JPH0525659U - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH0525659U
JPH0525659U JP074377U JP7437791U JPH0525659U JP H0525659 U JPH0525659 U JP H0525659U JP 074377 U JP074377 U JP 074377U JP 7437791 U JP7437791 U JP 7437791U JP H0525659 U JPH0525659 U JP H0525659U
Authority
JP
Japan
Prior art keywords
fuel cell
solid electrolyte
interconnector
lead
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP074377U
Other languages
Japanese (ja)
Other versions
JP2522208Y2 (en
Inventor
啓 納富
恭之 武田
正義 下道
長生 久留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1991074377U priority Critical patent/JP2522208Y2/en
Publication of JPH0525659U publication Critical patent/JPH0525659U/en
Application granted granted Critical
Publication of JP2522208Y2 publication Critical patent/JP2522208Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/525

Abstract

(57)【要約】 【目的】 固体電解質燃料電池の改良に関する。 【構成】 ニッケル・アルミニウム又はニッケル・クロ
ムなどの合金皮膜に、アルミナ又はジルコニアなどのセ
ラミックスを40〜60vol%分散させた複合皮膜よ
りなるインタコネクタ及びリードを具備した固体電解質
燃料電池。
(57) [Summary] [Objective] The present invention relates to improvement of a solid oxide fuel cell. A solid electrolyte fuel cell comprising an interconnector and a lead, which are composed of a composite film in which ceramics such as alumina or zirconia are dispersed in an amount of 40 to 60 vol% in an alloy film of nickel, aluminum, nickel, chromium or the like.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は空気等の酸化性ガスと水素や一酸化炭素ガス等の還元性ガスの化学反 応を利用して発電する固体電解質燃料電池の改良に関する。 The present invention relates to improvement of a solid oxide fuel cell that generates electricity by utilizing a chemical reaction between an oxidizing gas such as air and a reducing gas such as hydrogen or carbon monoxide gas.

【0002】[0002]

【従来の技術】[Prior Art]

図3は固体電解質燃料電池の構造例を示す。図3において、1は多孔性支持体 、2は燃料極、3は固体電解質、4はインタコネクタ、5はリード、6は空気極 である。 FIG. 3 shows a structural example of a solid oxide fuel cell. In FIG. 3, 1 is a porous support, 2 is a fuel electrode, 3 is a solid electrolyte, 4 is an interconnector, 5 is a lead, and 6 is an air electrode.

【0003】 固体電解質燃料電池は燃料極2の固体電解質3と空気極6の3層で1素子が構 成される。高温で燃料極2に水素、空気極6に酸素を給供すると、空気極6では 酸素が電子を取り込んでO2-イオンとなる反応を促進するよう動作する。O2-イ オンは固体電解質3内部の酸素イオン空孔子点を経由しながら燃料極2側へと拡 散移動する。燃料極2との界面に到達したO2-イオンは燃料極2より送り込まれ た水素と反応して電子を放出するので、仮に燃料極2と空気極6を外部回路を通 して連結すると、空気極6を正極とする電流が流れる。In the solid electrolyte fuel cell, one element is composed of three layers of the solid electrolyte 3 of the fuel electrode 2 and the air electrode 6. When hydrogen is supplied to the fuel electrode 2 and oxygen is supplied to the air electrode 6 at a high temperature, the oxygen in the air electrode 6 operates to promote the reaction of taking in electrons and forming O 2− ions. O 2 − ions diffusely move toward the fuel electrode 2 side through the oxygen ion vacancy points inside the solid electrolyte 3. The O 2− ion reaching the interface with the fuel electrode 2 reacts with hydrogen sent from the fuel electrode 2 to emit an electron, so if the fuel electrode 2 and the air electrode 6 are connected through an external circuit, A current flows with the air electrode 6 as a positive electrode.

【0004】 固体電解質燃料電池は素子1個当りの無負荷電圧が低く複数の素子を直列に接 続する必要があり、インタコネクタ4が電気的な接続の役目を果している。リー ド5は電力を外部取出し端子へ導く役目を果している。以上の固体電解質燃料電 池の作動原理により、インタコネクタ4、リード5に要求される代表的な性質に 高い電子導電性、緻密であることがあげられる。また、作動時の熱的損傷を防止 するための低熱膨張率及び酸化雰囲気に強いことが望まれる。In the solid electrolyte fuel cell, the no-load voltage per element is low and it is necessary to connect a plurality of elements in series, and the interconnector 4 plays a role of electrical connection. The lead 5 serves to guide the electric power to the external output terminal. Based on the above operating principle of the solid electrolyte fuel cell, the typical properties required for the interconnector 4 and the lead 5 are high electron conductivity and high density. In addition, it is desired that the thermal expansion coefficient be low and the oxidative atmosphere should be strong in order to prevent thermal damage during operation.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

