JPH05245339A - Method for removing carbon dioxide and sulfur compounds in combustion exhaust gas - Google Patents

Method for removing carbon dioxide and sulfur compounds in combustion exhaust gas

Info

Publication number
JPH05245339A
JPH05245339A JP4045245A JP4524592A JPH05245339A JP H05245339 A JPH05245339 A JP H05245339A JP 4045245 A JP4045245 A JP 4045245A JP 4524592 A JP4524592 A JP 4524592A JP H05245339 A JPH05245339 A JP H05245339A
Authority
JP
Japan
Prior art keywords
desulfurization
exhaust gas
sox
combustion exhaust
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4045245A
Other languages
Japanese (ja)
Other versions
JP3504674B2 (en
Inventor
Masumi Fujii
眞澄 藤井
Taiichirou Suda
泰一朗 須田
Zenji Hotta
善次 堀田
Kenji Kobayashi
賢治 小林
Kunihiko Yoshida
邦彦 吉田
Shigeru Shimojo
繁 下條
Koichi Kitamura
耕一 北村
Masami Kawasaki
雅己 川崎
Toru Seto
徹 瀬戸
Shigeaki Mitsuoka
薫明 光岡
Michiyasu Honda
充康 本田
Masaki Iijima
正樹 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP04524592A priority Critical patent/JP3504674B2/en
Publication of JPH05245339A publication Critical patent/JPH05245339A/en
Application granted granted Critical
Publication of JP3504674B2 publication Critical patent/JP3504674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To effectively decrease the SOx concentration in gas for CO2 removing treatment to the level of almost complete desulfurization treatment by burning sludge from a reclaimer generated from a CO2 process. CONSTITUTION:In a highly effective desulfurization process, power consumption required for a desulfurizer is increased with the increase of the desulfurization level. On the other hand, when the desulfurization level is decreased, SOx remained in the desulfurization process reacts with alkanolamine in a CO2 process, causing the loss of expensive alkanolamine to be increased, resulting in the increase in the generated quantity of sludge. Therefore, as the desulfurization level in the highly effective desulfurization process, the SOx concentration in the treated gas is set in the range of 5-10ppm. After combustion exhaust gas is given desulfurization treatment in the desulfurization process, when the combustion exhaust gas comes into contact with water solution of alkanolamine to remove CO2, the SOx concentration remained in the desulfurization process is made in the range of 5-10ppm, causing the SOx concentration in the gas for CO2 removing treatment to be effectively restrained to <=1ppm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼排ガス中に含まれる
SOx(硫黄酸化物)とCO2 (二酸化炭素)を除去す
る方法に関する。さらに詳しくは、CO2 を除去すると
共に、副次的にもSOxを発生させることなく燃焼排ガ
スからほぼ完全にSOxを除去できる燃焼排ガスからS
OxとCO2 を共に除去する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing SOx (sulfur oxide) and CO 2 (carbon dioxide) contained in combustion exhaust gas. More specifically, it is possible to remove CO 2 from the combustion exhaust gas and to almost completely remove SOx from the combustion exhaust gas without secondary generation of SOx.
It relates to a method for removing both Ox and CO 2 .

【0002】[0002]

【従来の技術】近年、地球の温暖化現象の原因の一つと
して、CO2 による温室効果が指摘され、地球環境を守
る上で国際的にもその対策が急務となってきた。CO2
の発生源としては化石燃料を燃焼させるあらゆる人間の
活動分野に及び、その排出抑制への要求が一層強まる傾
向にある。これに伴い大量の化石燃料を使用する火力発
電所などの動力発生設備を対象に、ボイラの燃焼排ガス
をアルカノールアミン水溶液等と接触させて燃焼排ガス
中のCO2 を除去し、回収する方法および回収されたC
2 を大気へ放出することなく貯蔵する方法が精力的に
研究されている。
2. Description of the Related Art In recent years, the greenhouse effect of CO 2 has been pointed out as one of the causes of the global warming phenomenon, and there is an urgent need to take countermeasures internationally in order to protect the global environment. CO 2
As the source of the emission of carbon dioxide, it extends to all human activity fields that burn fossil fuels, and there is a tendency for the demand for emission control to increase. Along with this, for a power generation facility such as a thermal power plant that uses a large amount of fossil fuel, a method and a method of recovering by removing CO 2 in the combustion exhaust gas by bringing the combustion exhaust gas of the boiler into contact with an alkanolamine aqueous solution, etc. C
Methods for storing O 2 without releasing it to the atmosphere have been vigorously studied.

