JPH05251773A - Josephson element and manufacture thereof - Google Patents

Josephson element and manufacture thereof

Info

Publication number
JPH05251773A
JPH05251773A JP4328918A JP32891892A JPH05251773A JP H05251773 A JPH05251773 A JP H05251773A JP 4328918 A JP4328918 A JP 4328918A JP 32891892 A JP32891892 A JP 32891892A JP H05251773 A JPH05251773 A JP H05251773A
Authority
JP
Japan
Prior art keywords
oxide
josephson
thin film
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4328918A
Other languages
Japanese (ja)
Inventor
Takao Nakamura
孝夫 中村
Michitomo Iiyama
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to CA002084264A priority Critical patent/CA2084264C/en
Priority to DE69218349T priority patent/DE69218349T2/en
Priority to EP92403257A priority patent/EP0545815B1/en
Publication of JPH05251773A publication Critical patent/JPH05251773A/en
Priority to US08/698,763 priority patent/US5721196A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of unnecessary level and resistance component, and to enable manufacture having excellent characteristics and superior reproducibility by forming an oxide superconductor having a stepped section having specified height and an oxide layer having similar crystal structure onto a substrate and forming an oxide superconducting thin-film onto the superconductor and the oxide layer. CONSTITUTION:A Pr1Ba2Cu3O7-y layer 3 is shaped onto an MgO (100) substrate 1, a part of the layer 3 is removed, and a stepped section 31 is formed into the Pr1Ba2Cu3O7-y layer 3. A surface is cleaned through heat treatment in a high vacuum, and a Y1Ba2Cu3O7-x thin-film 2 is formed onto the surface. In the Josephson element, the continuity of crystal structure changes in a part on the stepped section 31 of the Y1Ba2Cu3O7-x thin-film 2, and the barrier of a Josephson junction is shaped by the part. All the Y1Ba2Cu3O7-x thin-film 2 are formed onto the Pr1Ba2Cu3O7-y layer 3 having equal crystal structure, thus equalizing the crystalline direction in the upper side section and lower side section of the stepped section 31, then preventing the generation of an unnecessary level, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ジョセフソン素子とそ
の作製方法に関する。より詳細には、本発明は、酸化物
超電導体により構成されたジョセフソン素子の新規な作
製方法とそれによって得られる新規なジョセフソン素子
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Josephson device and its manufacturing method. More specifically, the present invention relates to a novel method for producing a Josephson device composed of an oxide superconductor and a novel Josephson device obtained by the method.

【0002】[0002]

【従来の技術】ジョセフソン素子を実現する構成は各種
あって、最も好ましい構造は、一対の超電導体で薄い絶
縁体をはさんだトンネル型の素子である。しかしなが
ら、点接触型、マイクロブリッジ型等一対の超電導体を
弱く結合した弱結合型のジョセフソン素子も、特性は異
なるもののジョセフソン効果を発揮する。一般に、この
ようなジョセフソン素子は非常に微細な構成であり、上
記の超電導体および絶縁体は、いわゆる薄膜で構成され
ている。
2. Description of the Related Art There are various configurations for realizing Josephson devices, and the most preferable structure is a tunnel type device in which a thin insulator is sandwiched by a pair of superconductors. However, a weakly-coupling type Josephson element in which a pair of superconductors such as a point-contact type and a microbridge type are weakly coupled also exhibits the Josephson effect although the characteristics are different. Generally, such a Josephson element has a very fine structure, and the superconductor and the insulator are composed of so-called thin films.

【0003】例えば、超電導体に酸化物超電導体を使用
してトンネル型ジョセフソン素子を実現する場合には、
基板上に第1の酸化物超電導薄膜、絶縁体薄膜および第
2の酸化物超電導薄膜を順に積層する。
For example, when an oxide superconductor is used as a superconductor to realize a tunnel type Josephson element,
A first oxide superconducting thin film, an insulator thin film, and a second oxide superconducting thin film are sequentially laminated on a substrate.

【0004】トンネル型ジョセフソン素子における絶縁
体の厚さは、超電導体のコヒーレンス長によって決ま
る。酸化物超電導体は、コヒーレンス長が非常に短いた
め、酸化物超電導体を使用したトンネル型ジョセフソン
素子においては、絶縁体の厚さは数nm程度にしなければ
ならない。
The thickness of the insulator in the tunnel type Josephson device is determined by the coherence length of the superconductor. Since the oxide superconductor has a very short coherence length, in the tunnel type Josephson device using the oxide superconductor, the thickness of the insulator must be about several nm.

【0005】また、点接触型ジョセフソン素子、マイク
ロブリッジ型ジョセフソン素子は、いずれも一対の超電
導体の弱結合が実現するような非常に微細な加工を必要
とする。
Further, both the point contact type Josephson element and the microbridge type Josephson element require extremely fine processing for realizing weak coupling of a pair of superconductors.

【0006】一方、ジョセフソン素子の動作特性を考慮
すると、ジョセフソン素子を構成する各層は、結晶性が
よく、単結晶または単結晶にごく近い配向性を有する多
結晶でなければならない。
On the other hand, considering the operating characteristics of the Josephson element, each layer constituting the Josephson element must have good crystallinity and be a single crystal or a polycrystal having an orientation very close to that of a single crystal.

