JPH05262127A - Driving control method of air-conditioner having rotary swash plate type variable capacity compressor - Google Patents

Driving control method of air-conditioner having rotary swash plate type variable capacity compressor

Info

Publication number
JPH05262127A
JPH05262127A JP5150691A JP5150691A JPH05262127A JP H05262127 A JPH05262127 A JP H05262127A JP 5150691 A JP5150691 A JP 5150691A JP 5150691 A JP5150691 A JP 5150691A JP H05262127 A JPH05262127 A JP H05262127A
Authority
JP
Japan
Prior art keywords
pressure
compressor
swash plate
superheat
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5150691A
Other languages
Japanese (ja)
Inventor
Atsushi Hasegawa
淳 長谷川
Junichi Ono
順一 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP5150691A priority Critical patent/JPH05262127A/en
Publication of JPH05262127A publication Critical patent/JPH05262127A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PURPOSE:To improve the controllability in the operation of small capacity by controlling the degree of superheat of the coolant sucked by a compressor to be smaller than the specified value when the discharge capacity of the compressor is lower than the specified value. CONSTITUTION:The degree of superheat of the coolant sucked by a compressor is set to be smaller in the small capacity operation than in the medium or high capacity operation. When the degree of superheat is reduced through the throttle control of an expansion valve 24, the pressure of a discharge chamber 3a is greatly increased. Thus, when the degree of superheat is regulated to be smaller in the small capacity operation, the difference between the pressure of a crank chamber 2a of the compressor and the pressure of a discharge chamber 3b is increased, leading to facilitation of the pressure control of the crank chamber 2a and improvement of the capacity controllability. On the other hand, in the medium or high capacity operation, the pressure of the discharge chamber 3b is sufficiently large, and further increase of the pressure of the discharge chamber 3b is not necessary due to the reduction of the degree of superheat, and the liquid suction of the compressor is prevented by setting the degree of superheat to be larger.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、揺動斜板式可変容量型
圧縮機を用いた空調装置の運転制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control method for an air conditioner using a swing swash plate type variable displacement compressor.

【0002】[0002]

【従来の技術】例えば車両用空調装置において、揺動斜
板式可変容量型圧縮機を用いた空調装置が実用化されて
いる。この揺動斜板式可変容量型圧縮機は吐出容量(以
下、単に容量という)を連続可変することができるの
で、熱負荷に応じて冷房能力を調節することができ、圧
縮機の頻繁な断続を回避することができる。
2. Description of the Related Art For example, in a vehicle air conditioner, an air conditioner using a swing swash plate type variable displacement compressor has been put into practical use. Since this swash plate variable displacement compressor can continuously change the discharge capacity (hereinafter simply referred to as capacity), the cooling capacity can be adjusted according to the heat load, and frequent disconnection of the compressor can be achieved. It can be avoided.

【0003】一方、従来の空調装置では圧縮機が冷媒液
を吸入するのを防止するために、膨張弁を制御して、圧
縮機が吸入する冷媒の過熱度を通常摂氏10乃至15度
に制御している。
On the other hand, in the conventional air conditioner, in order to prevent the compressor from sucking the refrigerant liquid, the expansion valve is controlled so that the superheat degree of the refrigerant sucked by the compressor is normally controlled to 10 to 15 degrees Celsius. is doing.

【0004】[0004]

【発明が解決しようとする課題】従来、揺動斜板式可変
容量型圧縮機の容量制御は、揺動斜板などを収容するク
ランク室の圧力を制御して行っており、このクランク室
の圧力を制御するために、圧縮機の吐出室からクランク
室へバイパスされる冷媒量を制御している。しかし、圧
縮機の容量の大きさにより吐出冷媒ガスの圧力が変動す
るために、クランク室圧力の制御を最適レベルに安定か
つ速やかに収束することが難しい。例えば、小容量運転
移行時にはクランク室を高圧力にする必要があるにもか
かわらず、吐出冷媒ガス圧が低下するため、クランク室
圧の圧力上昇が速やかに行なわれない。
Conventionally, displacement control of a swing swash plate type variable displacement compressor is performed by controlling the pressure in a crank chamber that houses the swing swash plate and the like. In order to control the above, the amount of refrigerant bypassed from the discharge chamber of the compressor to the crank chamber is controlled. However, since the pressure of the discharged refrigerant gas varies depending on the size of the compressor, it is difficult to control the crank chamber pressure to an optimum level in a stable and prompt manner. For example, although it is necessary to make the crank chamber a high pressure when shifting to a small capacity operation, the pressure of the discharged refrigerant gas is lowered, so that the pressure of the crank chamber pressure is not rapidly increased.

