内
側面と主軸との嵌め合い寸法に締め代を持ち、更に該ス
リーブと主軸との嵌入部が円周上に、且つ摺動面中央部
のみ支持するように部分的に接触するような前記スリー
ブ内側面又は前記主軸外周面のどちらかに複数の突起部
を形成し、 前記スリーブを前記主軸に焼ばめ又は圧入等の手段によ
り嵌入したことを特徴とする流体滑り軸受。
1. A fluid slide bearing comprising a bearing bush on a fixed side that is lubricated with fluid to support a radial load of a rotary machine spindle and a spindle journal section of the rotary machine, the spindle journal section comprising: Is a structure in which an annular sleeve is fitted into the outer peripheral portion of the main shaft, and the sleeve has a circumferential surface divided into a plurality of sliding surfaces by providing a lubricating groove in the outer circumference thereof, and the inner surface of the sleeve is The inner surface of the sleeve or the inner surface of the sleeve which has a tightening margin in the fitting dimension with the main shaft, and in which the fitting portion between the sleeve and the main shaft is in partial contact on the circumference so as to support only the central portion of the sliding surface. A fluid slide bearing characterized in that a plurality of protrusions are formed on either of the outer peripheral surfaces of the main shaft, and the sleeve is fitted into the main shaft by means such as shrink fitting or press fitting.
【請求項2】 前記スリーブの潤滑溝部に穴を設け、前
記主軸とスリーブとの間の隙間にある流体が主軸の回転
による遠心力により摺動面側へ流れるようにしたことを
特徴とする請求項1記載の流体滑り軸受。
2. A lubricating groove portion of the sleeve is provided with a hole so that a fluid in a gap between the main shaft and the sleeve flows toward a sliding surface side by a centrifugal force generated by rotation of the main shaft. Item 1. A fluid slide bearing according to item 1.
【請求項3】 前記固定側の軸受ブッシュがカーボン・
セラミック等の非金属材料で作られていることを特徴と
する請求項1又は請求項2記載の流体滑り軸受。
3. The bearing bush on the fixed side is made of carbon.
The fluid slide bearing according to claim 1 or 2, wherein the fluid slide bearing is made of a non-metallic material such as ceramics.
JP8951092A 1992-03-13 1992-03-13 Fluid sliding bearing Pending JPH05263827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8951092A JPH05263827A (en) 1992-03-13 1992-03-13 Fluid sliding bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8951092A JPH05263827A (en) 1992-03-13 1992-03-13 Fluid sliding bearing

Publications (1)

Publication Number Publication Date
JPH05263827A true JPH05263827A (en) 1993-10-12

Family

ID=13972785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8951092A Pending JPH05263827A (en) 1992-03-13 1992-03-13 Fluid sliding bearing

Country Status (1)

Country Link
JP (1) JPH05263827A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513918A (en) * 2003-03-27 2006-04-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electric drive unit
JP2017228368A (en) * 2016-06-20 2017-12-28 日本特殊陶業株式会社 Manufacturing method of ceramic heater
JP2020118235A (en) * 2019-01-24 2020-08-06 シロキ工業株式会社 Reduction gear

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006513918A (en) * 2003-03-27 2006-04-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Electric drive unit
KR101044902B1 (en) * 2003-03-27 2011-06-28 로베르트 보쉬 게엠베하 Electric drive unit
JP2017228368A (en) * 2016-06-20 2017-12-28 日本特殊陶業株式会社 Manufacturing method of ceramic heater
JP2020118235A (en) * 2019-01-24 2020-08-06 シロキ工業株式会社 Reduction gear

Similar Documents

Publication Publication Date Title
US6585419B2 (en) Shaft bearing member
US20020061146A1 (en) Shaft bearing member
US5102239A (en) Ceramic bearing
JPH08184363A (en) Bush for one-way clutch
JP4002108B2 (en) Rolling bearings and crankshaft bearings
JP3652187B2 (en) Fluid bearing
JPH0735147A (en) Dynamo-electric machine
KR950008331B1 (en) Ceramic bearing
US5683185A (en) Journal bearing retainer system with eccentric lock
JPS6113018A (en) Tilt segment type radial bearing
KR200145217Y1 (en) Air dynamic bearing
JPH05263827A (en) Fluid sliding bearing
JP2001289243A (en) Hydrodynamic bearing motor
JPH0289807A (en) Non-round bearing
US8267590B2 (en) Plunger driving structure
JP3693749B2 (en) Thrust dynamic pressure bearing
JP2003023751A (en) Motor for driving recording disc
JPH08296637A (en) Bearing of rotating machine
JP2018204771A (en) Rolling bearing and manufacturing method of rolling bearing
JPH06307450A (en) Static pressure gas bearing
JP2000314425A (en) Flange for bearing device with dynamic pressure groove and machining and assembling method therefor
JP2556759Y2 (en) Half bearing prevention type journal bearing
SU1183737A1 (en) Radial plain bearing
JPH02173417A (en) Ceramic bearing
JPS6110112A (en) Submerged bearing