インタコネクタ4、リード5の特性には高い電子導電性が必要であり、一般的 に金属系材料がその特性を満足する。しかし、金属系材料は熱膨張率が高く、そ の皮膜を高温で作動する固体電解質燃料電池に使用した場合、熱応力によって皮 膜に割れ、剥離が発生する。 The characteristics of the interconnector 4 and the lead 5 require high electronic conductivity, and metal-based materials generally satisfy the characteristics. However, metal-based materials have a high coefficient of thermal expansion, and when the coating is used in a solid electrolyte fuel cell that operates at high temperatures, thermal stress causes cracking and peeling of the coating.

【0006】 インタコネクタ4、リード5を形成する皮膜の損傷はインタコネクタ4、リー ド5の損傷にとどまらず固体電解質燃料電池を構成する他の皮膜の損傷を引き起 し、電池性能を大幅に低下させる。The damage to the film forming the interconnector 4 and the lead 5 is not limited to the damage to the interconnector 4 and the lead 5, but also to the damage to other films constituting the solid electrolyte fuel cell, which significantly improves the cell performance. Lower.

【0007】 なお、一部の酸化物系材料が高い電子導電性を有し、低熱膨張率を示すが、高 価で溶射作業性が悪いため経済的でない。Although some oxide materials have high electronic conductivity and low thermal expansion coefficient, they are uneconomical because they are expensive and have poor spraying workability.

【0008】 したがって、作業が簡便で成膜速度の速いプラズマ溶射法を用いたインタコネ クタ4、リード5の形成において、電子導電性を損なうことなく低熱膨張率化を 図ることが課題であった。Therefore, in forming the interconnector 4 and the lead 5 using the plasma spraying method, which is simple in work and has a high film formation rate, it has been a problem to achieve a low coefficient of thermal expansion without deteriorating the electronic conductivity.

【0009】 本考案は上記技術水準に鑑み、上記課題を解決しうるインタコネクタ及びリー ドを有する固体電解質燃料電池を提供しようとするものである。In view of the above-mentioned state of the art, the present invention intends to provide a solid electrolyte fuel cell having an interconnector and a lead that can solve the above problems.

【0010】[0010]

【課題を解決するための手段】[Means for Solving the Problems]

本考案はニッケル・アルミニウム又はニッケル・クロムなどの合金皮膜にアル ミナ又はジルコニアなどのセラミックスを40〜60vol%分散させた複合皮 膜よりなるインタコネクタ及びリードを具備してなることを特徴とする固体電解 質燃料電池である。 The present invention is characterized by comprising an interconnector and a lead, which are made of a composite film in which ceramics such as aluminum or zirconia are dispersed in an amount of 40 to 60 vol% in an alloy film of nickel, aluminum or nickel, chromium. It is an electrolyte fuel cell.

【0011】 すなわち、本考案は皮膜の電子導電性を損うことなく、低熱膨張率化を図るた め、ニッケル・アルミニウム又はニッケル・クロムなどの合金皮膜中に低熱膨張 率のアルミナ、ジルコニアなどのセラミックスを40〜60vol%分散させ複 合化したインタコネクタ及びリードを具備した固体電解質燃料電池である。That is, according to the present invention, in order to achieve a low coefficient of thermal expansion without impairing the electronic conductivity of the film, an alloy film such as nickel / aluminum or nickel / chromium has a low coefficient of thermal expansion such as alumina or zirconia. The solid electrolyte fuel cell is provided with an interconnector and a lead in which 40 to 60 vol% of ceramics are dispersed and combined.

【0012】[0012]

【作用】 合金とセラミックスの複合皮膜の電子導電性は合金をマトリックスとしてセラ ミックスが球形に均一分散する場合、セラミックス比率の影響を受けるものの導 体である合金の電子導電性で決定される。[Function] The electronic conductivity of the composite film of alloy and ceramics is determined by the electronic conductivity of the alloy, which is the conductor of the alloy, although it is affected by the ceramic ratio when the ceramic is dispersed uniformly in a spherical shape using the alloy as a matrix.

【0013】 ただし、複合皮膜の表面は溶射皮膜の形成プロセスの上からセラミックスの球 形分散が困難であり、一般に層状に近い状態で分散するため電子導電性が低下す る。However, it is difficult to spherically disperse the ceramics on the surface of the composite coating due to the process of forming the thermal spray coating, and in general, the ceramics are dispersed in a nearly layered state, resulting in a decrease in electronic conductivity.