【0007】上記のトンネル型ジョセフソン素子では、
それぞれ結晶性のよい第1の酸化物超電導薄膜、絶縁体
の薄膜および第2の酸化物超電導薄膜を積層しなければ
ならない。酸化物超電導薄膜上にごく薄く、且つ結晶性
のよい絶縁体の薄膜を積層することは困難であり、この
絶縁体薄膜のさらに上に結晶性のよい酸化物超電導薄膜
を形成するのは酸化物超電導体の特性上非常に困難であ
る。また、上記の積層構造が実現しても、従来は酸化物
超電導体と絶縁体との界面の状態が良好でなく所望の特
性が得られなかった。
In the above tunnel type Josephson device,
The first oxide superconducting thin film, the insulator thin film, and the second oxide superconducting thin film having good crystallinity must be laminated. It is difficult to stack a very thin and highly crystalline insulator thin film on an oxide superconducting thin film, and it is difficult to form an oxide superconducting thin film with good crystalline on the insulator thin film. It is very difficult due to the characteristics of superconductors. Further, even if the above laminated structure is realized, conventionally, the state of the interface between the oxide superconductor and the insulator was not good, and desired characteristics could not be obtained.

【0008】一方、点接触型ジョセフソン素子、マイク
ロブリッジ型ジョセフソン素子を実現するような、微細
な加工を酸化物超電導体に行うことが非常に困難であ
り、酸化物超電導体を使用して安定した性能のジョセフ
ソン素子を再現性よく作製することができなかった。
On the other hand, it is very difficult to perform minute processing on an oxide superconductor such as a point contact type Josephson element or a microbridge type Josephson element. A Josephson device with stable performance could not be manufactured with good reproducibility.

【0009】また、ジョセフソン素子を使用したセンサ
や回路は、通常複数のジョセフソン素子を備えており、
ただひとつのジョセフソン素子によって構成することは
実際には少ない。その理由は、例えば、ジョセフソン素
子をセンサとして使用する場合、実際に検出部として機
能するのは素子中のジョセフソン接合部分だけである。
従って、特に赤外線のように直進性の高い電磁波を検出
しなければならない場合、微細なジョセフソン接合をひ
とつしか備えていないジョセフソン素子を単独で用いて
も有効なセンサとすることはできない。また、ジョセフ
ソン素子を使用して回路を構成する場合は、電流駆動能
力の高いジョセフソン素子が要求される。
Further, a sensor or circuit using a Josephson element usually has a plurality of Josephson elements,
Actually, it is rare to configure with only one Josephson device. The reason is that, for example, when a Josephson device is used as a sensor, it is only the Josephson junction portion in the device that actually functions as the detection unit.
Therefore, especially when it is necessary to detect an electromagnetic wave having a high straightness such as infrared rays, it is not possible to use a Josephson element having only one fine Josephson junction alone as an effective sensor. Further, when the circuit is constructed by using the Josephson element, the Josephson element having high current driving capability is required.

【0010】ところが、上述のように酸化物超電導体を
使用してジョセフソン素子を再現性よく作製することは
難しく、特性の揃った複数のジョセフソン接合を備える
素子を作製することは、さらに困難である。
However, as described above, it is difficult to manufacture a Josephson device with good reproducibility using an oxide superconductor, and it is more difficult to manufacture a device having a plurality of Josephson junctions with uniform characteristics. Is.

【0011】上記の問題に対処して、酸化物超電導体の
微細加工をできるだけ避けるために、酸化物超電導体特
有の性質を利用したジョセフソン素子を作製する研究が
行わ図3は、条件の厳しい微細加工を行うことなくジョ
セフソン接合を形成することができる構造のひとつとし
て提案されているジョセフソン素子の構成を示す図であ
る。
In order to avoid the fine processing of the oxide superconductor in order to cope with the above problems, a study has been conducted to fabricate a Josephson element utilizing the properties peculiar to the oxide superconductor. It is a figure which shows the structure of the Josephson element proposed as one of the structures which can form a Josephson junction, without performing microfabrication.

【0012】図3に示したジョセフソン素子は、成膜面
上にH3PO4等によるエッチングで形成された所定の高
さの段差11を備えた基板1上に成膜された酸化物超電導
薄膜2により構成されている。このような構成のジョセ
フソン素子では、酸化物超電導薄膜2の段差11上の部分
に結晶粒界23が発生しており、この結晶粒界を障壁とし
て、酸化物超電導薄膜2の段差11の上側部分21と下側部
分22がジョセフソン接合を形成している。
The Josephson element shown in FIG. 3 is an oxide superconducting film formed on a substrate 1 having a step 11 of a predetermined height formed by etching with H 3 PO 4 or the like on the film forming surface. It is composed of the thin film 2. In the Josephson element having such a structure, a crystal grain boundary 23 is generated in a portion on the step 11 of the oxide superconducting thin film 2, and the crystal grain boundary serves as a barrier to the upper side of the step 11 of the oxide superconducting thin film 2. Portion 21 and lower portion 22 form a Josephson junction.

【0013】[0013]

【発明が解決しようとする課題】上述のような構成のジ
ョセフソン素子は、ジョセフソン接合を酸化物超電導体
の物理的な加工によって作製する場合と異なり、条件の
厳しい微細加工なしにジョセフソン接合を形成すること
ができる。ところが、図3に示したような構成で実際に
作製したジョセフソン素子では、エッチング処理の影響
により酸化物超電導薄膜2の段差11の上側部分21と下側
部分22とで、それぞれの部分を構成する酸化物超電導体
の結晶方向が異なり、両者の間に不要な界面準位や抵抗
成分が発生し、所期の特性が得られないことがある。
The Josephson device having the above-described structure is different from the case where the Josephson junction is manufactured by physical processing of the oxide superconductor, and the Josephson junction is processed without fine processing under severe conditions. Can be formed. However, in the Josephson device actually manufactured with the structure as shown in FIG. 3, the upper part 21 and the lower part 22 of the step 11 of the oxide superconducting thin film 2 constitute the respective parts due to the influence of the etching process. In some cases, the crystal characteristics of the oxide superconductor are different, and unnecessary interface states and resistance components are generated between the two, so that the desired characteristics may not be obtained.

