JPH0526020B2 - - Google Patents

Info

Publication number
JPH0526020B2
JPH0526020B2 JP58152412A JP15241283A JPH0526020B2 JP H0526020 B2 JPH0526020 B2 JP H0526020B2 JP 58152412 A JP58152412 A JP 58152412A JP 15241283 A JP15241283 A JP 15241283A JP H0526020 B2 JPH0526020 B2 JP H0526020B2
Authority
JP
Japan
Prior art keywords
fuel injection
value
misfire
amount
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58152412A
Other languages
Japanese (ja)
Other versions
JPS6045750A (en
Inventor
Toshuki Takimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58152412A priority Critical patent/JPS6045750A/en
Publication of JPS6045750A publication Critical patent/JPS6045750A/en
Publication of JPH0526020B2 publication Critical patent/JPH0526020B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は燃焼圧力センサを用いた内燃機関の燃
料噴射制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a fuel injection control method for an internal combustion engine using a combustion pressure sensor.

従来技術 電子制御式燃料噴射機関では、一般に始動時に
は燃料を増量し且つ増量は冷却水温の関数となつ
ている。低温始動時等に例えばバツテリ電圧が低
下するような場合には失火することがあり、燃料
は燃焼したかどうかに関係なく噴射されるために
過濃混合気となり、場合によつては点火プラグが
燃料で濡れてくすぶり、始動不可能になることが
ある。
Prior Art In an electronically controlled fuel injection engine, the amount of fuel is generally increased at the time of starting, and the increase in amount is a function of the cooling water temperature. If, for example, the battery voltage drops during a cold start, a misfire may occur, and the fuel is injected regardless of whether it has been combusted, resulting in a rich mixture, and in some cases, the spark plug may The engine may get wet with fuel and smolder, making it impossible to start.

発明の目的 本発明の目的はたとえば失火が起きても燃料噴
射を制御して機関の運転を確保することにある。
OBJECT OF THE INVENTION An object of the present invention is to control fuel injection to ensure engine operation even if a misfire occurs, for example.

発明の構成 本発明は、前記の目的を達成するための手段と
して、燃料噴射量を計算する電子制御ユニツトを
具えた内燃機関において、所定の小さなクランク
角毎に前記内燃機関の特定の気筒のシリンダ内圧
力値を検出し、圧縮行程において検出された圧力
値を負の値とし、膨張行程において検出された圧
力値を正の値として、それらの圧力値を積算する
ことによつて圧縮行程と膨張行程とを通じた圧力
の積算値を求め、前記圧力の積算値が所定値以下
であれば失火と判定するが、燃料噴射は継続しな
がら失火が継続している期間内の燃料噴射量を積
算し、前記失火が継続している期間内の燃料噴射
量の積算値が所定値以上になつたときに燃料噴射
を休止すると共に、燃料噴射を休止している間は
所定量を機関の回転に同期して前記失火が継続し
ている期間内の燃料噴射量の積算値から減算して
行き、前記失火が継続している期間内の燃料噴射
量の積算値が所定値以下になつたときに燃料噴射
を再開して、再び前記失火が継続している期間内
の燃料噴射量を積算することを特徴とする内燃機
関の燃料噴射制御方法を提供する。
Composition of the Invention The present invention provides, as a means for achieving the above-mentioned object, an internal combustion engine equipped with an electronic control unit that calculates a fuel injection amount. By detecting the internal pressure value, taking the pressure value detected in the compression stroke as a negative value, and making the pressure value detected in the expansion stroke a positive value, and integrating these pressure values, the compression stroke and expansion are determined. The integrated value of the pressure throughout the stroke is calculated, and if the integrated value of the pressure is less than a predetermined value, it is determined that a misfire has occurred, but while fuel injection continues, the amount of fuel injected during the period in which the misfire continues is integrated. , stops fuel injection when the cumulative value of the fuel injection amount during the period during which the misfire continues is equal to or greater than a predetermined value, and synchronizes the predetermined amount with the rotation of the engine while the fuel injection is stopped. The fuel injection amount is subtracted from the cumulative value of the fuel injection amount during the period during which the misfire continues, and when the cumulative value of the fuel injection amount during the period during which the misfire continues, the fuel There is provided a fuel injection control method for an internal combustion engine, characterized in that the injection is restarted and the fuel injection amount during the period during which the misfire continues is again integrated.

