JPH05247268A - Rubber composition - Google Patents

Rubber composition

Info

Publication number
JPH05247268A
JPH05247268A JP8442192A JP8442192A JPH05247268A JP H05247268 A JPH05247268 A JP H05247268A JP 8442192 A JP8442192 A JP 8442192A JP 8442192 A JP8442192 A JP 8442192A JP H05247268 A JPH05247268 A JP H05247268A
Authority
JP
Japan
Prior art keywords
rubber
vulcanization
artificial graphite
parts
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8442192A
Other languages
Japanese (ja)
Inventor
Riichi Hama
利一 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP8442192A priority Critical patent/JPH05247268A/en
Publication of JPH05247268A publication Critical patent/JPH05247268A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a rubber composition which can be uniformly heated during vulcanization and can be molded into a thick vulcanizate within a short time without detriment to the properties and specific gravity of the vulcanizate by mixing a rubber with a filler having excellent heat conductivity. CONSTITUTION:The title composition is prepared by mixing 100 pts.wt. rubber with about 2-20 pts.wt. artificial graphite of a particle diameter of 1-20mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゴム組成物に関する。
更に詳しくは、厚物加硫成形品の短時間成形が可能なゴ
ム組成物に関する。
FIELD OF THE INVENTION The present invention relates to a rubber composition.
More specifically, it relates to a rubber composition capable of molding a thick vulcanization molded product in a short time.

【0002】[0002]

【従来の技術】高分子物質であるゴムは、熱伝導性が低
いので、加硫成形中に全体が均一な温度になり難い。特
に、加硫成形品が厚物になるに従い、内部の温度上昇が
遅れるため、表面部と内部との加硫度の差は大きくな
る。
2. Description of the Related Art Rubber, which is a high molecular substance, has a low thermal conductivity, so that it is difficult for the rubber to reach a uniform temperature during vulcanization molding. In particular, as the vulcanized molded product becomes thicker, the temperature rise in the interior is delayed, so that the difference in vulcanization degree between the surface portion and the interior becomes large.

【0003】この加硫度の差は、加硫物性、加硫成形品
のでき(加硫過度による表面部の不良、加硫不足による
内部の発泡、加硫後の収縮率のバラツキなど)に大きく
影響することから、これらの影響をなるべく少なくする
ため、厚さが約5mm以上の厚物は一般に低温で長時間か
けて加硫成形される。しかしながら、このような成形条
件は、生産性の低下につながるので、それの対策が図ら
れている。
This difference in the degree of vulcanization affects the physical properties of the vulcanizate, the quality of the vulcanized molded product (defective surface portion due to excessive vulcanization, internal foaming due to insufficient vulcanization, variation in shrinkage ratio after vulcanization, etc.). In order to reduce these influences as much as possible, a thick product having a thickness of about 5 mm or more is generally vulcanized and molded at low temperature for a long time. However, since such molding conditions lead to a decrease in productivity, measures against it are taken.

【0004】厚物を短時間で加硫成形するためには、い
かに早くゴム材料全体の温度を均一にするかがポイント
であり、そのために熱伝導性にすぐれた充填剤、具体的
には金属酸化物や天然黒鉛を配合することが対策として
とられている。しかるに、金属酸化物は、加硫剤と反応
することによる加硫物性の変化、比重が大きいことによ
るゴム製品の高比重化などの問題がみられ、また天然黒
鉛は、粒径が不均一で、不純物を多く含んでいるため、
配合量に対する熱伝導性向上効果が低いなどの欠点がみ
られる。
In order to vulcanize and mold a thick material in a short time, the point is how quickly the temperature of the entire rubber material is made uniform. Therefore, a filler excellent in heat conductivity, specifically, a metal is used. As a countermeasure, compounding oxides and natural graphite is taken. However, metal oxides have problems such as changes in vulcanization physical properties due to reaction with vulcanizing agents, and high specific gravity of rubber products due to large specific gravity, and natural graphite has a non-uniform particle size. , Because it contains a lot of impurities,
There are drawbacks such as a low effect of improving thermal conductivity with respect to the compounding amount.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、ゴム
に熱伝導性にすぐれた充填剤を配合したゴム組成物であ
って、加硫成形品の加硫物性や比重を悪化させることな
く、加硫時のゴム材料に均一な温度上昇をもたらし、短
時間で厚物加硫成形品の成形を可能とするゴム組成物を
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a rubber composition in which a rubber is mixed with a filler having excellent thermal conductivity, without deteriorating the vulcanized physical properties and specific gravity of a vulcanized molded product. Another object of the present invention is to provide a rubber composition capable of uniformly increasing the temperature of a rubber material during vulcanization and molding a thick vulcanized molded product in a short time.