【0005】本発明は、上記問題に鑑みなされたもので
あり、揺動斜板式可変容量型圧縮機の小容量運転時の制
御性向上が可能な空調装置の運転制御方法を提供するこ
とを、その解決すべき技術課題としている。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide an operation control method of an air conditioner capable of improving controllability of a swing swash plate type variable displacement compressor during a small capacity operation. It is a technical issue to be solved.

【0006】[0006]

【課題を解決するための手段】本発明の揺動斜板式可変
容量型圧縮機を備えた空調装置の運転制御方法は、クラ
ンク室内の圧力を制御することで揺動斜板の傾角を変更
し、ピストンストロークを変化させ、吐出容量を連続的
に可変する揺動斜板式可変容量型圧縮機を備えた空調装
置の制御方法であって、該圧縮機が吸入する冷媒の過熱
度を、圧縮機の吐出容量が所定の容量値以下の場合に所
定の過熱度より小さく制御することを特徴としている。
According to the present invention, there is provided an operation control method for an air conditioner equipped with a swing swash plate type variable displacement compressor, in which the tilt angle of the swing swash plate is changed by controlling the pressure in the crank chamber. A method for controlling an air conditioner equipped with a swingable swash plate type variable displacement compressor, which continuously varies a discharge capacity by changing a piston stroke, wherein the degree of superheat of refrigerant sucked by the compressor is When the discharge capacity of is less than or equal to a predetermined capacity value, it is controlled to be smaller than a predetermined superheat degree.

【0007】[0007]

【発明の効果】本発明の空調装置の運転制御方法では、
揺動斜板式可変容量型圧縮機が吸入する冷媒の過熱度
を、中高容量運転時に比べて小容量運転時に小さく設定
している。揺動斜板式可変容量型圧縮機では、膨張弁の
絞り制御により過熱度を低下させると、吐出圧力が大幅
に増加する。これは主として、膨脹弁開度を増加してエ
バポレ−タへの冷媒液の流入が増大するために、エバポ
レ−タの圧力すなわち、圧縮機の吸入圧が増大し、それ
により吐出圧が増大するためである。
According to the operation control method of the air conditioner of the present invention,
The degree of superheat of the refrigerant sucked by the swash plate type variable displacement compressor is set to be smaller in the small capacity operation than in the medium and high capacity operation. In the swing swash plate type variable displacement compressor, when the superheat degree is reduced by controlling the expansion valve throttle, the discharge pressure increases significantly. This is mainly because the expansion valve opening is increased and the flow of the refrigerant liquid into the evaporator is increased, so that the pressure of the evaporator, that is, the suction pressure of the compressor is increased, and thereby the discharge pressure is increased. This is because.

【0008】したがって、小容量運転時に過熱度を小さ
く調節すれば揺動斜板式可変容量型圧縮機のクランク室
圧力と吐出圧力との差が増大して、クランク室圧力の制
御が容易となり容量制御性が向上する。一方、中高容量
運転時には吐出圧力が充分に大きいので過熱度低下によ
る吐出圧力の更なる増大は不必要であり、過熱度をある
程度大きく設定して圧縮機の液吸入を防止する。
Therefore, if the degree of superheat is adjusted to a small value during the small capacity operation, the difference between the crank chamber pressure and the discharge pressure of the swing swash plate type variable displacement compressor increases, and the crank chamber pressure can be easily controlled. The property is improved. On the other hand, since the discharge pressure is sufficiently high during medium to high capacity operation, it is unnecessary to further increase the discharge pressure due to the decrease in superheat, and the superheat is set to a certain degree to prevent liquid suction of the compressor.