【0003】また、化石燃料はその種類により程度の差
はあるものの、燃焼によりSOxやNOx(窒素酸化
物)などの汚染物質を発生させ、これらは大気汚染や酸
性雨の原因とされ、そ排出基準が強化される傾向にあ
る。特に大量に化石燃料を消費する大都市やその周辺に
おいては、火力発電所、工場、自動車等からのSOxや
NOxの排出を総量で規制しようとする傾向にある。従
って、火力発電所を例にとるならば、既存の設備からの
排出規制の強化はもちろん、今後新設される設備におい
てはこれらの汚染物質の排出を極力抑えるか、あるいは
ほとんど排出しない程度の対策が講じたものでなけれ
ば、前記総量規制のため建設できないという事態になり
つつある。
Further, although fossil fuels vary in degree depending on their types, combustion produces pollutants such as SOx and NOx (nitrogen oxides), which are the causes of air pollution and acid rain, and their emission. Standards tend to be strengthened. Particularly in large cities and their surroundings that consume large amounts of fossil fuels, there is a tendency to control the total amount of SOx and NOx emissions from thermal power plants, factories, automobiles and the like. Therefore, taking a thermal power plant as an example, not only will emission regulations from existing facilities be tightened, but measures will be taken to prevent emissions of these pollutants as much as possible or to prevent them from being emitted in newly installed facilities in the future. If it is not taken, it is becoming a situation where construction cannot be done due to the total amount regulation.

【0004】排煙脱硫法に関しては、従来より各種の乾
式法や湿式法が提案されているが、石灰石(炭酸カルシ
ウム)粉末の水スラリにSOxを吸収させ、石こうにし
て回収するいわゆる湿式石灰−石こう法が代表的なもの
である。
Regarding the flue gas desulfurization method, conventionally, various dry methods and wet methods have been proposed, but a so-called wet lime-type in which SOx is absorbed in a water slurry of limestone (calcium carbonate) powder and recovered in gypsum. The gypsum method is typical.

【0005】[0005]

【発明が解決しようとする課題】燃焼排ガスからCO2
を除去すると共にSOxなども除去するためには、それ
ぞれの除去工程を組み合わせ、脱硫処理した後に脱CO
2 処理することにより達成することができる。そして条
件を選択すれば、脱CO2 処理ガス中のSOxの濃度を
ほぼ完全な脱硫処理レベルであって、前記総量規制にも
十分対応できる1ppm以下にまで効率よくSOxの排
出を下げることが可能である。
THE INVENTION Problems to be Solved] CO 2 from combustion exhaust gas
In order to remove not only SOx but also SOx, etc., the respective removal steps are combined, desulfurization treatment is performed, and then CO removal is performed.
2 can be achieved by processing. If conditions are selected, the SOx concentration in the CO 2 removal processing gas can be effectively reduced to 1 ppm or less, which is at a level of almost complete desulfurization processing and can fully comply with the total amount regulation. Is.

【0006】このような燃焼排ガスの処理方法において
は、多かれ少なかれ下記のような脱CO2 工程からのリ
クレーミング操作によるスラッジの発生は通常避けられ
ない。スラッジの内容物の詳細については不明である
が、脱硫工程で除去されずに脱硫処理ガス中に残存する
SOxが脱CO2 工程においてアルカノールアミンと反
応(モノアミンでは前者1モルに対し、後者が2モル結
合)して生じた安定塩が多分に含まれている。同様に脱
硝工程で除去されなかったNOxの一部もこの安定塩を
形成しているものと考えられる。この安定塩はCO2
吸収したアルカノールアミンからアルカノールアミンを
再生する過程でも、通常の条件下では再生しないため、
脱CO2 工程の系内に徐々に蓄積されることとなる。そ
して前記のように脱CO2 工程内に設けられる処理設備
からスラッジとして系外に排出される。このスラッジの
有効利用方法は今のところなく、別途焼却処理されてい
るのが実状である。しかし、脱硫処理前の燃焼排ガス中
のSOxに比べれば微々たる量とはいえ、スラッジの焼
却により副次的に再びSOx等を発生させることとな
り、前記総量規制の観点からもこの改善が望まれてい
た。
In such a method for treating combustion exhaust gas, the generation of sludge due to the reclaiming operation from the CO 2 removal step as described below is usually unavoidable. Although details of the content of the sludge are unknown, the SOx remaining in the desulfurization treatment gas without being removed in the desulfurization process reacts with the alkanolamine in the CO 2 removal process (the former amine is 1 mol and the latter is 2 mol). The stable salt formed by the (molar bond) is probably contained. Similarly, it is considered that a part of NOx not removed in the denitration step also forms this stable salt. Since this stable salt does not regenerate under normal conditions even in the process of regenerating alkanolamine from alkanolamine that has absorbed CO 2 ,
It is gradually accumulated in the system of the CO 2 removal process. Then, as described above, it is discharged out of the system as sludge from the treatment facility provided in the CO 2 removal step. There is no effective method of using this sludge so far, and it is the fact that it is incinerated separately. However, although it is a slight amount compared to SOx in the combustion exhaust gas before desulfurization, SOx and the like are secondarily generated again by sludge incineration, and this improvement is also desired from the viewpoint of the total amount regulation. Was there.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記課題に
鑑み、燃焼排ガス中のSOxとCO2 を共に除去する際
に発生するスラッジの取扱いについて鋭意検討した結
果、そのスラッジを、脱硫や脱CO2 処理をすべき燃焼
ガスを発生させる燃焼装置で燃焼させることが特に有効
であるとの知見を得て、本発明を完成させることができ
た。
In view of the above problems, the inventors of the present invention have earnestly studied the handling of sludge generated when removing both SOx and CO 2 in combustion exhaust gas, and as a result, The present invention has been completed based on the finding that it is particularly effective to combust with a combustor that generates a combustion gas to be subjected to CO 2 removal treatment.