実施例 第1図を参照すると、1は機関本体、2はピス
トン、3は燃焼室、4は吸気弁、5は吸気ポー
ト、6はサージタンク、7は各気筒の吸気ポート
5とサージタンク6とを連結する枝管、8は吸気
ダクト、9は吸気ダクト8内に配置されたスロツ
トル弁、10はエアクリーナ、11は燃料噴射弁
であり、これらの構成は燃料噴射式内燃機関とし
てよく知られたものである。機関燃焼室3には圧
力センサ12が臨んで配置され、冷却水温センサ
13が設けられる。第1図には上記2個のセンサ
のみ示されているが、燃料噴射制御のために、そ
の他にも種々のセンサが設けられ、その幾つかが
第2図に示されている。
Embodiment Referring to FIG. 1, 1 is the engine body, 2 is the piston, 3 is the combustion chamber, 4 is the intake valve, 5 is the intake port, 6 is the surge tank, and 7 is the intake port 5 and surge tank 6 of each cylinder. 8 is an intake duct, 9 is a throttle valve disposed in the intake duct 8, 10 is an air cleaner, and 11 is a fuel injection valve. These structures are well known as a fuel injection internal combustion engine. It is something that A pressure sensor 12 is arranged facing the engine combustion chamber 3, and a cooling water temperature sensor 13 is provided. Although only the above two sensors are shown in FIG. 1, various other sensors are provided for fuel injection control, some of which are shown in FIG.

第2図は第1図の燃料噴射弁11の燃料噴射制
御装置20を示すものである。燃料噴射制御装置
20はマイクロプロセツサユニツト(CPU)2
1を含むものである。マイクロプロセツサユニツ
トは双方向性バス22によつてAD変換器23に
接続され、AD変換器23には前述の圧力センサ
12及び水温センサ13の出力が入力される。さ
らに、クランク基準位置センサ14、クランク角
度センサ15、スロツトルセンサ16、その他1
7の信号が入力インターフエース回路24及び双
方向性バス25を介してマイクロプロセツサユニ
ツト21に入力される。マイクロプロセツサユニ
ツト21は双方向性バス26及び出力インターフ
エース回路27により燃料噴射弁11の作動を制
御する。燃料噴射弁11からの燃料噴射量の制御
は公知のように開弁時間の制御により行われる。
尚、本発明においては通常使用されるエアフロメ
ータは必要としない、というのは、空気量が圧力
センサ12により検出されるからである。
FIG. 2 shows a fuel injection control device 20 for the fuel injection valve 11 shown in FIG. The fuel injection control device 20 includes a microprocessor unit (CPU) 2.
1. The microprocessor unit is connected to an AD converter 23 by a bidirectional bus 22, and the outputs of the pressure sensor 12 and water temperature sensor 13 described above are input to the AD converter 23. Furthermore, a crank reference position sensor 14, a crank angle sensor 15, a throttle sensor 16, and other 1
7 signals are input to the microprocessor unit 21 via an input interface circuit 24 and a bidirectional bus 25. Microprocessor unit 21 controls the operation of fuel injector 11 via bidirectional bus 26 and output interface circuit 27. As is well known, the amount of fuel injected from the fuel injection valve 11 is controlled by controlling the valve opening time.
Note that the present invention does not require a commonly used air flow meter because the air amount is detected by the pressure sensor 12.