【0014】そこで、本発明の目的は、上記従来技術の
問題点を解決した新規なジョセフソン素子、複数のジョ
セフソン接合を備える素子およびそれらを再現性よく作
製可能な方法を提供することにある。
Therefore, an object of the present invention is to provide a novel Josephson element which solves the above-mentioned problems of the prior art, an element having a plurality of Josephson junctions, and a method capable of producing them with good reproducibility. ..

【0015】[0015]

【課題を解決するための手段】本発明に従うと、基板
と、該基板上に形成され、所定の高さの段差を有する酸
化物超電導体と類似の結晶構造を有する酸化物層と、該
酸化物層上に成膜された酸化物超電導薄膜を具備するこ
とを特徴とするジョセフソン素子が提供される。
According to the present invention, a substrate, an oxide layer formed on the substrate and having a crystal structure similar to that of an oxide superconductor having a step of a predetermined height, and the oxidation layer. A Josephson device comprising an oxide superconducting thin film formed on a physical layer is provided.

【0016】また、本発明においては、上記本発明のジ
ョセフソン素子を作製する方法として、基板上に酸化物
超電導体と類似の結晶構造を有する酸化物層を形成する
工程と、該酸化物層を加工して段差を形成する工程と、
該段差を形成された酸化物層上に酸化物超電導薄膜を成
膜する工程とを含むことを特徴とするジョセフソン素子
の作製方法が提供される。
In the present invention, as a method for producing the Josephson device of the present invention, a step of forming an oxide layer having a crystal structure similar to that of an oxide superconductor on a substrate, and the oxide layer And a step of forming a step,
And a step of forming an oxide superconducting thin film on the stepped oxide layer.

【0017】さらに、本発明においては、基板と、該基
板上に形成され、所定の高さの段差を有する酸化物超電
導体と類似の結晶構造を有する酸化物層と、該酸化物層
上に交互に積層されたそれぞれ複数の酸化物超電導薄膜
および該酸化物超電導体と類似の結晶構造を有する非超
電導酸化物薄膜とを具備することを特徴とするジョセフ
ソン素子が提供される。
Further, in the present invention, a substrate, an oxide layer formed on the substrate and having a crystal structure similar to that of an oxide superconductor having a step with a predetermined height, and the oxide layer on the oxide layer. A Josephson device comprising a plurality of oxide superconducting thin films alternately stacked and a non-superconducting oxide thin film having a crystal structure similar to that of the oxide superconductor.

【0018】本発明においては、上記本発明のジョセフ
ソン素子を作製する方法として、基板上に酸化物超電導
体と類似の結晶構造を有する酸化物層を形成する工程
と、該酸化物層を加工して段差を形成する工程と、該基
板上に酸化物超電導薄膜および該酸化物超電導体と類似
の結晶構造を有する非超電導酸化物薄膜を交互に成膜す
る工程とを含むことを特徴とするジョセフソン素子の作
製方法が提供される。
In the present invention, as a method for producing the Josephson device of the present invention, a step of forming an oxide layer having a crystal structure similar to that of an oxide superconductor on a substrate and processing the oxide layer. And a step of forming a step on the substrate, and a step of alternately forming an oxide superconducting thin film and a non-superconducting oxide thin film having a crystal structure similar to that of the oxide superconductor on the substrate. A method of making a Josephson device is provided.

【0019】上記本発明の方法では、前記酸化物層に形
成する段差の高さが、前記酸化物超電導薄膜および非超
電導酸化物薄膜の厚さに実質的に等しいことが好まし
い。
In the above method of the present invention, it is preferable that the height of the step formed in the oxide layer is substantially equal to the thickness of the oxide superconducting thin film and the non-superconducting oxide thin film.

【0020】[0020]

【作用】本発明のジョセフソン素子は、基板上に形成さ
れ、所定の高さの段差を有する酸化物超電導体と類似の
結晶構造を有する酸化物層と、この酸化物層上に成膜さ
れた酸化物超電導薄膜を備えることをその主要な特徴と
している。本発明のジョセフソン素子において、上記酸
化物層を構成する酸化物は超電導体にはならないが、酸
化物超電導薄膜と基本的に同じ結晶構造を有している。
また、エッチング等の加工を行った面上にも、結晶性の
優れた酸化物超電導薄膜を成長させることができる。
The Josephson device of the present invention is formed on a substrate and has an oxide layer having a crystal structure similar to that of an oxide superconductor having a step with a predetermined height and a film formed on this oxide layer. Its main feature is that it has an oxide superconducting thin film. In the Josephson device of the present invention, the oxide forming the oxide layer does not become a superconductor, but has basically the same crystal structure as the oxide superconducting thin film.
Further, it is possible to grow an oxide superconducting thin film having excellent crystallinity even on a surface that has been processed by etching or the like.