【0008】すなわち、本発明の第一は燃焼装置から発
生するSOxを含む燃焼排ガスを脱硫処理する工程およ
び前記脱硫処理されたガスをアルカノールアミン水溶液
と接触させてCO2 を除去する脱CO2 工程により燃焼
排ガス中のCO2 とSOxを除去する方法において、脱
CO2 工程から発生するリクレーマよりのスラッジを前
記燃焼装置で燃焼させることを特徴とする燃焼排ガス中
のCO2 とSOxを除去する方法である。
That is, the first aspect of the present invention is a step of desulfurizing combustion exhaust gas containing SOx generated from a combustion apparatus and a step of removing CO 2 by contacting the desulfurized gas with an aqueous alkanolamine solution to remove CO 2. method of removing in a method for removing CO 2 and SOx in the combustion exhaust gas, the CO 2 and SOx in combustion exhaust gas, characterized in that the combustion of sludge from reclaimer generated from de-CO 2 process in the combustion device by Is.

【0009】また、本発明の第二は前記第一において、
脱硫処理する工程により脱硫処理ガス中のSOx濃度が
5〜10ppmの範囲内になるように脱硫処理したの
ち、前記脱硫処理ガスを脱CO2 工程によりCO2 を除
去すると共に脱CO2 処理ガス中のSOxの濃度が1p
pm以下となるようにSOxを除去することを特徴とす
る燃焼排ガス中のCO2 とSOxを除去する方法であ
る。
A second aspect of the present invention is the above first aspect,
After desulfurization treatment so that SOx concentration in the desulfurized gas made within the scope of 5~10ppm by the step of desulfurization treatment, de-CO 2 process gas to remove the CO 2 the desulfurized gas with de CO 2 step SOx concentration is 1p
It is a method for removing CO 2 and SOx in a combustion exhaust gas, which is characterized in that SOx is removed so as to be pm or less.

【0010】[0010]

【作用】本発明の方法が適用される燃焼排ガスの処理工
程の一例を図1に示す。図1において、Aは石炭、ナフ
サ、重油などを燃料とするボイラであり、Bは脱硫工程
であり、触媒の存在下でアンモニアを注入して窒素酸化
物(NOx)を還元し、窒素と酸素に分解するものが例
示される。Cは電気集塵機等の集塵工程、Dは脱硫工
程、Eは脱CO2 工程、Fは煙突、Gはスラッジ移送設
備である。
FIG. 1 shows an example of a process for treating combustion exhaust gas to which the method of the present invention is applied. In FIG. 1, A is a boiler that uses coal, naphtha, heavy oil, etc. as fuel, and B is a desulfurization process, in which ammonia is injected in the presence of a catalyst to reduce nitrogen oxides (NOx), and nitrogen and oxygen are added. The thing that decomposes into is illustrated. C is a dust collecting process such as an electric dust collector, D is a desulfurization process, E is a CO 2 removal process, F is a chimney, and G is a sludge transfer facility.

【0011】本発明に採用される脱硫工程は、特に限定
されていが、後述の理由により燃焼排ガスを処理して処
理ガス中のSOxの濃度を10ppm以下に抑えること
ができるものが好ましい。このような高性能脱硫工程と
して、本願出願人が先に提案した「高性能排煙脱硫方
法」(特願平3〜20304号)を採用することが特に
好ましい。これを図2に示す。
The desulfurization step employed in the present invention is not particularly limited, but it is preferable to treat the combustion exhaust gas so that the concentration of SOx in the treated gas can be suppressed to 10 ppm or less for the reason described below. As such a high-performance desulfurization step, it is particularly preferable to employ the “high-performance flue gas desulfurization method” proposed by the applicant of the present application (Japanese Patent Application No. 3-20304). This is shown in FIG.

【0012】図2において、燃焼排ガス200は第1吸
収塔201に導かれ、ポンプP1 、第1循環ライン20
5を介して第1ノズル203より噴霧される第1液溜2
09の吸収剤であるスラリS1 (1%以下の炭酸カルシ
ウムを含む石こうスラリ)と接触(例えば並流接触)さ
せられ、必要に応じて設けられた第1充填層207を通
過し、この間にスラリS1 中の炭酸カルシウムによって
脱硫されつつスラリS 1 と共に下降し、スラリS1 は第
1液溜209に貯留され、脱硫された排ガスは例えば第
1液溜209と第2液溜210を分割する分割板214
の上部空間を通って第2吸収塔202の方へ通過してい
く。
In FIG. 2, the combustion exhaust gas 200 has the first intake gas.
Pumped to the collecting tower 201 and pump P1, First circulation line 20
The first liquid reservoir 2 sprayed from the first nozzle 203 via
Slurry S which is the absorbent of 091(Calcium carbonate less than 1%
Contact with gypsum slurries containing um) (eg co-current contact)
Through the first filling layer 207, which is provided as necessary.
Slurry S in the meantime1By calcium carbonate inside
Slurry S being desulfurized 1Descends with slurry S1Is the
The exhaust gas stored in the first liquid reservoir 209 and desulfurized is, for example,
Dividing plate 214 for dividing the first liquid reservoir 209 and the second liquid reservoir 210
Passing through the upper space toward the second absorption tower 202
Ku.