【0006】[0006]

【課題を解決するための手段】かかる本発明の目的は、
ゴム100重量部当り粒径1〜20μmの人造黒鉛を約2〜20重
量部配合したゴム組成物によって達成される。
The object of the present invention is as follows.
This is achieved by a rubber composition containing about 2 to 20 parts by weight of artificial graphite having a particle size of 1 to 20 μm per 100 parts by weight of rubber.

【0007】ゴムとしては、EPDM、ニトリルゴム、
フッ素ゴム、クロロプレンゴムなど任意のものが用いら
れる。これに配合される人造黒鉛としては、粒径が1〜2
0μmのものが用いられる。この範囲外の粒径のものを用
いると、加硫物性、圧縮永久歪、人造黒鉛の分散状態の
いずれもが低下し、特に分散状態の低下が著しく、この
ため熱伝導性や耐溶剤性に劣るようになる。本発明にお
いては、このような粒径の人造黒鉛が、ゴム100重量部
当り約2〜20重量部、好ましくは約10〜20重量部の割合
で用いられる。人造黒鉛の配合割合が増加すると、熱伝
導性は良好となるものの、硬さが上昇することになるの
で、それの上限値は約20重量部に限定される。一方、天
然黒鉛を用いた場合には、圧縮永久歪、天然黒鉛の分散
性、耐溶剤性などが満足されなくなる。
As the rubber, EPDM, nitrile rubber,
Any material such as fluororubber and chloroprene rubber may be used. The artificial graphite to be blended with this has a particle size of 1-2.
The one with 0 μm is used. If the particle size is out of this range, the vulcanized physical properties, compression set, and the dispersed state of artificial graphite are all deteriorated, and the dispersed state is remarkably deteriorated. Therefore, the thermal conductivity and the solvent resistance are improved. Get inferior. In the present invention, the artificial graphite having such a particle size is used in an amount of about 2 to 20 parts by weight, preferably about 10 to 20 parts by weight, per 100 parts by weight of rubber. When the blending ratio of the artificial graphite increases, the thermal conductivity improves, but the hardness increases. Therefore, the upper limit value is limited to about 20 parts by weight. On the other hand, when natural graphite is used, compression set, dispersibility of natural graphite, solvent resistance, etc. are not satisfied.

【0008】以上の各成分を必須成分とする本発明のゴ
ム組成物中には、カーボンブラック、加硫剤その他必要
な配合剤が配合され、用いられたゴムの種類に応じた加
硫条件により架橋が行われるが、加硫は一般に約170〜2
10℃で約0.5〜10分間程度の短時間で行われる。
Carbon rubber, a vulcanizing agent, and other necessary compounding ingredients are compounded in the rubber composition of the present invention containing the above-mentioned respective components as essential components, and the vulcanizing conditions depending on the type of rubber used Crosslinking occurs, but vulcanization is generally about 170-2.
It is carried out at 10 ° C for a short time of about 0.5 to 10 minutes.