第3図は本発明による失火の判定方法の基本原
理を説明するためのグラフである。前述の圧力セ
ンサ12は特定の1気筒にのみ取り付けられ、そ
の特定気筒のシリンダ内圧力(時間の差はあつて
も通常は全気筒同じであるが)を検出する。第3
図ロに示すように、圧縮行程及び膨張行程の360゜
クランク角度(CA)において失火して燃焼が起
こらないときの圧力波形は破線で示されるような
ものになり、燃焼が起こつた場合には実線で示さ
れるような圧力波形になる。このような圧力が圧
縮行程中は負の仕事、膨張行程中は正の仕事をす
るとして、所定のクランク角度Δθ(例えば5゜CA)
毎に正負の符号を付けて積算すると第3図イに示
すようなグラフが得られ、失火した場合には
360゜CA間の積算値が0付近の値となる。燃焼時
には実線で示すような正の値となる。従つて、圧
縮行程と膨張行程の360゜CA間のシリンダ内圧力
(燃焼室内圧力)の積算値が所定判定値以下のと
きには失火と判定することができる。
FIG. 3 is a graph for explaining the basic principle of the misfire determination method according to the present invention. The pressure sensor 12 described above is attached only to one specific cylinder, and detects the cylinder pressure of that specific cylinder (usually the same for all cylinders even if there is a time difference). Third
As shown in Figure B, when a misfire occurs and combustion does not occur at 360° crank angle (CA) during the compression stroke and expansion stroke, the pressure waveform is as shown by the broken line, and when combustion occurs, the pressure waveform is as shown by the broken line. The pressure waveform will be as shown by the solid line. Assuming that such pressure does negative work during the compression stroke and positive work during the expansion stroke, the specified crank angle Δθ (for example, 5° CA)
If you add a positive or negative sign to each time and add it up, you will get a graph like the one shown in Figure 3 A. In the case of a misfire,
The integrated value between 360° CA is close to 0. During combustion, it becomes a positive value as shown by the solid line. Therefore, when the integrated value of the cylinder internal pressure (combustion chamber pressure) during 360° CA between the compression stroke and the expansion stroke is less than or equal to a predetermined determination value, it can be determined that a misfire has occurred.

上述の基本原理に基づいて、始動時の燃料噴射
制御は次のように行われる。尚、始動時の燃料噴
射量は一般に行われるように冷却水温の関数とし
て他の運転状態より増量されると仮定されてい
る。第4図には第5図及び第6図のフローチヤー
トを説明するためのタイミングチヤートが示され
ており、以下の説明に参照される。
Based on the above-mentioned basic principle, fuel injection control at startup is performed as follows. It is assumed that the fuel injection amount at startup is increased as a function of the cooling water temperature compared to other operating conditions, as is generally done. FIG. 4 shows a timing chart for explaining the flowcharts of FIGS. 5 and 6, and will be referred to in the following description.

第5図及び第6図には所定のクランク角度毎に
割込により実行される燃焼圧力積算値計算及び燃
料噴射処理のフローチヤートが示されている。こ
こでは5゜CA毎に割込みが発生するものとする。
又、4気筒同時噴射とし、クランク角度基準位置
センサ14は第3図ロの0゜CAにおいて720゜CA毎
に基準位置信号を発生し、720゜CA間に2度の噴
射が行われる。
5 and 6 are flowcharts of combustion pressure integrated value calculation and fuel injection processing which are executed by interruption at every predetermined crank angle. Here, it is assumed that an interrupt occurs every 5°CA.
Further, simultaneous injection is performed in four cylinders, and the crank angle reference position sensor 14 generates a reference position signal every 720° CA at 0° CA in FIG. 3B, so that two injections are performed during 720° CA.

第5図において、ステツプ40で基準位置信号が
ONであるかを判定し、YESのときはステツプ41
にてΣPと称するRAM及びCLと称すRAMをクリ
アする。NOのときはステツプ42にてCLに1を加
算する。ここで、ΣPと称するRAMは所定の角度
毎にシリンダ内圧力を積算するためのワークラム
であり、CLと称するRAMは基準位置信号からの
クランク位置を知るためのクランク角度カウンタ
である。
In Fig. 5, the reference position signal is output at step 40.
Determine if it is ON, and if YES, step 41
Clear the RAM called ΣP and the RAM called CL. If NO, 1 is added to CL in step 42. Here, the RAM referred to as ΣP is a work ram for integrating the cylinder pressure at each predetermined angle, and the RAM referred to as CL is a crank angle counter for determining the crank position from the reference position signal.