【0013】この第1吸収塔201において、例えば約
1,000ppmのSOxを含む燃焼排ガス200中の
SOxはスラリS1 中の炭酸カルシウムによって吸収除
去され、SOx濃度が数十ppm程度まで脱硫される。
In the first absorption tower 201, SOx in the combustion exhaust gas 200 containing SOx of about 1,000 ppm, for example, is absorbed and removed by the calcium carbonate in the slurry S 1 , and the SOx concentration is desulfurized to about several tens of ppm. ..

【0014】第2吸収塔202に送られた脱硫排ガスは
第2吸収塔202内で、ポンプP2、第2循環ライン2
06を介して第2ノズル204より噴霧される第2液溜
210の吸収剤であるスラリS2 (1%以上の炭酸カル
シウムを含むスラリ)と接触(例えば向流接触)させら
れ、必要に応じて設けられた第2充填層208を通過
し、この間にスラリS2 中の炭酸カルシウムによってさ
らに脱硫され、第1吸収塔201でSOx濃度数十pp
m程度まで脱硫された排ガスはSOx濃度10ppm以
下となり、最終的に脱硫排ガス250となって第2吸収
塔202に排出される。この第2吸収塔は能力的には処
理ガス中のSOx濃度を1ppmまでも脱硫することも
可能なものである。
The desulfurized exhaust gas sent to the second absorption tower 202 is pumped by the pump P 2 and the second circulation line 2 in the second absorption tower 202.
It is brought into contact (for example, countercurrent contact) with slurry S 2 (slurry containing 1% or more of calcium carbonate) which is the absorbent of the second liquid reservoir 210 sprayed from the second nozzle 204 via 06, and if necessary. It passes through the second packed bed 208 provided in the first absorption tower 201 and is further desulfurized by the calcium carbonate in the slurry S 2 , and the SOx concentration is several tens pp in the first absorption tower 201.
The exhaust gas desulfurized to about m has a SOx concentration of 10 ppm or less, and finally becomes desulfurized exhaust gas 250 and is discharged to the second absorption tower 202. This second absorption tower is capable of desulfurizing the SOx concentration in the treated gas up to 1 ppm.

【0015】第2吸収塔202を循環する吸収剤である
スラリS2 は、吸収するSOxの絶対量は少ないので、
第2液溜210のスラリS2 中の炭酸カルシウム濃度の
減少は小さいが、次第に炭酸カルシウムの濃度は減少す
るので、第2液溜210にその減少に見合う炭酸カルシ
ウムを補給する。従って第2液溜210のスラリS2
炭酸カルシウムの濃度は常に第1液溜209のスラリS
1 のそれより大であるので、該スラリS2 を、例えば移
送ライン211、コントロールバルブ212により第1
液溜209のスラリS1 のpH上昇用に使用し、第1吸
収塔201のスラリS1 の脱硫能力を維持するようにす
る。
Since the slurry S 2 which is the absorbent circulating in the second absorption tower 202 absorbs a small amount of SOx,
Although the decrease in the calcium carbonate concentration in the slurry S 2 of the second liquid reservoir 210 is small, the concentration of calcium carbonate gradually decreases, so that the second liquid reservoir 210 is supplemented with calcium carbonate corresponding to the decrease. Therefore, the concentration of calcium carbonate in the slurry S 2 of the second liquid reservoir 210 is always the slurry S 2 of the first liquid reservoir 209.
Since it is larger than that of 1, the slurry S 2 is supplied to the first by a transfer line 211, a control valve 212, for example.
It is used to raise the pH of the slurry S 1 in the liquid reservoir 209 so as to maintain the desulfurization ability of the slurry S 1 of the first absorption tower 201.

【0016】なお、第1吸収塔201と第2吸収塔20
2の排ガスの通路(図2の分割板214の上部空間)に
はデミスタ213を設けて排ガスに帯同する飛散ミスト
が第1吸収塔201より第2吸収塔202に流入するの
を防ぐようにすることが好ましい。
The first absorption tower 201 and the second absorption tower 20
A demister 213 is provided in the second exhaust gas passage (upper space of the dividing plate 214 in FIG. 2) to prevent scattered mist accompanying the exhaust gas from flowing into the second absorption tower 202 from the first absorption tower 201. Preferably.