【0009】[0009]

【実施例】以下、本発明の具体的な実施例を例示の図面
について説明する。 (実施例1)この実施例に用いた空調装置は車両用のも
のであって、揺動斜板式可変容量型圧縮機100を有し
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to the accompanying drawings. (Embodiment 1) The air conditioner used in this embodiment is for a vehicle, and has a swing swash plate type variable displacement compressor 100.

【0010】この圧縮機100において、シリンダブロ
ック1の前後にはフロントハウジング2及びリヤハウジ
ング3が接合固定されており、シリンダブロック1及び
フロントハウジング2には回転軸4が回転可能に支持さ
れている。フロントハウジング2内にて回転軸4には回
転支持体5が止着されており、その後面側には支持アー
ム6が突設されていると共に、支持アーム6の先端部に
は長孔6aが透設されている。長孔6aにはピン7がス
ライド可能に嵌めこまれており、ピン7には回転駆動板
8が傾斜角可変に連結支持されている。
In this compressor 100, a front housing 2 and a rear housing 3 are joined and fixed to the front and rear of a cylinder block 1, and a rotary shaft 4 is rotatably supported by the cylinder block 1 and the front housing 2. .. In the front housing 2, a rotary support 5 is fixed to the rotary shaft 4, a support arm 6 is provided on the rear surface side of the rotary support 4, and a long hole 6a is formed at the tip of the support arm 6. It is transparently installed. A pin 7 is slidably fitted in the long hole 6a, and a rotary drive plate 8 is connected to and supported by the pin 7 with a variable tilt angle.

【0011】回転支持体5の後側にて回転軸4にはスリ
ーブ9がスライド可能に支持されているとともに押圧ば
ね10により回転支持体5側へ押圧付勢されており、ス
リーブ9の左右両端に突設された軸ピン9a(一方のみ
図示)が回転駆動板8の図示しない係合孔に係合してい
る。これにより回転駆動板8が軸ピン9aを中心に回転
軸4方向へ揺動可能なっていて、回転駆動板8の後面側
には揺動斜板11が相対回転可能に支持されている。フ
ロントハウジング2内のクランク室2a、リヤハウジン
グ3内の吸入室3a及び吐出室3bを互いに接続するよ
うにシリンダブロック1に貫設されたシリンダボア12
内のピストン13と揺動斜板11とがピストンロッド1
4により連結されており、回転軸4の回転運動が回転駆
動板8を介して揺動斜板11の前後往復揺動に変換さ
れ、ピストン13がシリンダボア12内を前後動し、こ
れにより吸入室3aからシリンダボア12内へ吸入され
た冷媒ガスが圧縮されつつ吐出室3bへ吐出される。
A sleeve 9 is slidably supported on the rotary shaft 4 at the rear side of the rotary support 5 and is biased by a pressing spring 10 toward the rotary support 5 side. A shaft pin 9a (only one of which is shown) that is provided so as to project into the engagement with an engagement hole (not shown) of the rotary drive plate 8. As a result, the rotary drive plate 8 is swingable in the direction of the rotary shaft 4 about the shaft pin 9a, and a swing swash plate 11 is supported on the rear surface side of the rotary drive plate 8 so as to be relatively rotatable. A cylinder bore 12 penetrating the cylinder block 1 so as to connect the crank chamber 2a in the front housing 2 and the suction chamber 3a and the discharge chamber 3b in the rear housing 3 to each other.
The piston 13 and the swing swash plate 11 inside the piston rod 1
4, the rotary motion of the rotary shaft 4 is converted into the forward and backward reciprocal swing of the swing swash plate 11 via the rotary drive plate 8, and the piston 13 moves back and forth in the cylinder bore 12 to thereby move the suction chamber. The refrigerant gas sucked into the cylinder bore 12 from 3a is discharged to the discharge chamber 3b while being compressed.