次に、ステツプ43において、所定のクランク角
度毎にAD変換されて所定のRAMに格納されて
いる燃焼圧力値(シリンダ内圧力)Pを読み込
む。ステツプ44において、CLの値が180/5以下
か、すなわち圧縮行程であるかの判定を行ない、
YESの時は、ステツプ48に進み、ΣP=ΣP−Pを
実行する。NOの時は、ステツプ45にて、CLが36
0/5以下か、すなわち膨張行程であるかを判定し、
YESならステツプ47にてΣP=ΣP+Pを実行す
る。また、NOの時は、PSと称するRAMに
360゜CA間の積算値を格納する。
Next, in step 43, the combustion pressure value (cylinder pressure) P which has been AD converted at every predetermined crank angle and is stored in a predetermined RAM is read. In step 44, it is determined whether the value of CL is 180/5 or less, that is, whether it is a compression stroke,
If YES, proceed to step 48 and execute ΣP=ΣP-P. If NO, CL is 36 in step 45.
Determine whether it is 0/5 or less, that is, it is an expansion stroke,
If YES, ΣP=ΣP+P is executed in step 47. Also, if NO, the RAM called PS
Stores the integrated value between 360°CA.

続いて、第6図の噴射処理ルーチンを実行す
る。ステツプ49において、CLの値が300/5である
かを判定する。NOの時は、ステツプ50にて、CL
が660/5であるかを判定する。NOの時は、以上
で角度割込処理を終了する。ステツプ49にて
YES又は、ステツプ50にてYESと判定された時
は、ステツプ51へ進む。前記49と50の判定は、現
在クランク位置が噴射実行タイミングであるかの
判定であり、本実施例は360゜CA毎全気筒同時噴
射方式を例としているため、基準位置から
720゜CA間に2回噴射を実行するものである。ス
テツプ51では、スタータ信号等により始動時の判
定を行う。前記判定により始動時でなければステ
ツプ53に進む。前記判定により始動時であればス
テツプ52にて、前記PS(360゜CA間の圧力積算値)
が設定値k1以上であるかを判定する。YESの時、
すなわち“燃焼あり”と判定されたなら、ステツ
プ53へ進み、TAUSと称するRAM(燃料噴射時
間積算値)をリセツトし、ステツプ60へ進む。前
記ステツプ52の判定において、NOの時、すなわ
ち“失火”と判定した時は、ステツプ54にて、フ
ラグINJの状態を判定する。フラグINJ=1すな
わち“前回噴射実行”と判定した時は、ステツプ
56にて、前記TAUSの値が設定値k2より大きい
かを判定する。ステツプ56判定でYESの時、す
なわち設定値k2以上の燃料がシリンダ内に残つて
いるものと判断し、ステツプ57へ進む。前記ステ
ツプ54の判定において、フラグINJ=0すなわち
“前回噴射休止”と判定した時は、ステツプ55に
て前記TAUSが設定値k3より小さいかを判定す
る。YESの時は、ステツプ59へ進む。NOの時
は、ステツプ57へ進む。ステツプ57では、
TAUS=TAUS−τを実行し、噴射を休止させ
る。ステツプ58にてフラグINJ=0とする。B前
記ステツプ57のτとは、今回噴射しようとする噴
射開弁時間であり、従来方法により求められる。
ステツプ59では、TAUS=TAUS+τを実行し、
ステツプ60にてフラグINJ=1とする。続いて、
ステツプ61にて、従来方法により、噴射出力処理
を実行し、割込処理を終了する。従つて、ステツ
プ52において燃焼圧力積算値PSにより失火を判
定し、失火と判定されたときに燃料噴射時間積算
値が上限設定値k2に達するまでは噴射を続ける
が、上限設定値k2に達すると失火中に空燃比が過
濃になつたとして、ステツプ57にて噴射を休止さ
せる。この場合、燃料噴射量は零に低減される。
失火が引続いて検出されると、燃料噴射休止は燃
料噴射時間積算値が下限設定値k3になるまで続行
される。よつて、空燃比が始動に適した値にな
り、それから所定の燃料量が再び噴射され、始動
性が改善されることになり、始動不可能という事
態が防止されることになる。
Subsequently, the injection processing routine shown in FIG. 6 is executed. In step 49, it is determined whether the value of CL is 300/5. If NO, at step 50, CL
Determine whether is 660/5. If NO, the angle interrupt processing ends. At step 49
If YES or if YES is determined in step 50, proceed to step 51. Judgments 49 and 50 above are to judge whether the current crank position is the injection execution timing, and since this example uses a 360° CA simultaneous injection method for all cylinders,
Injection is performed twice during 720° CA. In step 51, starting is determined based on a starter signal or the like. According to the above judgment, if it is not the start time, the process advances to step 53. If it is starting according to the above judgment, in step 52, the PS (accumulated pressure value between 360° CA) is calculated.
Determine whether or not is greater than or equal to the set value k1 . When YES,
That is, if it is determined that there is "combustion", the process proceeds to step 53, where a RAM (fuel injection time integrated value) called TAUS is reset, and the process proceeds to step 60. When the determination in step 52 is NO, that is, when it is determined that there is a "misfire", the state of the flag INJ is determined in step 54. When flag INJ = 1, that is, it is determined that “previous injection was executed”, the step
At 56, it is determined whether the value of TAUS is greater than a set value k2 . When the determination in step 56 is YES, it is determined that fuel equal to or greater than the set value k2 remains in the cylinder, and the process proceeds to step 57. If it is determined in step 54 that the flag INJ is 0, that is, "previous injection paused", then in step 55 it is determined whether the TAUS is smaller than the set value k3 . If YES, proceed to step 59. If NO, proceed to step 57. In step 57,
Execute TAUS = TAUS - τ and stop injection. At step 58, the flag INJ is set to 0. B In step 57, τ is the injection valve opening time for the current injection, and is determined by the conventional method.
In step 59, execute TAUS=TAUS+τ,
At step 60, the flag INJ is set to 1. continue,
In step 61, injection output processing is executed using a conventional method, and the interrupt processing is ended. Therefore, in step 52, a misfire is determined based on the combustion pressure integrated value PS, and when it is determined that a misfire has occurred, injection continues until the fuel injection time integrated value reaches the upper limit set value k2 . When this happens, it is assumed that the air-fuel ratio has become excessively rich during misfire, and the injection is stopped in step 57. In this case, the fuel injection amount is reduced to zero.
If a misfire is subsequently detected, the fuel injection pause continues until the fuel injection time integrated value reaches the lower limit set value k3 . Therefore, the air-fuel ratio becomes a value suitable for starting, and then a predetermined amount of fuel is injected again, improving startability and preventing a situation where starting is impossible.