【0017】前記高性能脱硫装置において、脱硫レベル
を上げるほど脱硫装置に必要な消費電力は上昇する。一
方、脱硫レベルを下げると、後述のように脱硫工程で残
存するSOxが脱CO2 工程においてアルカノールアミ
ンと反応し、高価なアルカノールアミンのロスが多くな
り、また結果的にスラッジの発生量も多くなるので好ま
しくない。従って高性能脱硫工程における脱硫レベルと
して、処理ガス中のSOx濃度を5〜10ppmの範囲
に設定することが好ましい。
In the high performance desulfurizer, the power consumption required for the desulfurizer increases as the desulfurization level increases. On the other hand, when the desulfurization level is lowered, the SOx remaining in the desulfurization process reacts with the alkanolamine in the CO 2 removal process as described later, resulting in a large loss of expensive alkanolamine and, as a result, a large amount of sludge generation. Therefore, it is not preferable. Therefore, as the desulfurization level in the high-performance desulfurization step, it is preferable to set the SOx concentration in the processing gas within the range of 5 to 10 ppm.

【0018】本発明においては、燃焼排ガスを脱硫工程
により脱硫処理した後、脱CO2 工程によりアルカノー
ルアミン水溶液と接触させてCO2 を除去する。この場
合に、前記高性能脱硫装置を用いて脱硫工程で残存する
SOx濃度を5〜10ppmの範囲にすると、前記のよ
うに脱CO2 処理ガス中のSOx濃度を効率よく1pp
m以下に抑えることができる。
In the present invention, after desulfurized by a flue gas desulfurization process, it is contacted with an aqueous alkanolamine solution for removal of CO 2 by removing CO 2 step. In this case, if the SOx concentration remaining in the desulfurization step is set within the range of 5 to 10 ppm using the high-performance desulfurization apparatus, the SOx concentration in the CO 2 removal processing gas can be efficiently adjusted to 1 pp as described above.
It can be suppressed to m or less.

【0019】ここで、CO2 を吸収するアルカノールア
ミン水溶液としてはモノエタノールアミン、ジエタノー
ルアミン、トリエタノールアミン、メチルジエタノール
アミン、ジイソプロパノールアミン、ジグリコールアミ
ンなどの水溶液、あるいはこれらの混合水溶液を挙げる
ことができるが、通常モノエタノールアミン(MEA)
水溶液が好んで用いられる。
Examples of the alkanolamine aqueous solution that absorbs CO 2 include monoethanolamine, diethanolamine, triethanolamine, methyldiethanolamine, diisopropanolamine, diglycolamine, and the like, or a mixed solution thereof. But usually monoethanolamine (MEA)
Aqueous solutions are preferred.

【0020】燃焼排ガス中に含まれるCO2 をアルカノ
ールアミン水溶液、特にはMEA水溶液を用いて除去す
るプロセスは特に限定されないが、その一例について図
3によって説明する。図3では主要設備のみ示し、付属
設備は省略した。
The process for removing CO 2 contained in the combustion exhaust gas using an alkanolamine aqueous solution, particularly an MEA aqueous solution, is not particularly limited, but an example thereof will be described with reference to FIG. In FIG. 3, only the main equipment is shown and the auxiliary equipment is omitted.

【0021】図3において、301は脱CO2 塔、30
2は下部充填部、303は上部充填部またはトレイ、3
04は脱CO2 塔燃焼排ガス供給口、305は脱CO2
燃焼排ガス排出口、306はMEA水溶液供給口、30
7は第1ノズル、308は第2ノズル、309は必要に
応じて設けられる燃焼排ガス冷却器、310はノズル、
311は充填部、312は加湿冷却水循環ポンプ、31
3は補給水供給ライン、314はCO2 吸収MEA水溶
液排出ポンプ、315は熱交換器、316はMEA水溶
液再生塔(以下、「再生塔」と略称)、317は第1ノ
ズル、318は下部充填部、319は再生加熱器(リボ
イラ)、320は上部充填部、321は還流水ポンプ、
322はCO2 分離器、323は回収CO2 排出ライ
ン、324は再生塔還流冷却器、325は第2ノズル、
326は再生塔還流水供給ライン、327は必要に応じ
て設けられる冷却器、328は燃焼排ガス供給ブロア、
329はリクレーマ(蓄積熱安定塩除去装置)、Gは図
1と同様にスラッジ移送設備である。
In FIG. 3, 301 is a CO 2 removal tower, 30
2 is a lower filling section, 303 is an upper filling section or tray, 3
Reference numeral 04 denotes a CO 2 tower combustion exhaust gas supply port, and 305 denotes CO 2 removal
Combustion exhaust gas discharge port, 306 is MEA aqueous solution supply port, 30
7 is a first nozzle, 308 is a second nozzle, 309 is a combustion exhaust gas cooler provided as necessary, 310 is a nozzle,
311 is a filling part, 312 is a humidification cooling water circulation pump, 31
3 is a makeup water supply line, 314 is a CO 2 absorption MEA aqueous solution discharge pump, 315 is a heat exchanger, 316 is a MEA aqueous solution regeneration tower (hereinafter referred to as “regeneration tower”), 317 is a first nozzle, 318 is a lower filling Part, 319 is a regenerative heater (reboiler), 320 is an upper filling part, 321 is a reflux water pump,
322 is a CO 2 separator, 323 is a recovered CO 2 discharge line, 324 is a regenerator reflux condenser, 325 is a second nozzle,
326 is a regeneration tower reflux water supply line, 327 is a cooler provided as needed, 328 is a combustion exhaust gas supply blower,
329 is a reclaimer (accumulated heat stable salt removing device), and G is a sludge transfer facility as in FIG.