【0021】一方、本発明の方法では、基板上に上記の
酸化物層を形成する工程と、この酸化物層に段差を形成
する工程と、段差を形成した酸化物層上に酸化物超電導
薄膜を成膜する工程とを含む。酸化物層に段差を形成す
る場合、酸化物層の一部をエッチング等により除去する
ので、当初形成する酸化物層の厚さは充分に厚いことが
好ましい。より具体的には、段差を形成するためにエッ
チング処理した領域においても、最終的に10nm以上の厚
さの酸化物層が残るような厚さを選択すべきである。酸
化物層の厚さがこれよりも薄い場合は、その効果が現れ
難くなる。
On the other hand, in the method of the present invention, the step of forming the above-mentioned oxide layer on the substrate, the step of forming a step in the oxide layer, and the oxide superconducting thin film on the step-formed oxide layer. And a step of forming a film. When forming a step in the oxide layer, a part of the oxide layer is removed by etching or the like, so that the thickness of the oxide layer initially formed is preferably sufficiently thick. More specifically, a thickness should be selected so that an oxide layer with a thickness of 10 nm or more will remain even in a region that is etched to form a step. If the thickness of the oxide layer is thinner than this, the effect becomes difficult to appear.

【0022】さらに、本発明においては、上記本発明の
ジョセフソン素子を発展させた構成の複数のジョセフソ
ン接合を備えるジョセフソン素子が提供される。本発明
のジョセフソン素子は、基板上に形成され、所定の高さ
の段差を有する酸化物超電導体と類似の結晶構造を有す
る酸化物層と、この酸化物層上にそれぞれ交互に積層さ
れた酸化物超電導薄膜と酸化物超電導体と類似の結晶構
造を有する非超電導酸化物薄膜とを備える。本発明のジ
ョセフソン素子において、酸化物層の段差上の部分に
は、酸化物超電導薄膜中の結晶構造の連続性の乱れによ
るジョセフソン接合の障壁が形成されている。また、段
差上の領域では、各酸化物超電導薄膜間の実質的な距離
が非常に近くなるので、酸化物層の段差の高さを適切に
設定することにより、隣接する酸化物超電導薄膜間にも
ジョセフソン接合が形成される。従って、酸化物超電導
薄膜と非超電導酸化物薄膜とを多層に積層することによ
り、複数のジョセフソン接合を備え、且つ電流容量が大
きいジョセフソン素子を形成することができる。
Furthermore, the present invention provides a Josephson device having a plurality of Josephson junctions, which is a development of the Josephson device of the present invention. The Josephson element of the present invention is formed on a substrate and has an oxide layer having a crystal structure similar to that of an oxide superconductor having a step of a predetermined height and alternately laminated on the oxide layer. An oxide superconducting thin film and a non-superconducting oxide thin film having a crystal structure similar to that of the oxide superconductor are provided. In the Josephson device of the present invention, a barrier of the Josephson junction due to the disorder of the continuity of the crystal structure in the oxide superconducting thin film is formed in the portion above the step of the oxide layer. In addition, since the substantial distance between the oxide superconducting thin films becomes very close in the region above the step, by appropriately setting the height of the step of the oxide layer, it is possible to reduce the gap between the adjacent oxide superconducting thin films. Also a Josephson junction is formed. Therefore, by stacking the oxide superconducting thin film and the non-superconducting oxide thin film in multiple layers, it is possible to form a Josephson device having a plurality of Josephson junctions and having a large current capacity.

【0023】上記ジョセフソン素子において、各ジョセ
フソン接合の仕様は、酸化物層の段差の高さに支配され
るので、素子中に形成される複数のジョセフソン接合の
特性は、互いによくそろっているか、あるいは変化して
も連続的に変化する。従って、ジョセフソン素子全体で
は特性が平準化され、所期の特性を再現性よく実現する
ことができる。
In the above Josephson device, since the specifications of each Josephson junction are governed by the height of the step of the oxide layer, the characteristics of the plurality of Josephson junctions formed in the device are well aligned with each other. If it changes or changes, it changes continuously. Therefore, the characteristics of the entire Josephson device are leveled, and desired characteristics can be realized with good reproducibility.

【0024】上記本発明のジョセフソン素子は、基板上
に酸化物層を形成する工程と、この酸化物層に段差を加
工する工程と、酸化物超電導薄膜および非超電導酸化物
薄膜を成膜する工程とにより作製することができ、極端
な微細加工技術等は必要ない。
In the Josephson device of the present invention, a step of forming an oxide layer on a substrate, a step of processing a step in the oxide layer, and forming an oxide superconducting thin film and a non-superconducting oxide thin film. It can be manufactured by various processes, and does not require extreme fine processing technology.

【0025】本発明のジョセフソン素子を作製する場
合、酸化物超電導薄膜および非超電導酸化物薄膜の成膜
には、スパッタリング法等の公知の成膜法を用いること
ができるが、組成の切替えや膜厚の制御を精密に行うこ
とができるMBE法が特に好ましい。
When the Josephson device of the present invention is manufactured, a known film forming method such as a sputtering method can be used for forming the oxide superconducting thin film and the non-superconducting oxide thin film, but the composition can be changed or The MBE method, which can precisely control the film thickness, is particularly preferable.

【0026】本発明のジョセフソン素子において、上記
酸化物には例えばPr1Ba2Cu37-yが好ましい。Pr1Ba2Cu
37-y酸化物は、Y1Ba2Cu37-X酸化物超電導体のYを
Prで置換したような物質であり、その結晶構造は、酸化
物超電導体とほとんど等しい。従って、Pr1Ba2Cu37-y
酸化物層上には、酸化物超電導体結晶が良好にエピタキ
シャル成長する。
In the Josephson device of the present invention, Pr 1 Ba 2 Cu 3 O 7-y is preferable as the above oxide. Pr 1 Ba 2 Cu
3 O 7-y oxide is the Y of Y 1 Ba 2 Cu 3 O 7-X oxide superconductor.
It is a substance like that substituted with Pr, and its crystal structure is almost the same as that of an oxide superconductor. Therefore, Pr 1 Ba 2 Cu 3 O 7-y
Oxide superconductor crystals satisfactorily grow epitaxially on the oxide layer.