効 果 本発明によれば、機関の圧縮行程と膨張行程と
において例えば5゜というような小さなクランク角
毎にシリンダ内の圧力値を検出し、それらの圧力
値を積算して圧縮行程と膨張行程の各圧力積算値
の差の大きさにより失火か否かを判定するので、
失火の判定がきわて正確になつて誤判定の恐れが
なくなる。
Effects According to the present invention, the pressure value inside the cylinder is detected at every small crank angle such as 5 degrees during the compression stroke and expansion stroke of the engine, and these pressure values are integrated to calculate the pressure value during the compression stroke and expansion stroke. Since it is determined whether there is a misfire or not based on the size of the difference between the respective pressure integrated values,
Misfire judgment becomes extremely accurate and there is no possibility of misjudgment.

失火と判定した後も燃料噴射を続行してその間
の燃料噴射量を積算し、それが許容量を超えると
きまでに失火が回復しなければ燃料噴射を休止す
るが、燃料噴射の休止中は所定量を機関の回転に
同期して失火が継続している期間内の燃料噴射量
の積算値から減算して行くので、シリンダ内に現
在残つている燃料量を常に正確に把握することが
でき、更にその値が所定値よりも小さくなつたと
きには失火中といえども再び燃料噴射を再開し、
常にシリンダ内の燃料の残量が適正値となるよう
に制御するので、失火状態からの回復が早くな
り、機関の安定な運転状態を維持することができ
る。
Even after it is determined that a misfire has occurred, fuel injection continues and the amount of fuel injected during that time is accumulated, and if the misfire does not recover by the time the amount exceeds the allowable amount, fuel injection is stopped. Since the amount is subtracted from the cumulative amount of fuel injection during the period during which the misfire continues in synchronization with the engine rotation, the amount of fuel currently remaining in the cylinder can be accurately determined at all times. Furthermore, when the value becomes smaller than a predetermined value, fuel injection is restarted even if there is a misfire.
Since the amount of fuel remaining in the cylinder is always controlled to be at an appropriate value, recovery from a misfire condition is quick, and a stable operating condition of the engine can be maintained.