【0009】[0009]

【発明の効果】ゴムに特定粒径の人造黒鉛を配合するこ
とにより、厚さが約5mm以上の厚物加硫成形品の加硫成
形においても、成形品の表面部と内部との加硫度差が小
さくなり、その結果短時間の加硫で加硫度が均一で所望
の物性を有する厚物加硫成形品が得られるようになる。
[Effects of the Invention] By blending rubber with artificial graphite having a specific particle size, even in the vulcanization molding of thick vulcanization molded products having a thickness of about 5 mm or more, vulcanization of the surface and the inside of the molded product The degree difference becomes small, and as a result, a thick vulcanization molded article having a uniform vulcanization degree and desired physical properties can be obtained by vulcanization in a short time.

【0010】[0010]

【実施例】次に、実施例について本発明を説明する。EXAMPLES The present invention will now be described with reference to examples.

【0011】実施例1 EPDM(日本合成ゴム製品EP21) 100重量部 人造黒鉛(平均粒径2μm) 10 FEFカーボンブラック(N-550) 70 ステアリン酸 1 パラフィン系プロセス油 15 ジクミルパーオキサイド 2 以上の各成分を上記の順序で混合して3Lニ-ダで混練
し、混練物の170℃、10分間加熱加硫物(JIS3号形状ダン
ベル)について常態物性を測定すると共に、200℃、0.5
分間加熱加硫物(直径29mm、厚さ12.7mmの円柱状物)につ
いて圧縮永久歪(100℃、22時間)を測定した。
Example 1 EPDM (Japan Synthetic Rubber Product EP21) 100 parts by weight Artificial graphite (average particle size 2 μm) 10 FEF carbon black (N-550) 70 Stearic acid 1 Paraffin type process oil 15 Dicumyl peroxide 2 or more Each component was mixed in the above order and kneaded with a 3L kneader, 170 ° C of the kneaded product, and 10 minutes of heating vulcanizate (JIS No. 3 shape dumbbell) while measuring normal physical properties, 200 ° C, 0.5
The compression set (100 ° C., 22 hours) of the heat-vulcanized product (cylindrical product having a diameter of 29 mm and a thickness of 12.7 mm) for one minute was measured.

【0012】実施例2〜3 実施例1において、平均粒径7μm(実施例2)または10μ
m(実施例3)の人造黒鉛が同量用いられた。
Examples 2 to 3 In Example 1, the average particle size is 7 μm (Example 2) or 10 μm.
The same amount of artificial graphite of m (Example 3) was used.

【0013】比較例1〜2 実施例1において、平均粒径0.5μm(比較例1)または30
μm(比較例2)の人造黒鉛が同量用いられた。
Comparative Examples 1 and 2 In Example 1, the average particle size is 0.5 μm (Comparative Example 1) or 30
The artificial graphite of μm (Comparative Example 2) was used in the same amount.

【0014】比較例3 実施例1において、人造黒鉛の代わりに天然黒鉛たるグ
ラファイトAO(平均粒径13μm)が同量用いられた。
Comparative Example 3 In Example 1, the same amount of graphite AO (average particle size 13 μm) as natural graphite was used instead of artificial graphite.

【0015】以上の各実施例および比較例での測定結果
は、混練物中の黒鉛の分散状態(良A→不良Dの4段階
で評価)と共に、次の表1に示される。 表1 硬さ(JIS-A) 引張強さ(MPa) 伸び(%) 分散状態 圧縮永久歪(%) 実施例1 71 19.1 430 A 22 〃 2 70 19.4 420 A 19 〃 3 71 18.8 420 A 19 比較例1 71 15.3 380 C 25 〃 2 72 13.7 360 D 22 〃 3 68 17.6 420 B 27
The measurement results in each of the above Examples and Comparative Examples are shown in the following Table 1 together with the dispersion state of graphite in the kneaded material (evaluated in four stages of good A → bad D). Table 1 Example Hardness (JIS-A) Tensile strength (MPa) elongation (%) dispersed state compression set (%) Example 1 71 19.1 430 A 22 〃 2 70 19.4 420 A 19 〃 3 71 18.8 420 A 19 Comparative Example 1 71 15.3 380 C 25 〃 2 72 13.7 360 D 22 〃 3 68 17.6 420 B 27