【0012】ピストン13の前後面に作用するクランク
室2a内の圧力と吸入室3aの圧力との差圧を変える
と、ピストン13のストロークが変わり、圧縮容量を左
右する揺動斜板11の傾角が変化する。すなわち、クラ
ンク室2aの圧力を変化させて容量が制御される。な
お、シリンダブロック1の下部には放圧通路1aがクラ
ンク室2aと吸入室3aとを連通するように貫設されて
おり、クランク室2a内の圧力上昇が抑制されるように
なっている。
When the differential pressure between the pressure in the crank chamber 2a acting on the front and rear surfaces of the piston 13 and the pressure in the suction chamber 3a is changed, the stroke of the piston 13 changes, and the tilt angle of the swash plate 11 that affects the compression capacity. Changes. That is, the capacity is controlled by changing the pressure in the crank chamber 2a. A pressure release passage 1a is provided in the lower portion of the cylinder block 1 so as to communicate the crank chamber 2a and the suction chamber 3a with each other, and an increase in pressure in the crank chamber 2a is suppressed.

【0013】リヤハウジング3の後端突出部内には電磁
制御弁機構15が内蔵されており、その電磁コイル16
の励磁により押圧ばね17に抗して吸着される弁体18
が常には弁座19に形成された弁孔19aの上部開口を
押圧ばね17の押圧作用により閉塞している。弁孔19
aの上部開口には吐出室3bが通路20を介して接続さ
れているとともに、弁孔19aの下部開口にはクランク
室2aが通路21を介して接続されており、電磁コイル
16が励磁されることにより吐出室3bとクランク室2
aとが通路20、弁孔19a及び通路21からなる圧力
制御通路を介して連通する。
An electromagnetic control valve mechanism 15 is built in the rear end protruding portion of the rear housing 3, and its electromagnetic coil 16 is provided.
18 which is attracted against the pressure spring 17 by the excitation of
Always closes the upper opening of the valve hole 19a formed in the valve seat 19 by the pressing action of the pressing spring 17. Valve hole 19
The discharge chamber 3b is connected to the upper opening of a through the passage 20, and the crank chamber 2a is connected to the lower opening of the valve hole 19a through the passage 21 to excite the electromagnetic coil 16. As a result, the discharge chamber 3b and the crank chamber 2
a communicates with a pressure control passage formed of the passage 20, the valve hole 19a, and the passage 21.

【0014】吸入室3aと吐出室3bとを外部で接続す
る冷媒ガス循環回路22上にはコンデンサ23、膨脹弁
24及びエバポレ−タ25が順次介装されており、膨脹
弁24はエバポレ−タ25の排出側に設置された感温筒
26により検出した冷媒ガス圧力及び温度に基づいて開
度を制御されている。エバポレ−タ25により冷却され
る空気はブロワ27によりエバポレ−タ25の吹き出し
出口(図示せず)から車室内へ吹き出される。
A condenser 23, an expansion valve 24, and an evaporator 25 are sequentially provided on a refrigerant gas circulation circuit 22 which connects the suction chamber 3a and the discharge chamber 3b to each other. The expansion valve 24 is an evaporator. The opening degree is controlled based on the refrigerant gas pressure and the temperature detected by the temperature sensitive tube 26 installed on the discharge side of 25. The air cooled by the evaporator 25 is blown into the vehicle compartment by a blower 27 from an outlet (not shown) of the evaporator 25.

【0015】電磁制御弁機構15は、制御コンピュ−タ
Cから出力されるパルス電圧のデューティ比に基づいて
開閉制御される。通常の冷房運転において、制御コンピ
ュ−タCは、エバポレ−タ25からの吹出温度を検出す
る温度検出器28、エバポレ−タ25への吸込温度を検
出する温度検出器34、温度設定器31からそれぞれ信
号を受取り、受取った各信号に基づき、デューティ比可
変のパルス電圧を演算出力する。すなわち、デューティ
比を上げればクランク室2a内の圧力が上昇し、デュー
ティ比を下げればクランク室2a内の圧力が低下する。
The electromagnetic control valve mechanism 15 is controlled to open and close based on the duty ratio of the pulse voltage output from the control computer C. In the normal cooling operation, the control computer C uses the temperature detector 28 for detecting the temperature blown out from the evaporator 25, the temperature detector 34 for detecting the suction temperature to the evaporator 25, and the temperature setter 31. Each receives a signal, and based on each received signal, a pulse voltage with a variable duty ratio is calculated and output. That is, if the duty ratio is increased, the pressure in the crank chamber 2a increases, and if the duty ratio is decreased, the pressure in the crank chamber 2a decreases.