なお、本発明の方法を実施する際に短時間毎に
検出されるシリンダ内の燃焼圧力によつて、機関
の全般的な燃料噴射制御を実行することも可能で
あるから、そのような制御を行う場合には従来の
機関のようなエアフローメータ等を設けて吸入空
気量を検出する必要がなくなるので、本発明を実
施することにより余分な機器の設置の必要が生じ
てハードウエアの面で不利になるというようなこ
ともない。
It should be noted that when carrying out the method of the present invention, it is also possible to perform general fuel injection control of the engine based on the combustion pressure in the cylinder that is detected every short period of time. In this case, there is no need to install an air flow meter or the like to detect the amount of intake air as in conventional engines, so implementing the present invention requires the installation of extra equipment, which is disadvantageous in terms of hardware. There is no such thing as becoming.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される内燃機関の断面
図、第2図は燃料噴射制御装置のブロツク図、第
3図は失火の判定を説明するためのグラフ、第4
図は第5図及び第6図の作動を説明するためのタ
イミングチヤート、第5図は燃焼圧力積算値を求
めるフローチヤート、第6図は燃料噴射処理のフ
ローチヤートである。 3……燃焼室、11……燃料噴射弁、12……
圧力センサ、20……燃料噴射制御装置。
FIG. 1 is a sectional view of an internal combustion engine to which the present invention is applied, FIG. 2 is a block diagram of a fuel injection control device, FIG. 3 is a graph for explaining misfire determination, and FIG.
The figures are a timing chart for explaining the operations of FIGS. 5 and 6, FIG. 5 is a flowchart for determining the combustion pressure integrated value, and FIG. 6 is a flowchart for fuel injection processing. 3... Combustion chamber, 11... Fuel injection valve, 12...
Pressure sensor, 20...Fuel injection control device.

Claims (1)

【特許請求の範囲】[Claims] 1 燃料噴射量を計算する電子制御ユニツトを具
えた内燃機関において、所定の小さなクランク角
毎に前記内燃機関の特定の気筒のシリンダ内圧力
値を検出し、圧縮行程において検出された圧力値
を負の値とし、膨張行程において検出された圧力
値を正の値として、それらの圧力値を積算するこ
とによつて圧縮行程と膨張行程とを通じた圧力の
積算値を求め、前記圧力の積算値が所定値以下で
あれば失火と判定するが、燃料噴射は継続しなが
ら失火が継続している期間内の燃料噴射量を積算
し、前記失火が継続している期間内の燃料噴射量
の積算値が所定値以上になつたときに燃料噴射を
休止すると共に、燃料噴射を休止している間は所
定量を機関の回転に同期して前記失火が継続して
いる期間内の燃料噴射量の積算値から減算して行
き、前記失火が継続している期間内の燃料噴射量
の積算値が所定値以下になつたときに燃料噴射を
再開して、再び前記失火が継続している期間内の
燃料噴射量を積算することを特徴とする内燃機関
の燃料噴射制御方法。
1. In an internal combustion engine equipped with an electronic control unit that calculates the fuel injection amount, the cylinder pressure value of a specific cylinder of the internal combustion engine is detected at every predetermined small crank angle, and the pressure value detected in the compression stroke is subtracted. The pressure value detected in the expansion stroke is taken as a positive value, and by integrating these pressure values, the integrated value of the pressure through the compression stroke and the expansion stroke is determined, and the integrated value of the pressure is If it is less than a predetermined value, it is determined that a misfire has occurred, but while fuel injection continues, the fuel injection amount during the period during which the misfire continues is accumulated, and the cumulative value of the fuel injection amount during the period during which the misfire continues. When the misfire exceeds a predetermined value, the fuel injection is stopped, and while the fuel injection is stopped, a predetermined amount is added in synchronization with the rotation of the engine to integrate the amount of fuel injected during the period during which the misfire continues. When the cumulative value of the fuel injection amount during the period during which the misfire continues, the fuel injection is restarted and the amount of fuel injection during the period during which the misfire continues is subtracted from the value. A fuel injection control method for an internal combustion engine, characterized by integrating the amount of fuel injection.
JP58152412A 1983-08-23 1983-08-23 Fuel injection control method of internal-combustion engine Granted JPS6045750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58152412A JPS6045750A (en) 1983-08-23 1983-08-23 Fuel injection control method of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58152412A JPS6045750A (en) 1983-08-23 1983-08-23 Fuel injection control method of internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS6045750A JPS6045750A (en) 1985-03-12
JPH0526020B2 true JPH0526020B2 (en) 1993-04-14