【0016】また、実施例1〜2および比較例1〜3に
おいて、人造黒鉛配合量の10重量部を種々に変更し、17
0℃、10分間加熱加硫物について、プローブ法による熱
伝導度の測定を行った。得られた結果は、図1のグラフ
に示される。
Further, in Examples 1 and 2 and Comparative Examples 1 to 3, 10 parts by weight of the artificial graphite compounding amount was variously changed, and
The thermal conductivity of the vulcanized product heated at 0 ° C. for 10 minutes was measured by the probe method. The results obtained are shown in the graph of FIG.

【0017】実施例4 中ニトリル含量NBR(日本合成ゴム製品N241H) 100重量部 FEFカーボンブラック(N-550) 30 人造黒鉛(平均粒径7μm) 10 ジクミルパーオキサイド 2 以上の各成分を上記の順序で混合して3Lニ-ダで混練
し、混練物の170℃、10分間加熱加硫物(JIS3号形状ダン
ベル)について常態物性を測定すると共に、180℃、所定
時間加硫物(直径29mm、厚さ12.7mmの円柱状物)について
圧縮永久歪(120℃、70時間)を測定した。
Example 4 Medium nitrile content NBR (Japan Synthetic Rubber Product N241H) 100 parts by weight FEF carbon black (N-550) 30 artificial graphite (average particle size 7 μm) 10 dicumyl peroxide 2 Mix in order and kneaded with a 3L kneader, 170 ° C of the kneaded product, while measuring the normal physical properties of the heat-vulcanized product (JIS No. 3 shape dumbbell) for 10 minutes, 180 ° C, the vulcanized product for a predetermined time (diameter 29 mm The compression set (120 ° C., 70 hours) was measured for a 12.7 mm-thick columnar material).

【0018】比較例4 実施例4において、FEFカーボンブラック量を40重量部
に変更し、人造黒鉛を用いなかった。
Comparative Example 4 In Example 4, the amount of FEF carbon black was changed to 40 parts by weight and artificial graphite was not used.

【0019】比較例5 実施例4において、人造黒鉛の代わりに天然黒鉛(グラ
ファイトAO)が同量用いられた。
Comparative Example 5 In Example 4, the same amount of natural graphite (graphite AO) was used instead of artificial graphite.

【0020】実施例4および比較例4〜5での測定結果
は、圧縮永久歪測定試料の加硫時間毎に、次の表2に示
される。 表2 圧縮永久歪(%) 硬さ(JIS-A) 引張強さ(MPa) 伸び(%) 3分間 5分間 7分間 実施例4 75 13.5 150 53 10 9 比較例4 76 13.7 140 測定不可 18 13 〃 5 74 12.1 150 73 15 12
The measurement results of Example 4 and Comparative Examples 4 to 5 are shown in Table 2 below for each vulcanization time of the compression set measurement sample. Table 2 Compression set (%) Example Hardness (JIS-A) Tensile strength (MPa) elongation (%) 3 min 5 min 7 min Example 4 75 13.5 150 53 10 9 Comparative Example 4 76 13.7 140 unmeasurable 18 13 〃 5 74 12.1 150 73 15 12

【0021】また、圧縮永久歪測定用の円柱状加硫試料
(直径29mm、厚さ12.7±0.13mm)を、厚さ方向に4.2±0.5
mmの厚さで3等分にカットし、それぞれA部、B部およ
びA部とした。これらのA部(両表面部)およびB部(内
部)を、100℃のジブチルメチレンビスチオグリコレート
中に24時間浸漬し、その体積変化率を測定した。180℃
加硫物については図2のグラフに、210℃加硫物につい
ては図3のグラフに、それぞれ測定結果が示されてい
る。
A cylindrical vulcanized sample for measuring compression set
(Diameter 29 mm, thickness 12.7 ± 0.13 mm) in the thickness direction 4.2 ± 0.5
It was cut into 3 equal parts with a thickness of mm, and made into A part, B part and A part, respectively. The parts A (both surface parts) and the part B (inside) were immersed in dibutylmethylenebisthioglycolate at 100 ° C. for 24 hours, and the volume change rate was measured. 180 ° C
The vulcanizate is shown in the graph of FIG. 2 and the 210 ° C. vulcanizate is shown in the graph of FIG.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1〜2および比較例1〜3における人造
黒鉛配合量と熱伝導度との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between artificial graphite compounding amount and thermal conductivity in Examples 1 and 2 and Comparative Examples 1 to 3.