【0014】 複合皮膜の熱膨張率は合金のマトリックスに分散したセラミックス比率と直線 関係にあり、低熱膨張率のセラミックス比率が高くなるにつれて低下する。The coefficient of thermal expansion of the composite coating has a linear relationship with the ratio of ceramics dispersed in the alloy matrix, and decreases as the ratio of ceramics with a low coefficient of thermal expansion increases.

【0015】[0015]

【実施例】【Example】

図1はニッケル・クロム合金とアルミナの混合比率を数種変化させプラズマ溶 射法で形成した複合皮膜の導電性の有無をテスターで評価した結果の図表である 。図1の導電性の有無は絶縁管表面にニッケル・クロムとアルミナの複合皮膜を 形成し、その表面の導通を点接触で30点計って求めた。 Fig. 1 is a chart of the results of evaluation by a tester of the conductivity of the composite coating formed by the plasma spraying method with several different mixing ratios of nickel-chromium alloy and alumina. The presence or absence of conductivity in FIG. 1 was obtained by forming a composite film of nickel-chromium and alumina on the surface of the insulating tube and measuring the conductivity of the surface by point contact at 30 points.

【0016】 溶射条件はニッケル・クロムとアルミナの混合比率が変化しても一定とし、プ ラズマアーク電流:550A、プラズマアーク電圧:65V、プラズマガスAr :40リットル/min、H2 :7リットル/min、溶射距離:120mmと した。The spraying conditions are constant even if the mixing ratio of nickel / chromium and alumina changes, and plasma arc current: 550 A, plasma arc voltage: 65 V, plasma gas Ar: 40 liter / min, H 2 : 7 liter / min. , Spraying distance: 120 mm.

【0017】 図1の結果から複合皮膜中のアルミナの比率を高くしても、その比率が60v ol%以内では計測点すべてに導通が認められる。これに対して複合皮膜中のア ルミナの比率が60%以上では、その比率が高くなるにつれ導通が認められない 計測点の数が増加することが判る。From the results of FIG. 1, even if the ratio of alumina in the composite coating is increased, conduction is recognized at all the measurement points when the ratio is within 60 vol%. On the other hand, when the ratio of aluminum in the composite film is 60% or more, it can be seen that as the ratio increases, the number of measurement points where conduction is not recognized increases.

【0018】 図2はニッケル・クロム合金とアルミナの混合比率を数種変化させプラズマ溶 射法で形成した複合皮膜の熱膨張率を計測した結果である。図2の熱膨張率は炭 素鋼上に形成したニッケル・クロムとアルミナの複合皮膜から皮膜のみ径5×1 0mmの試料を取り出し、熱膨張計で計測した。溶射条件は図1の導電性の有無 の場合と同一とした。FIG. 2 shows the results of measuring the coefficient of thermal expansion of the composite coating formed by the plasma spraying method by changing the mixing ratio of nickel-chromium alloy and alumina several kinds. The coefficient of thermal expansion shown in FIG. 2 was measured with a thermal dilatometer from a composite film of nickel-chromium and alumina formed on carbon steel, in which only a sample having a diameter of 5 × 10 mm was taken out. The thermal spraying conditions were the same as those for the case with or without conductivity in FIG.

【0019】 図2の結果から複合皮膜の熱膨張率は複合皮膜中のアルミナの比率が高くなる につれて直線的に低くなることが判った。From the results of FIG. 2, it was found that the coefficient of thermal expansion of the composite coating linearly decreased as the proportion of alumina in the composite coating increased.

【0020】 図1、2の結果から、プラズマ溶射法で形成する皮膜の電子導電性を損わずに 低熱膨張率を図るには、合金とセラミックスの複合化があり、複合皮膜中のセラ ミックス比率は40〜60vol%が最も効果的であることが判った。From the results shown in FIGS. 1 and 2, in order to achieve a low coefficient of thermal expansion without impairing the electronic conductivity of the coating formed by the plasma spraying method, alloy and ceramics must be compounded. It has been found that a ratio of 40 to 60 vol% is most effective.

【0021】[0021]

【考案の効果】[Effect of the device]

本考案に係るインタコネクタ、リードによれば、その電子導電性を損うことな く熱膨張率の低下が図れ、熱的損傷に対する耐久性も向上する。また、その皮膜 の形成において、作業性及び経済性に優れたプラズマ溶射法の適用が図れ、製造 コストに対する効果も大きい。さらに、固体電解質燃料電池の電池性能と耐久性 の向上に対する効果も大きい。 According to the interconnector and the lead according to the present invention, the coefficient of thermal expansion can be reduced without impairing the electronic conductivity, and the durability against thermal damage is also improved. Further, in forming the film, the plasma spraying method, which is excellent in workability and economy, can be applied, and the effect on the manufacturing cost is great. In addition, it has a great effect on improving the cell performance and durability of the solid oxide fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案のインタコネクタ、リードに使用する複
合皮膜の導電特性を示す図表
FIG. 1 is a diagram showing the conductive characteristics of the composite coating used for the interconnector and lead of the present invention.