【0022】図3において、脱硫工程を経た燃焼排ガス
は燃焼排ガス供給ブロア328により燃焼排ガス冷却器
309に押込められ、ノズル310からの加湿冷却水と
充填部311で接触して加湿冷却され、脱CO2 塔燃焼
排ガス供給口304を通って脱CO2 塔301へ導かれ
る。燃焼排ガスと接触した加湿冷却水は燃焼排ガス冷却
器309の下部に溜り、ポンプ312によりノズル31
0へ循環使用される。加湿冷却水は燃焼排ガスを加湿冷
却させることにより徐々に失われるので、補給水供給ラ
イン313により補充される。
In FIG. 3, the combustion exhaust gas that has undergone the desulfurization process is pushed into the combustion exhaust gas cooler 309 by the combustion exhaust gas supply blower 328, and is contacted with the humidified cooling water from the nozzle 310 at the filling portion 311 to be humidified and cooled, and then degassed. It is guided to the CO 2 removal tower 301 through the CO 2 tower combustion exhaust gas supply port 304. The humidified cooling water that has come into contact with the combustion exhaust gas collects in the lower part of the combustion exhaust gas cooler 309, and is pumped by the nozzle 312.
It is recycled to 0. Since the humidified cooling water is gradually lost by humidifying and cooling the combustion exhaust gas, it is replenished by the makeup water supply line 313.

【0023】脱CO2 塔301に押し込められた燃焼排
ガスは第1ノズル307から供給される一定濃度のME
A水溶液と下部充填部302で向流接触させられ、燃焼
排ガス中のCO2 はMEA水溶液により吸収除去され、
脱CO2 燃焼排ガスは上部充填部303へと向う。脱C
2 塔301に供給されるMEA水溶液はCO2 を吸収
し、その吸収による反応熱のため、MEA水溶液供給口
306における温度よりも高温となり、CO2 吸収ME
A水溶液排出ポンプ314により熱交換器315に送ら
れ、加熱され、再生塔316へ導かれる。再生されたM
EA水溶液の温度調節は熱交換器315あるいは必要に
応じて熱交換器315とMEA水溶液供給口306の間
に設けられる冷却器327により行うことができる。
The combustion exhaust gas pushed into the CO 2 removal tower 301 is supplied from the first nozzle 307 with a constant concentration of ME.
The aqueous solution A is brought into countercurrent contact with the lower filling section 302, CO 2 in the combustion exhaust gas is absorbed and removed by the aqueous MEA solution,
The de-CO 2 combustion exhaust gas goes to the upper filling section 303. De-C
The MEA aqueous solution supplied to the O 2 tower 301 absorbs CO 2, and due to the reaction heat due to the absorption, the temperature becomes higher than the temperature at the MEA aqueous solution supply port 306, and the CO 2 absorption ME
It is sent to the heat exchanger 315 by the A solution discharge pump 314, heated, and guided to the regeneration tower 316. Played M
The temperature of the EA aqueous solution can be adjusted by the heat exchanger 315 or, if necessary, the cooler 327 provided between the heat exchanger 315 and the MEA aqueous solution supply port 306.

【0024】再生塔316では、再生加熱器(リボイ
ラ)319による加熱でMEA水溶液が再生され、熱交
換器315により冷却され脱CO2 塔301へ戻され
る。再生塔316の上部において、MEA水溶液から分
離されたCO2 は第2ノズル325より供給される還流
水と接触し、再生塔還流冷却器324により冷却され、
CO2 分離器322にてCO2 に同伴した水蒸気が凝縮
した還流水と分離され、回収CO2 排出ライン323よ
りCO2 回収工程へ導かれる。還流水の一部は還流水ポ
ンプ321で再生塔316へ還流され、他の一部は再生
塔還流水供給ライン326を経て脱CO2 塔301の上
部の第2ノズル308と供給される。
In the regeneration tower 316, the MEA aqueous solution is regenerated by heating by the regeneration heater (reboiler) 319, cooled by the heat exchanger 315 and returned to the CO 2 removal tower 301. In the upper part of the regeneration tower 316, the CO 2 separated from the MEA aqueous solution comes into contact with the reflux water supplied from the second nozzle 325, and is cooled by the regeneration tower reflux condenser 324.
In the CO 2 separator 322, the steam entrained in CO 2 is separated from the condensed reflux water, and is introduced from the recovered CO 2 discharge line 323 to the CO 2 recovery process. A part of the reflux water is refluxed to the regeneration tower 316 by the reflux water pump 321, and another part is supplied to the second nozzle 308 above the CO 2 removal tower 301 via the regeneration tower reflux water supply line 326.