【0016】したがって、電磁制御弁機構15の電磁コ
イル16に通電するパルス電圧のデュ−ティ比を制御す
ることによりクランク室2aの圧力が調節され、それに
より揺動斜板11の傾角が変更されてピストンストロ−
クすなわち吐出容量が調節される。更に説明すると、図
1は最大容量状態であり、電磁制御弁機構15の電磁コ
イル16に通電するパルス電圧のデュ−ティ比は最小と
なっており、電磁制御弁機構15を通じて吐出室3bか
らクランク室2aへ供給される冷媒ガス量は最小とな
り、クランク室圧力を含むピストン13に作用する圧力
差とばね10の付勢力とにより、揺動斜板11に大きな
傾角が与えられている。
Therefore, the pressure of the crank chamber 2a is adjusted by controlling the duty ratio of the pulse voltage applied to the electromagnetic coil 16 of the electromagnetic control valve mechanism 15, and the tilt angle of the swash plate 11 is changed accordingly. Piston strike
That is, the discharge volume is adjusted. More specifically, FIG. 1 shows the maximum capacity state, the duty ratio of the pulse voltage applied to the electromagnetic coil 16 of the electromagnetic control valve mechanism 15 is the minimum, and the discharge chamber 3b is cranked from the discharge chamber 3b through the electromagnetic control valve mechanism 15. The amount of the refrigerant gas supplied to the chamber 2a is minimized, and the swinging swash plate 11 is given a large inclination angle due to the pressure difference acting on the piston 13 including the crank chamber pressure and the biasing force of the spring 10.

【0017】パルス電圧のデュ−ティ比を増加すると、
電磁制御弁機構15が吐出室3bからクランク室2aへ
供給される冷媒ガス量を増加し、それによりクランク室
圧力が増加して揺動斜板11の傾角が減少し、容量が低
下する。逆に、パルス電圧のデュ−ティ比を減少させる
と、クランク室2aへ供給される冷媒ガス量が減少して
クランク室圧力が減少し、容量が増加する。
When the duty ratio of the pulse voltage is increased,
The electromagnetic control valve mechanism 15 increases the amount of refrigerant gas supplied from the discharge chamber 3b to the crank chamber 2a, whereby the crank chamber pressure increases and the tilt angle of the swash plate 11 decreases and the capacity decreases. Conversely, when the duty ratio of the pulse voltage is decreased, the amount of refrigerant gas supplied to the crank chamber 2a decreases, the crank chamber pressure decreases, and the capacity increases.

【0018】次に、上記した空調装置の動作を、図2の
フロ−チャ−トを参照して説明する。このフロ−チャ−
トは制御コンピュ−タCによる圧縮機100及び膨張弁
24の制御動作を示す。まず、温度設定器31から設定
温度と現在室温との差ΔT、エバポレ−タ25の吸い込
み温度tx及び吹き出し温度ty、エバポレ−タ25の
出口圧力(冷媒ガス)Ps及び出口温度(冷媒ガス)T
sを読み込む(100)。
Next, the operation of the above-mentioned air conditioner will be described with reference to the flowchart of FIG. This flow
The symbol H indicates the control operation of the compressor 100 and the expansion valve 24 by the control computer C. First, the difference ΔT between the set temperature and the present room temperature from the temperature setter 31, the suction temperature tx and the outlet temperature ty of the evaporator 25, the outlet pressure (refrigerant gas) Ps and the outlet temperature (refrigerant gas) T of the evaporator 25.
Read s (100).

【0019】次に、エバポレ−タ25の吸い込み温度t
xに基づいて熱負荷が小さいかどうかを調べる(10
2)。ここでは、エバポレ−タ25の吸い込み温度tx
が低ければ熱負荷は小さいとし、txが高ければ熱負荷
は大きいとする。そして、熱負荷が小さければ目標過熱
度TSHOを摂氏2度に設定し(104)、熱負荷が大
きければ目標過熱度TSHOを摂氏14度に設定する
(106)。
Next, the suction temperature t of the evaporator 25
Check whether the heat load is small based on x (10
2). Here, the suction temperature tx of the evaporator 25
If tx is low, the heat load is small, and if tx is high, the heat load is large. If the heat load is small, the target superheat degree TSHO is set to 2 degrees Celsius (104), and if the heat load is large, the target superheat degree TSHO is set to 14 degrees Celsius (106).