Family

ID=15539945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58152412A Granted JPS6045750A (en) 1983-08-23 1983-08-23 Fuel injection control method of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS6045750A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057498Y2 (en) * 1985-10-12 1993-02-25
JPH0429082Y2 (en) * 1985-10-14 1992-07-15
JP2957590B2 (en) * 1989-02-23 1999-10-04 本田技研工業株式会社 Fuel injection control device for two-cycle engine
JPH02122141U (en) * 1989-03-17 1990-10-05
JPH0645646Y2 (en) * 1989-05-29 1994-11-24 株式会社ユニシアジェックス Misfire determination device for internal combustion engine
JPH04224260A (en) * 1990-12-26 1992-08-13 Nippondenso Co Ltd Combustion condition detecting device for internal combustion engine
JP2917617B2 (en) * 1991-10-28 1999-07-12 トヨタ自動車株式会社 Internal combustion engine
KR100290368B1 (en) * 1996-08-30 2001-06-01 이계안 Method for controlling injection fuel amount in engine starting
US10605179B2 (en) 2018-08-20 2020-03-31 Caterpillar Inc. Engine misfire mitigation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420240A (en) * 1977-07-15 1979-02-15 Yamaha Motor Co Ltd Method and device to protect catalyzer converter for multi-cylinder engine
JPS5698546A (en) * 1980-01-10 1981-08-08 Nissan Motor Co Ltd Spark ignition engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420240A (en) * 1977-07-15 1979-02-15 Yamaha Motor Co Ltd Method and device to protect catalyzer converter for multi-cylinder engine
JPS5698546A (en) * 1980-01-10 1981-08-08 Nissan Motor Co Ltd Spark ignition engine

Also Published As

Publication number Publication date
JPS6045750A (en) 1985-03-12

Similar Documents

Publication Publication Date Title
JPS5865950A (en) Method of controlling internal-combustion engine
EP1439300A1 (en) Engine control device
JPH0526020B2 (en)
US5664544A (en) Apparatus and method for control of an internal combustion engine
JPH0723582Y2 (en) Ignition timing control device for internal combustion engine
JPH0750010B2 (en) Knocking detection device abnormality determination device
US4483294A (en) Engine control system
EP0160949A2 (en) Method and apparatus for controlling air-fuel ratio in sequential injection type internal combustion engine
JPS6138139A (en) Fuel injection control device in internal-combustion engine
JPH0718357B2 (en) Fuel injection control device for internal combustion engine
JPH0263097B2 (en)
JPH0316498B2 (en)
JPH0778385B2 (en) Misfire detection device for internal combustion engine
JP3234418B2 (en) Lean limit detection method
JPH08261047A (en) Lean limit sensing method
JP2749138B2 (en) Combustion abnormality detection device for internal combustion engine
JP3234419B2 (en) Lean limit detection method
KR930011046B1 (en) Method for controlling fuel at an acceleration time of an electronically controlled fuel engine
JP2729329B2 (en) Knocking control device
JPH07180643A (en) Ignition timing control device for internal combustion engine
JPH0475380B2 (en)
JP2710808B2 (en) Engine fuel injection device
JPH088272Y2 (en) Fuel injection control device
JPH0253621B2 (en)
JPS6196150A (en) Air-fuel ratio controller for internal-combustion engine