【図2】実施例4および比較例4〜5の180℃加硫物各
部において、それの加硫時間と浸漬後の体積変化率との
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the vulcanization time and the volume change rate after immersion in each part of the 180 ° C. vulcanizates of Example 4 and Comparative Examples 4-5.

【図3】実施例4および比較例4〜5の210℃加硫物各
部において、それの加硫時間と浸漬後の体積変化率との
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the vulcanization time and the volume change rate after immersion in each part of 210 ° C. vulcanizates of Example 4 and Comparative Examples 4-5.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ゴム100重量部当り粒径1〜20μmの人造
黒鉛を約2〜20重量部配合してなるゴム組成物。
1. A rubber composition comprising about 2 to 20 parts by weight of artificial graphite having a particle size of 1 to 20 μm per 100 parts by weight of rubber.
JP8442192A 1992-03-06 1992-03-06 Rubber composition Pending JPH05247268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8442192A JPH05247268A (en) 1992-03-06 1992-03-06 Rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8442192A JPH05247268A (en) 1992-03-06 1992-03-06 Rubber composition

Publications (1)

Publication Number Publication Date
JPH05247268A true JPH05247268A (en) 1993-09-24

Family

ID=13830124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8442192A Pending JPH05247268A (en) 1992-03-06 1992-03-06 Rubber composition

Country Status (1)

Country Link
JP (1) JPH05247268A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730731B2 (en) 2000-09-12 2004-05-04 Polymatech Co., Ltd Thermally conductive polymer composition and thermally conductive molded article
US6794035B2 (en) 2001-10-02 2004-09-21 Polymatech Co., Ltd. Graphitized carbon fiber powder and thermally conductive composition
US7264869B2 (en) 2001-06-06 2007-09-04 Polymatech Co., Ltd. Thermally conductive molded article and method of making the same
US7767734B2 (en) 2006-05-17 2010-08-03 Sumitomo Rubber Industries, Ltd. Rubber composition for bead apex and tire using same
US9574833B2 (en) 2010-06-17 2017-02-21 Hitachi Chemical Company, Ltd. Thermal conductive sheet, method of producing thermal conductive sheet and heat releasing device
US10125237B2 (en) 2008-05-23 2018-11-13 Hitachi Chemical Company, Ltd. Heat radiation sheet and heat radiation device
KR20200120644A (en) 2018-02-16 2020-10-21 쇼와덴코머티리얼즈가부시끼가이샤 Heat dissipation device using heat conductive sheet and heat conductive sheet
KR20210046671A (en) 2018-08-23 2021-04-28 쇼와덴코머티리얼즈가부시끼가이샤 Semiconductor device manufacturing method, thermal conductive sheet, and thermal conductive sheet manufacturing method
KR20210046672A (en) 2018-08-23 2021-04-28 쇼와덴코머티리얼즈가부시끼가이샤 Semiconductor device manufacturing method and thermal conductive sheet