【0027】また、本発明のジョセフソン素子におい
て、その超電導薄膜を形成する材料としては、Y1Ba2Cu
37-x 、Bi2Sr2Ca2Cu3x 、Tl2Ba2Ca2Cu3x 等を例
示することができる。
In the Josephson device of the present invention, as a material for forming the superconducting thin film, Y 1 Ba 2 Cu is used.
3 O 7-x, Bi 2 Sr 2 Ca 2 Cu 3 O x, can be exemplified Tl 2 Ba 2 Ca 2 Cu 3 O x or the like.

【0028】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples, but the following disclosure is merely examples of the present invention and does not limit the technical scope of the present invention.

【0029】[0029]

【実施例】実施例1 図1を参照して、本発明のジョセフソン素子を本発明の
方法で作製する工程を説明する。まず、図1(a)に示す
ように、基板としてMgO(100)基板1を用意する。
本実施例では、15mm×8mm、厚さ 0.5mmのMgO(10
0)基板1を使用した。次に、図1(b)に示すように、
基板1上にPr1Ba2Cu37-y 層3を形成するが、本実施
例では、MgO(100)基板1をO2 中で1100℃に加熱
する清浄化処理を8時間行った後にPr1Ba2Cu37-y層3
をスパッタリング法により形成した。成膜条件を以下に
示す。 基板温度 750 ℃ スパッタリングガス Ar 9 SCCM O2 1 SCCM 圧力 5×10-2 Torr 膜厚 200 nm 成膜方法としては、スパッタリング法の他MBE法、真
空蒸着法、レーザアブレーション法等任意の方法を適宜
選択することができる。
EXAMPLES Example 1 With reference to FIGS. 1A and 1B, steps of producing the Josephson device of the present invention by the method of the present invention will be described. First, as shown in FIG. 1A, a MgO (100) substrate 1 is prepared as a substrate.
In the present embodiment, 15 mm × 8 mm and 0.5 mm thick MgO (10 mm
0) Substrate 1 was used. Next, as shown in FIG.
The Pr 1 Ba 2 Cu 3 O 7-y layer 3 is formed on the substrate 1. In this example, the MgO (100) substrate 1 was heated in O 2 to 1100 ° C. for a cleaning treatment for 8 hours. Later Pr 1 Ba 2 Cu 3 O 7-y layer 3
Was formed by a sputtering method. The film forming conditions are shown below. Substrate temperature 750 ℃ Sputtering gas Ar 9 SCCM O 2 1 SCCM Pressure 5 × 10 -2 Torr Film thickness 200 nm Other than sputtering method, MBE method, vacuum evaporation method, laser ablation method, etc. You can choose.

【0030】続いて、図1(c)に示すように、Arガスを
使用したイオンミリング法により、Pr1Ba2Cu37-y層3
の一部を除去して、Pr1Ba2Cu37-y層3中に段差31を形
成した。尚、段差の高さは 150nmとした。尚、段差の形
成方法としては、イオンミリング法以外にも反応性イオ
ンエッチング法、ウェットエッチング法等が好ましい。
また、このとき、段差を形成した後に、段差31の下側で
も、Pr1Ba2Cu37-y層3の厚さtを10nm以上にする。
Subsequently, as shown in FIG. 1C, the Pr 1 Ba 2 Cu 3 O 7-y layer 3 was formed by an ion milling method using Ar gas.
Was removed to form a step 31 in the Pr 1 Ba 2 Cu 3 O 7-y layer 3. The height of the step was 150 nm. In addition to the ion milling method, a reactive ion etching method, a wet etching method, or the like is preferable as the method of forming the step.
Further, at this time, after forming the step, the thickness t of the Pr 1 Ba 2 Cu 3 O 7-y layer 3 is set to 10 nm or more even under the step 31.

【0031】次に、必要に応じて上記の基板を真空装置
内において圧力1×10-9Torr以下の高真空で基板温度を
350〜400℃に加熱する熱処理を行い、Pr1Ba2Cu37-y
3の表面を清浄にした後、図1(d)に示すように、Pr1Ba
2Cu37-y 層3上に、Y1Ba2Cu37-X薄膜2を成膜す
る。本実施例では、スパッタリング法によりY1Ba2Cu3
7-X薄膜2を成膜した。成膜条件を以下に示す。 基板温度 700 ℃ スパッタリングガス Ar 9 SCCM O2 1 SCCM 圧力 5×10-2 Torr 膜厚 200 nm 成膜方法としては、スパッタリング法の他、MBE法、
真空蒸着法、レーザアブレーション法等任意の方法を適
宜選択することができる。
Next, if necessary, the substrate temperature is set to a high vacuum of 1 × 10 −9 Torr or less in a vacuum apparatus so as to adjust the substrate temperature.
Heat treatment is performed by heating to 350 to 400 ° C., after the surface of the Pr 1 Ba 2 Cu 3 O 7 -y layer 3 is cleaned, as shown in FIG. 1 (d), Pr 1 Ba
A Y 1 Ba 2 Cu 3 O 7-X thin film 2 is formed on the 2 Cu 3 O 7-y layer 3. In this embodiment, Y 1 Ba 2 Cu 3 is formed by the sputtering method.
The O 7-X thin film 2 was formed. The film forming conditions are shown below. Substrate temperature 700 ℃ Sputtering gas Ar 9 SCCM O 2 1 SCCM Pressure 5 × 10 -2 Torr Film thickness 200 nm Other than sputtering method, MBE method,
Any method such as a vacuum vapor deposition method and a laser ablation method can be appropriately selected.