【0020】次に、決定した目標過熱度TSHO、エバ
ポレ−タ25の出口圧力Ps及び出口温度Tsに基づい
て予めメモリに格納されたマップから最適な膨張弁開度
をサ−チし(108)、サ−チした最適な膨張弁開度と
なるように膨張弁24に印加する直流電圧の大きさを制
御する(110)。ちなみに、膨張弁24はリニアソレ
ノイド(図示せず)を内蔵しており、膨張弁24の開度
はこのリニアソレノイドに印加される直流電圧の大きさ
に比例するものとする。
Next, based on the determined target superheat degree TSHO, the outlet pressure Ps and the outlet temperature Ts of the evaporator 25, the optimum expansion valve opening degree is searched from a map stored in advance in the memory (108). Then, the magnitude of the DC voltage applied to the expansion valve 24 is controlled so that the optimum opened expansion valve opening is reached (110). Incidentally, the expansion valve 24 has a built-in linear solenoid (not shown), and the opening of the expansion valve 24 is proportional to the magnitude of the DC voltage applied to the linear solenoid.

【0021】次に、ΔT、tx及びtyに基づいて予め
メモリに格納されたマップから最適容量をサ−チし(1
12)、サ−チした最適容量となるように電磁制御弁機
構15の電磁コイル16をデュ−ティ比制御して圧縮機
100の容量を制御する。図3に、揺動斜板式可変容量
型圧縮機を用いた空調装置における過熱度と吐出圧力と
の関係を示す。
Next, based on ΔT, tx and ty, the optimum capacity is searched from a map stored in advance in the memory (1
12), the capacity of the compressor 100 is controlled by controlling the duty ratio of the electromagnetic coil 16 of the electromagnetic control valve mechanism 15 so that the optimum capacity is reached. FIG. 3 shows the relationship between the superheat degree and the discharge pressure in an air conditioner using a swing swash plate type variable displacement compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す揺動斜板式可変容量
型圧縮機の断面図、
FIG. 1 is a sectional view of a swing swash plate type variable displacement compressor showing an embodiment of the present invention,

【図2】 実施例1の制御コンピュ−タCの動作を示す
フロ−チャ−ト、
FIG. 2 is a flowchart showing the operation of the control computer C of the first embodiment,

【図3】 揺動斜板式可変容量型圧縮機を用いた空調装
置における過熱度と吐出圧力との関係を示す特性図、
FIG. 3 is a characteristic diagram showing a relationship between a superheat degree and a discharge pressure in an air conditioner using a swing swash plate type variable displacement compressor.

【符号の説明】[Explanation of symbols]

Cは制御コンピュ−タ、24は膨張弁、25はエバポレ
−タ、100は揺動斜板式可変容量型圧縮機
C is a control computer, 24 is an expansion valve, 25 is an evaporator, and 100 is a swing swash plate type variable displacement compressor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】クランク室内の圧力を制御することで揺動
斜板の傾角を変更し、ピストンストロークを変化させ、
吐出容量を連続的に可変する揺動斜板式可変容量型圧縮
機を備えた空調装置の制御方法であって、該圧縮機が吸
入する冷媒の過熱度を、圧縮機の吐出容量が所定の容量
値以下の場合に所定の過熱度より小さく制御することを
特徴とする揺動斜板式可変容量型圧縮機を備えた空調装
置の運転制御方法。
1. A tilt angle of a swing swash plate is changed by controlling a pressure in a crank chamber to change a piston stroke,
A control method for an air conditioner equipped with a swingable swash plate type variable displacement compressor for continuously varying the discharge capacity, wherein the discharge capacity of the compressor is determined by the superheat degree of the refrigerant sucked by the compressor. A method of controlling the operation of an air conditioner equipped with a swingable swash plate type variable displacement compressor, which is controlled to be smaller than a predetermined degree of superheat when the value is less than a predetermined value.
JP5150691A 1991-03-15 1991-03-15 Driving control method of air-conditioner having rotary swash plate type variable capacity compressor Pending JPH05262127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5150691A JPH05262127A (en) 1991-03-15 1991-03-15 Driving control method of air-conditioner having rotary swash plate type variable capacity compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5150691A JPH05262127A (en) 1991-03-15 1991-03-15 Driving control method of air-conditioner having rotary swash plate type variable capacity compressor