【図2】本考案のインタコネクタ、リードに使用する複
合皮膜の熱膨張特性を示す図表
FIG. 2 is a diagram showing the thermal expansion characteristics of the composite coating used for the interconnector and lead of the present invention.

【図3】固体電解質燃料電池の説明図FIG. 3 is an explanatory diagram of a solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1 多孔性支持体 2 燃料極 3 固体電解質 4 インタコネクタ 5 リード 6 空気極 1 Porous support 2 Fuel electrode 3 Solid electrolyte 4 Interconnector 5 Lead 6 Air electrode

───────────────────────────────────────────────────── フロントページの続き (72)考案者 久留 長生 長崎市飽の浦町1番1号 三菱重工業株式 会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Nagao Kurume 1-1, Atsunoura-machi, Nagasaki City Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard Co., Ltd.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 ニッケル・アルミニウム又はニッケル・
クロムなどの合金皮膜にアルミナ又はジルコニアなどの
セラミックスを40〜60vol%分散させた複合皮膜
よりなるインタコネクタ及びリードを具備してなること
を特徴とする固体電解質燃料電池。
1. Nickel aluminum or nickel
A solid electrolyte fuel cell, comprising an interconnector and a lead, which are composed of a composite film in which ceramics such as alumina or zirconia are dispersed in an alloy film of chromium or the like in an amount of 40 to 60 vol%.
JP1991074377U 1991-09-17 1991-09-17 Solid electrolyte fuel cell Expired - Lifetime JP2522208Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991074377U JP2522208Y2 (en) 1991-09-17 1991-09-17 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991074377U JP2522208Y2 (en) 1991-09-17 1991-09-17 Solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH0525659U true JPH0525659U (en) 1993-04-02
JP2522208Y2 JP2522208Y2 (en) 1997-01-08

Family

ID=13545419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991074377U Expired - Lifetime JP2522208Y2 (en) 1991-09-17 1991-09-17 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2522208Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237669A (en) * 1988-04-21 1990-02-07 Tonen Corp Fuel cell of solid electrolyte type

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237669A (en) * 1988-04-21 1990-02-07 Tonen Corp Fuel cell of solid electrolyte type

Also Published As

Publication number Publication date
JP2522208Y2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
Kadowaki et al. Applicability of heat resisting alloys to the separator of planar type solid oxide fuel cell
US6280868B1 (en) Electrical interconnect for a planar fuel cell
US4582766A (en) High performance cermet electrodes
US5942349A (en) Fuel cell interconnect device
EP0275356A1 (en) Solid electrolyte fuel cell and method for preparing it
JP5236294B2 (en) Interconnector for high-temperature fuel cells
JP4639434B2 (en) Bipolar plate and polymer electrolyte fuel cell
Takenoiri et al. Development of metallic substrate supported planar solid oxide fuel cells fabricated by atmospheric plasma spraying
JPH08213029A (en) Fuel electrode of solid electrolyte fuel cell
JP3617814B2 (en) Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell
US3404040A (en) Article comprising stabilized zirconia and a current collector embedded therein
JP3057342B2 (en) Solid electrolyte fuel cell
JP2522208Y2 (en) Solid electrolyte fuel cell
JPH08162120A (en) Solid electrolyte type electrochemical cell
JPH07166301A (en) Separator for solid electrolyte fuel cell
US6120924A (en) Perovskite-type oxide materials containing nickel and iron for air electrode and solid oxide fuel cell using the same
KR102114627B1 (en) Fuel cell power generation unit and fuel cell stack
JP3162324B2 (en) Ceramic heater and oxygen sensor
JP3241306B2 (en) Interconnector material
US6638406B2 (en) Hydrocarbon sensor and method for producing the same
KR101717567B1 (en) Zirconia-nickel pin for voltage measuring terminal of fuel cell and the method of manufacturing the same
JPH05190183A (en) Solid electrolyte type fuel cell
JP2017017026A (en) Titanium material for separator for solid polymer fuel battery, and separator employing the same
JP2777725B2 (en) Solid electrolyte type cylindrical fuel cell unit and its manufacturing method
JPH06188003A (en) Solid electrolyte type fuel battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960730