【0032】以上のようにして作製したジョセフソン素
子においては、Y1Ba2Cu37-X薄膜2の段差31上の部分
で結晶構造の連続性が変化し、この部分がジョセフソン
接合の障壁を形成する。また、Y1Ba2Cu37-X薄膜2
は、全て、等しい結晶構造を有するPr1Ba2Cu37-y層3
上に形成されているので、段差31の上側部分と下側部分
とで結晶方向が等しく、不要な準位等が発生することが
ない。このジョセフソン素子を液体窒素で冷却したとこ
ろ、Y1Ba2Cu37-X薄膜2の段差31の上側でも下側でも
良好に超電導電流が流れた。さらに、マイクロ波を印加
して交流ジョセフソン効果も確認できた。
In the Josephson device manufactured as described above, the continuity of the crystal structure changes at the portion on the step 31 of the Y 1 Ba 2 Cu 3 O 7-X thin film 2, and this portion has a Josephson junction. Form a barrier. In addition, Y 1 Ba 2 Cu 3 O 7-X thin film 2
Are all Pr 1 Ba 2 Cu 3 O 7-y layers 3 having the same crystal structure.
Since it is formed on the upper side, the crystallographic directions are the same in the upper part and the lower part of the step 31, and unnecessary levels and the like do not occur. When this Josephson element was cooled with liquid nitrogen, the superconducting current flowed well both above and below the step 31 of the Y 1 Ba 2 Cu 3 O 7-X thin film 2. Furthermore, the alternating current Josephson effect was confirmed by applying microwave.

【0033】実施例2 図2を参照して、本発明の他のジョセフソン素子の作製
工程を説明する。まず、図2(a)に示すように、実施例
1と同様の15mm×8mm、厚さ 0.5mmのMgO(100)基
板1を用意する。次に、図2(b)に示すように、基板1
上にPr1Ba2Cu37-y層3を成膜する。本実施例では、M
BE法によりPr1Ba2Cu37-y層3を成膜した。成膜条件
を以下に示す。 基板温度 750 ℃ ガス圧力 1×10-5 Torr 酸化ガス O3 8 % O2 92 % 膜厚 50 nm
Example 2 With reference to FIG. 2, a process of manufacturing another Josephson device of the present invention will be described. First, as shown in FIG. 2A, a MgO (100) substrate 1 having a size of 15 mm × 8 mm and a thickness of 0.5 mm, which is the same as in Example 1, is prepared. Next, as shown in FIG. 2B, the substrate 1
A Pr 1 Ba 2 Cu 3 O 7-y layer 3 is formed thereon. In this embodiment, M
The Pr 1 Ba 2 Cu 3 O 7-y layer 3 was formed by the BE method. The film forming conditions are shown below. Substrate temperature 750 ℃ Gas pressure 1 × 10 -5 Torr Oxidizing gas O 3 8% O 2 92% Film thickness 50 nm

【0034】続いて、図2(c)に示すように、Arガスを
使用したイオンミリング法によりPr1Ba2Cu37-y層3の
一部を除去することにより、Pr1Ba2Cu37-y層3の表面
に高さ25nmの段差31を形成した。尚、段差11の下側にお
けるPr1Ba2Cu37-y層の厚さtは、約20nmであった。
尚、ここで形成する段差31の高さは、後述する酸化物超
電導薄膜および非超電導酸化物薄膜の膜厚に実質的に等
しくする。
Subsequently, as shown in FIG. 2 (c), a part of the Pr 1 Ba 2 Cu 3 O 7-y layer 3 is removed by an ion milling method using Ar gas, whereby Pr 1 Ba 2 A step 31 having a height of 25 nm was formed on the surface of the Cu 3 O 7-y layer 3. The thickness t of the Pr 1 Ba 2 Cu 3 O 7-y layer below the step 11 was about 20 nm.
The height of the step 31 formed here is substantially equal to the film thickness of the oxide superconducting thin film and the non-superconducting oxide thin film described later.

【0035】次に、Pr1Ba2Cu37-y層3上に、図2(d)
に示すように、第1の酸化物超電導薄膜211としてY1Ba
2Cu37-X薄膜をMBE法で成膜し、図2(e)に示すよう
に、第1の非超電導酸化物薄膜311としてPr1Ba2Cu3
7-y薄膜を、蒸発源を切り換えて連続的に成膜する。そ
れぞれの成膜条件を以下に示す。 Y1Ba2Cu37-X酸化物超電導薄膜 基板温度 700 ℃ ガス圧力 1×10-5 Torr 酸化ガス O3 8 % O2 92 % 膜厚 25 nm Pr1Ba2Cu37-y酸化物薄膜 基板温度 750 ℃ ガス圧力 1×10-5 Torr 酸化ガス O3 8 % O2 92 % 膜厚 25 nm
Next, as shown in FIG. 2 (d), on the Pr 1 Ba 2 Cu 3 O 7-y layer 3.
As shown in FIG. 1, Y 1 Ba is used as the first oxide superconducting thin film 211.
A 2 Cu 3 O 7-X thin film is formed by the MBE method, and Pr 1 Ba 2 Cu 3 O is formed as the first non-superconducting oxide thin film 311 as shown in FIG.
The 7-y thin film is continuously formed by switching the evaporation source. The respective film forming conditions are shown below. Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film Substrate temperature 700 ℃ Gas pressure 1 × 10 -5 Torr Oxidizing gas O 3 8% O 2 92% Film thickness 25 nm Pr 1 Ba 2 Cu 3 O 7-y Oxide thin film Substrate temperature 750 ℃ Gas pressure 1 × 10 -5 Torr Oxidizing gas O 3 8% O 2 92% Film thickness 25 nm