Publications (1)

Publication Number Publication Date
JPH05262127A true JPH05262127A (en) 1993-10-12

Family

ID=12888885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5150691A Pending JPH05262127A (en) 1991-03-15 1991-03-15 Driving control method of air-conditioner having rotary swash plate type variable capacity compressor

Country Status (1)

Country Link
JP (1) JPH05262127A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183086A (en) * 2005-12-08 2007-07-19 Denso Corp Supercritical refrigeration cycle
WO2008080436A1 (en) * 2007-01-04 2008-07-10 Carrier Corporation Superheat control for refrigeration circuit
WO2015090481A1 (en) * 2013-12-20 2015-06-25 Cvh Group Bv A heat pump system
DE102022212047A1 (en) 2022-11-14 2024-05-16 Robert Bosch Gesellschaft mit beschränkter Haftung Method for operating a combined heat and power engine, control or regulating device and combined heat and power engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183086A (en) * 2005-12-08 2007-07-19 Denso Corp Supercritical refrigeration cycle
JP4661696B2 (en) * 2005-12-08 2011-03-30 株式会社デンソー Supercritical refrigeration cycle
WO2008080436A1 (en) * 2007-01-04 2008-07-10 Carrier Corporation Superheat control for refrigeration circuit
WO2015090481A1 (en) * 2013-12-20 2015-06-25 Cvh Group Bv A heat pump system
DE102022212047A1 (en) 2022-11-14 2024-05-16 Robert Bosch Gesellschaft mit beschränkter Haftung Method for operating a combined heat and power engine, control or regulating device and combined heat and power engine

Similar Documents

Publication Publication Date Title
US6105380A (en) Refrigerating system and method of operating the same
EP0309242B1 (en) Refrigerating system having a compressor with an internally and externally controlled variable displacement mechanism
US6526771B2 (en) Freezing cycle apparatus
US5189886A (en) Refrigerating system having a compressor with an internally and externally controlled variable displacement mechanism
US4729718A (en) Wobble plate type compressor
US5027612A (en) Refrigerating system having a compressor with an internally and externally controlled variable displacement mechanism
US6585494B1 (en) Variable-capacity control for refrigerating cycle without using a large pressure control valve
JP4926343B2 (en) Compressor capacity control device
US6321545B1 (en) Control apparatus for variable displacement type compressor
JP3932728B2 (en) Control unit for variable capacity compressor
JPH05262127A (en) Driving control method of air-conditioner having rotary swash plate type variable capacity compressor
JP3835265B2 (en) Control method for air conditioner driven by vehicle engine
JP3752816B2 (en) Operation control method and operation control apparatus for variable capacity compressor
JPH04292747A (en) Operation control device for air conditioner
US5168716A (en) Refrigeration system having a compressor with an internally and externally controlled variable displacement mechanism
JPH0538937A (en) Air conditioner
JP2671420B2 (en) Air-conditioner control method
JP2988078B2 (en) Vehicle air conditioner equipped with hydraulic fan
JP3982237B2 (en) Variable capacity compressor, air conditioner equipped with the variable capacity compressor, and control method in variable capacity compressor
WO1991019095A1 (en) Continuously variable capacity type swash plate compressor
JPH01101219A (en) Compressor structure for vehicle air conditioner
JP5474284B2 (en) Capacity control system for variable capacity compressor
JPH11223179A (en) Method and device for controlling operation of variable displacement compressor
JP3319653B2 (en) Refrigeration circuit using a clutchless variable displacement compressor
KR101541916B1 (en) Control method of a compressor of air conditioner for vehicle