【0025】本発明においては、脱硫工程で処理された
燃焼排ガスは脱CO2 工程で処理されることによりCO
2 が除去されるが、同時に残存するSOxはほぼ完全に
除去される。これは、前記のように脱CO2 工程で使用
されるMEA等のアルカノールアミンと残存SOxが反
応するためであり、この反応によって再生等316にお
いて通常MEAが再生され得ない程度に安定な塩が生じ
る。従って、安定塩は徐々に脱CO2 工程系内に蓄積さ
れるので、たとえば定期的に図3のリクレーマ(蓄積ス
ラッジ除去装置)329を稼働させ、再生塔316の塔
底液を処理する。その際、スラッジ化剤として炭酸ナト
リウムのような塩類を使用してもよい。塔底液はリクレ
ーマ329において、リボイラ319による加熱温度
(通常120℃前後)よりも高い温度(例えば135℃
前後)で加熱されるので、MEAや水分は再生塔316
にもどされるが、安定塩はスラッジとなってリクレーマ
329に濃縮される。
In the present invention, the combustion exhaust gas treated in the desulfurization process is treated in the CO 2 removal process to produce CO
2 is removed, but at the same time, the remaining SOx is almost completely removed. This is because the residual SOx reacts with the alkanolamine such as MEA used in the CO 2 removal step as described above, and this reaction produces a stable salt to the extent that the MEA is not usually regenerated in regeneration 316. Occurs. Therefore, the stable salt is gradually accumulated in the CO 2 removal process system, and thus the reclaimer (accumulated sludge removing device) 329 of FIG. 3 is periodically operated to treat the bottom liquid of the regeneration column 316. At that time, salts such as sodium carbonate may be used as a sludge agent. In the reclaimer 329, the bottom liquid is higher than the heating temperature (usually around 120 ° C) by the reboiler 319 (for example, 135 ° C).
Since it is heated in the front and back), the MEA and water are regenerated in the regeneration tower 316.
Although it is returned, the stable salt becomes sludge and is concentrated in the reclaimer 329.

【0026】本発明の特徴は、ここで発生するスラッジ
を、脱硫や脱CO2 処理をすべき燃焼排ガスを発生させ
る燃焼装置、すなわち図1ではボイラAにて燃焼させる
ことにある。これにより、スラッジに含まれる安定塩等
は燃焼排ガスの一部となって、再び図1の脱硝、集塵、
脱硫、脱CO2 の各工程を経て処理されることになる。
従って、本発明により単に焼却すれば副次的に汚染の原
因となるスラッジを完全に閉鎖工程の中で処理できるこ
とになる。
The feature of the present invention resides in that the sludge generated here is burned in a combustion device for generating combustion exhaust gas to be subjected to desulfurization and CO 2 removal treatment, that is, a boiler A in FIG. As a result, the stable salt contained in the sludge becomes a part of the combustion exhaust gas, and the denitration, dust collection, and
It is processed through each step of desulfurization and CO 2 removal.
Therefore, according to the present invention, sludge, which causes secondary pollution, can be completely treated in a closed process by simply incinerating.

【0027】スラッジ移送設備Gとしては特に限定され
ず、どのような手段でもよい。例えばスラッジをポンプ
にて昇圧して送るとか、あるいは液体燃料と混合して流
動化させパイプで移送させる方法などが挙げられる。ボ
イラでの燃焼方法としてはバーナー部分に上記流動化し
たスラッジを吹き付ける方法等が例示される。またスラ
ッジの燃焼を助けるため各種助燃剤を用いてもよい。
The sludge transfer facility G is not particularly limited, and any means may be used. For example, there is a method in which the pressure of sludge is increased by a pump and then sent, or a method in which the sludge is mixed with a liquid fuel, fluidized, and transferred by a pipe. Examples of the combustion method in the boiler include a method of spraying the fluidized sludge on the burner portion. Further, various combustion improvers may be used to assist the combustion of sludge.

【0028】前記のように、安定塩となってスラッジを
形成するアルカノールアミン分は回収されないので、脱
CO2 工程においてはそのロス分を補給しなければなら
ない。このような理由から、脱CO2 工程にて処理され
る燃焼排ガス中のSOx濃度はできるだけ抑えることが
好ましい。しかし、前述のように脱CO2 工程の前に設
けられる脱硫工程で脱硫レベルを上げることは、消費電
力の増大につながる。従って本発明においては、脱硫工
程による処理ガス中のSOx濃度を10〜5ppmの範
囲内に設定することが好ましい。これにより、脱硫工程
における消費電力の上昇を避けると共に、脱CO2 工程
における高価なアルカノールアミンのロスも最小限に抑
え、しかも脱CO2 工程を経た処理ガス中のSOxは1
ppm以下、すなわちほぼ完全にSOxの除去が可能と
なる。
As described above, since the alkanolamine component which forms a stable salt and forms sludge is not recovered, the loss component must be supplemented in the CO 2 removal step. For these reasons, it is preferable to suppress the SOx concentration in the combustion exhaust gas treated in the CO 2 removal step as much as possible. However, increasing the desulfurization level in the desulfurization process provided before the CO 2 removal process as described above leads to an increase in power consumption. Therefore, in the present invention, it is preferable to set the SOx concentration in the processing gas in the desulfurization step within the range of 10 to 5 ppm. This prevents an increase in power consumption in the desulfurization process, minimizes the loss of expensive alkanolamine in the CO 2 removal process, and reduces SOx in the process gas after the CO 2 removal process to 1%.
It is possible to remove SOx below ppm, that is, almost completely.