【0036】以下、これらの操作を繰り返して、図2
(f)に示すように、n層の酸化物超電導薄膜211〜21nお
よび非超電導酸化物薄膜311〜31nを成膜して本発明のジ
ョセフソン素子が完成する。本実施例では、それぞれ10
層の酸化物超電導薄膜と非超電導酸化物薄膜とを積層し
た。以上のように作製したジョセフソン素子において
は、図2(g)に等価的構造を示すように、各層のPr1Ba2C
u37-y層3の段差31上の部分で、酸化物超電導薄膜21i
および酸化物超電導薄膜22jの間並びに酸化物超電導薄
膜21iおよび酸化物超電導薄膜22j+1の間で複数のジョセ
フソン接合が形成される。尚、図2(f)に示すジョセフ
ソン素子における最上層の非超電導体層31nは保護膜と
して設けられている。
Thereafter, these operations are repeated, and the operation shown in FIG.
As shown in (f), n-layer oxide superconducting thin films 211 to 21n and non-superconducting oxide thin films 311 to 31n are formed to complete the Josephson device of the present invention. In this example, 10
Layered oxide superconducting thin films and non-superconducting oxide thin films were laminated. In the Josephson device manufactured as described above, as shown in the equivalent structure in FIG. 2 (g), Pr 1 Ba 2 C
The oxide superconducting thin film 21i is formed on the step 31 of the u 3 O 7-y layer 3.
And a plurality of Josephson junctions are formed between the oxide superconducting thin film 22j and the oxide superconducting thin film 21i and the oxide superconducting thin film 22j + 1. The uppermost non-superconductor layer 31n in the Josephson element shown in FIG. 2 (f) is provided as a protective film.

【0037】以上のようにして作製したジョセフソン素
子を、液体窒素で冷却してマイクロ波を印加したとこ
ろ、交流ジョセフソン効果を示すシャピロステップが観
測された。
When the Josephson element manufactured as described above was cooled with liquid nitrogen and a microwave was applied, a Shapiro step showing an AC Josephson effect was observed.

【0038】[0038]

【発明の効果】以上詳述の如く、本発明に従うジョセフ
ソン素子は、その独自の構成により、酸化物超電導薄膜
の段差の上側部分と下側部分の間で不要な準位や抵抗成
分の発生がないので、良好な特性を有し、本発明の方法
により再現性よく作製可能である。
As described in detail above, the Josephson device according to the present invention has an original structure, which causes generation of unnecessary levels and resistance components between the upper and lower portions of the step of the oxide superconducting thin film. Therefore, it can be produced with good reproducibility by the method of the present invention.

【0039】また、本発明により提供される第2のジョ
セフソン素子は、特性がそろった或いは特性が連続的に
変化する複数のジョセフソン接合を備えており、所期の
特性を再現性良く実現できる。
Further, the second Josephson element provided by the present invention is provided with a plurality of Josephson junctions having uniform characteristics or continuously changing characteristics, so that desired characteristics can be realized with good reproducibility. it can.

【0040】さらに、本発明のいずれのジョセフソン素
子も、超微細加工なしにジョセフソン接合を形成するこ
とができるので、生産性の点でも好ましい。このような
数々の特徴を備えた本発明のジョセフソン素子は、実用
的なセンサ素子等として有利に使用することができる。
Further, any of the Josephson devices of the present invention can form a Josephson junction without ultrafine processing, which is preferable in terms of productivity. The Josephson device of the present invention having such various features can be advantageously used as a practical sensor device or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のジョセフソン素子を本発明の方法で作
製する工程を示す図である。
FIG. 1 is a diagram showing steps of producing a Josephson device of the present invention by the method of the present invention.

【図2】本発明の他のジョセフソン素子を本発明の方法
で作製する工程を示す図である。
FIG. 2 is a diagram showing a process of manufacturing another Josephson device of the present invention by the method of the present invention.

【図3】段差型のジョセフソン素子の典型的な構成を説
明するための図である。
FIG. 3 is a diagram for explaining a typical configuration of a step-type Josephson element.

【符号の説明】[Explanation of symbols]