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730731B2 (en) 2000-09-12 2004-05-04 Polymatech Co., Ltd Thermally conductive polymer composition and thermally conductive molded article
US7264869B2 (en) 2001-06-06 2007-09-04 Polymatech Co., Ltd. Thermally conductive molded article and method of making the same
US6794035B2 (en) 2001-10-02 2004-09-21 Polymatech Co., Ltd. Graphitized carbon fiber powder and thermally conductive composition
US7767734B2 (en) 2006-05-17 2010-08-03 Sumitomo Rubber Industries, Ltd. Rubber composition for bead apex and tire using same
US10125237B2 (en) 2008-05-23 2018-11-13 Hitachi Chemical Company, Ltd. Heat radiation sheet and heat radiation device
US9574833B2 (en) 2010-06-17 2017-02-21 Hitachi Chemical Company, Ltd. Thermal conductive sheet, method of producing thermal conductive sheet and heat releasing device
KR20200120644A (en) 2018-02-16 2020-10-21 쇼와덴코머티리얼즈가부시끼가이샤 Heat dissipation device using heat conductive sheet and heat conductive sheet
KR20220139411A (en) 2018-02-16 2022-10-14 쇼와덴코머티리얼즈가부시끼가이샤 Heat transfer sheet and heat dissipating device using heat transfer sheet
US11545413B2 (en) 2018-02-16 2023-01-03 Showa Denko Materials Co., Ltd. Thermal conduction sheet and heat dissipating device including thermal conduction sheet
US11810834B2 (en) 2018-02-16 2023-11-07 Resonac Corporation Thermal conduction sheet and heat dissipating device including thermal conduction sheet
KR20210046671A (en) 2018-08-23 2021-04-28 쇼와덴코머티리얼즈가부시끼가이샤 Semiconductor device manufacturing method, thermal conductive sheet, and thermal conductive sheet manufacturing method
KR20210046672A (en) 2018-08-23 2021-04-28 쇼와덴코머티리얼즈가부시끼가이샤 Semiconductor device manufacturing method and thermal conductive sheet
US11482466B2 (en) 2018-08-23 2022-10-25 Showa Denko Materials Co., Ltd. Method of manufacturing semiconductor device, thermally conductive sheet, and method of manufacturing thermally conductive sheet
US11482467B2 (en) 2018-08-23 2022-10-25 Showa Denko Materials Co., Ltd. Thermally conductive sheet and method of manufacturing semiconductor device
KR20230098925A (en) 2018-08-23 2023-07-04 가부시끼가이샤 레조낙 Semiconductor device production method, thermally conductive sheet, and thermally conductive sheet production method

Similar Documents

Publication Publication Date Title
George et al. Studies on NBR/PVC blends
US4520170A (en) Method for reinforcing perfluoroelastomer compositions
JPH05247268A (en) Rubber composition
JPH0391556A (en) Conductive resin composition
JP3009676B2 (en) Manufacturing method of fluoro rubber molded product
JP2003130990A (en) Radiation shield material and its production method
EP2986667B1 (en) Fluororesin and mesoporous silica composition and molded product thereof
JPS6023701B2 (en) Tetrafluoroethylene/hexafluoropropene copolymer-fluorine-containing elastomer composition
JPS6023702B2 (en) Fluororesin composition with improved moldability
JPH07179750A (en) Molded article of carbon black-containing polyamide resin
DE102014212469B4 (en) Method for producing a gasket for fuel cells from a rubber mixture, and gasket for fuel cells produced using such a method
KR0162158B1 (en) Rubber composition of vulcanizing bladder for fatigue resisting property tire
JPH106343A (en) Tire vulcanizing bladder
JPS63128054A (en) Hot-melt fluororesin composition
JP3315688B2 (en) Filler-containing polytetrafluoroethylene composition and molded article thereof
JP2000344956A (en) Rubber composition
JPS61185548A (en) Rubber composition for vulcanized bladder
JP3676597B2 (en) Spool valve
JPS5823846A (en) Fluororubber composition
US4775724A (en) Rubber compositions with granules of sulfur, oil and methylstyrene
US2572559A (en) Process of improving cellulose ethers
JPH0977897A (en) Production of rod-like foamed rubber
CN106117663B (en) Water-fast elastomeric material of oil resistant and preparation method thereof under a kind of high temperature
JP2002161181A (en) Polytetrafluoroethylene resin composition
JP2003268257A (en) Soft furnace carbon black and rubber composition containing the same