1 基板、 2、211 〜21n 酸化物超電導薄膜 3 酸化物層 31 段差 311〜31n 非超電導酸化物薄膜 1 substrate, 2, 211-21n oxide superconducting thin film 3 oxide layer 31 step 311-31n non-superconducting oxide thin film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板と、該基板上に形成され、所定の高
さの段差を有する酸化物超電導体と類似の結晶構造を有
する酸化物層と、該酸化物層上に成膜された酸化物超電
導薄膜を具備することを特徴とするジョセフソン素子。
1. A substrate, an oxide layer formed on the substrate and having a crystal structure similar to that of an oxide superconductor having a step of a predetermined height, and an oxide film formed on the oxide layer. A Josephson device comprising a superconducting thin film.
【請求項2】 請求項1に記載されたジョセフソン素子
を作製する方法において、基板上に酸化物超電導体と類
似の結晶構造を有する酸化物層を形成する工程と、該酸
化物層を加工して段差を形成する工程と、該段差を形成
された酸化物層上に酸化物超電導薄膜を成膜する工程と
を含むことを特徴とするジョセフソン素子の作製方法。
2. The method of manufacturing a Josephson device according to claim 1, wherein a step of forming an oxide layer having a crystal structure similar to that of the oxide superconductor on the substrate, and processing the oxide layer. And a step of forming a step on the oxide layer on which the step is formed, and a step of forming an oxide superconducting thin film on the oxide layer on which the step is formed.
【請求項3】 基板と、該基板上に形成され、所定の高
さの段差を有する酸化物超電導体と類似の結晶構造を有
する酸化物層と、該酸化物層上に交互に積層されたそれ
ぞれ複数の酸化物超電導薄膜および該酸化物超電導体と
類似の結晶構造を有する非超電導酸化物薄膜とを具備す
ることを特徴とするジョセフソン素子。
3. A substrate, an oxide layer formed on the substrate and having a crystal structure similar to that of an oxide superconductor having a step of a predetermined height, and the oxide layers are alternately laminated on the oxide layer. A Josephson device comprising: a plurality of oxide superconducting thin films and a non-superconducting oxide thin film having a crystal structure similar to that of the oxide superconductor.
【請求項4】 請求項3に記載されたジョセフソン素子
を作製する方法において、基板上に酸化物超電導体と類
似の結晶構造を有する酸化物層を形成する工程と、該酸
化物層を加工して段差を形成する工程と、該基板上に酸
化物超電導薄膜および該酸化物超電導体と類似の結晶構
造を有する非超電導酸化物薄膜を交互に成膜する工程と
を含むことを特徴とするジョセフソン素子の作製方法。
4. The method for manufacturing a Josephson device according to claim 3, wherein a step of forming an oxide layer having a crystal structure similar to that of the oxide superconductor on the substrate, and processing the oxide layer. And a step of forming a step on the substrate, and a step of alternately forming an oxide superconducting thin film and a non-superconducting oxide thin film having a crystal structure similar to that of the oxide superconductor on the substrate. Fabrication method of Josephson device.
【請求項5】 請求項4に記載されたジョセフソン素子
の作製方法において、前記酸化物層に形成する段差の高
さが、前記酸化物超電導薄膜および非超電導酸化物薄膜
の厚さに実質的に等しいことを特徴とするジョセフソン
素子の作製方法。
5. The method for manufacturing a Josephson device according to claim 4, wherein the height of the step formed in the oxide layer is substantially equal to the thickness of the oxide superconducting thin film and the non-superconducting oxide thin film. A method of manufacturing a Josephson device, characterized in that
JP4328918A 1991-02-12 1992-11-13 Josephson element and manufacture thereof Pending JPH05251773A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002084264A CA2084264C (en) 1991-12-02 1992-12-01 Josephson junction device formed of oxide superconductor material and process for preparing the same
DE69218349T DE69218349T2 (en) 1991-12-02 1992-12-02 Superconducting oxide junction device and process for its manufacture
EP92403257A EP0545815B1 (en) 1991-12-02 1992-12-02 Josephson junction device formed of oxide superconductor material and process for preparing the same
US08/698,763 US5721196A (en) 1991-02-12 1996-08-16 Stacked tunneling and stepped grain boundary Josephson junction

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3-343939 1991-12-02
JP34393891 1991-12-02
JP34393991 1991-12-02
JP3-343938 1991-12-02

Publications (1)

Publication Number Publication Date
JPH05251773A true JPH05251773A (en) 1993-09-28

Family

ID=26577662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4328918A Pending JPH05251773A (en) 1991-02-12 1992-11-13 Josephson element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05251773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153908A (en) * 1994-11-28 1996-06-11 Korea Electron Telecommun Superconducting field-effect element with grain boundary channel and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153908A (en) * 1994-11-28 1996-06-11 Korea Electron Telecommun Superconducting field-effect element with grain boundary channel and its manufacture

Similar Documents

Publication Publication Date Title
US5407903A (en) Superconducting device having a reduced thickness of oxide superconducting layer
US5750474A (en) Method for manufacturing a superconductor-insulator-superconductor Josephson tunnel junction
JP2000150974A (en) High-temperature superconducting josephson junction and manufacture thereof
JPH05251771A (en) Artificial grain boundary type josephson junction element and manufacture thereof
JPH05335638A (en) Josephson junction structure body and manufacture thereof
US5354734A (en) Method for manufacturing an artificial grain boundary type Josephson junction device
EP0468868A2 (en) Superconducting device having a layered structure composed of oxide superconductor thin film and insulator thin film and method for manufacturing the same
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
EP0484232B1 (en) Superconducting device having an extremely short superconducting channel formed of oxide superconductor material and method for manufacturing the same
JPH0714079B2 (en) Oxide superconducting three-terminal device
US5408108A (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
JPH05251773A (en) Josephson element and manufacture thereof
EP0533519A2 (en) Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
JP2773503B2 (en) Superconducting field effect element and method for producing the same
JPH1174573A (en) Superconductinc element circuit, its manufacture and superconducting device
US5770470A (en) High temperature superconducting electric field effect device and a method for fabricating the same
JP2680960B2 (en) Superconducting field effect device and method of manufacturing the same
JP2831918B2 (en) Superconducting element manufacturing method
JP2730368B2 (en) Superconducting field effect element and method for producing the same
JP2976904B2 (en) Superconducting field effect element and method for producing the same
JP2909455B1 (en) Superconducting element
JPS62189776A (en) Josephson junction device and manufacture of same
JP2691065B2 (en) Superconducting element and fabrication method
JPH05160448A (en) Abrupt josephson device
JPH05243631A (en) Manufacture of artificial grain boundary type josephson junction element