【0029】[0029]

【実施例】以下、実施例により本発明を具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0030】(実施例A)図2の脱硫装置を用い、下記
の処理条件でSO2 濃度1,000ppmの燃焼排ガス
を処理した。その際のスラリ循環量を変えて動力(電
力)と処理ガス中のSO2 濃度の関係は表1のとおりで
あった。
(Example A) Using the desulfurization apparatus shown in FIG. 2, combustion exhaust gas having an SO 2 concentration of 1,000 ppm was treated under the following treatment conditions. Table 1 shows the relationship between the power (electric power) and the SO 2 concentration in the treated gas by changing the slurry circulation amount at that time.

【0031】(1)処理条件 L/G(L:スラリ液量、G:排ガス量):25.6 第1吸収塔の高さ:19m 第2吸収塔の高さ:17m 第1吸収塔のスラリ固形成分中の炭酸カルシウムの割
合:1.0重量%以下 第2吸収塔のスラリ固形成分中の炭酸カルシウムの割
合:1.0重量%以上 第1吸収塔における脱硫率:98% 第2吸収塔における脱硫率:95% 処理燃焼排ガス量:1,000,000Nm3 /h 処理燃焼排ガス温度:50℃ スラリ温度:50℃
(1) Treatment conditions L / G (L: amount of slurry liquid, G: amount of exhaust gas): 25.6 Height of first absorption tower: 19 m Height of second absorption tower: 17 m Proportion of calcium carbonate in the slurry solid component: 1.0 wt% or less Proportion of calcium carbonate in the slurry solid component of the second absorption tower: 1.0 wt% or more Desulfurization rate in the first absorption tower: 98% Second absorption Desulfurization rate in the tower: 95% Treated flue gas amount: 1,000,000 Nm 3 / h Treated flue gas temperature: 50 ° C Slurry temperature: 50 ° C

【0032】(2)処理結果(2) Processing result

【表1】 [Table 1]

【0033】次に図2脱硫装置と、図3の脱CO2 装置
を組み合わせ、上記各脱硫レベルの燃焼排ガスを脱CO
2 処理した。その結果、脱CO2 処理ガス中に含まれる
SO 2 濃度はいずれも検出限界以下、すなわち1ppm
以下であった。この状態で処理工程の稼働を続けたとこ
ろ、リクレーマから固形分として約150kg/hのス
ラッジが発生する。このスラッジの中には約10kg/
hの硫黄分を含んでおり、これをボイラAにおいて燃焼
させSOxに転化させる。
Next, the desulfurization apparatus shown in FIG. 2 and the CO removal shown in FIG.2apparatus
Combustion exhaust gas of each of the above desulfurization levels is removed by CO
2Processed. As a result, de-CO2Contained in process gas
SO 2All concentrations are below the detection limit, ie 1ppm
It was below. In this state, the processing process continued to operate.
The solid content of the reclaimer is about 150 kg / h.
Ludge occurs. About 10 kg / in this sludge
It contains the sulfur content of h, and burns it in boiler A.
And convert to SOx.

【0034】(実施例B)図3の小型モデル実験装置と
して濡れ壁型吸収装置を用い、CO2 、酸素(O 2 )、
SO2 、NO2 の濃度を調製したガスとMEA水溶液の
接触吸収実験を行った。各試験に共通の条件は以下の通
りである。なお、供給ガス中のCO2 とO 2 濃度は平均
的なボイラ燃焼排ガス濃度に設定した。
(Embodiment B) With the small model experimental apparatus of FIG.
Then, using a wet wall type absorber, CO2, Oxygen (O 2),
SO2, NO2Of the concentration of gas and MEA solution
A contact absorption experiment was conducted. The conditions common to each test are as follows.
It is Ri. In addition, CO in the supply gas2And O 2Average concentration
It was set to the typical boiler combustion exhaust gas concentration.

【0035】(1)共通条件 CO2 吸収塔方式:濡れ壁吸収塔 同高さ:7500mm 供給ガス(G)中のCO2 濃度:9vol% 供給ガス中のO2 濃度:9vol% 供給ガス温度:60℃ 供給ガス流量:2.0m3 N/h・dry MEA水溶液(L)のMEA濃度:30重量% MEA水溶液流量:4.0リットル/h MEA水溶液温度:60℃ L/G比:2.0リットル/m3 N ガス空塔速度:3.1mN/s(1) Common conditions CO 2 absorption tower system: Wetting wall absorption tower Same height: 7500 mm CO 2 concentration in supply gas (G): 9 vol% O 2 concentration in supply gas: 9 vol% Supply gas temperature: 60 ° C. Supply gas flow rate: 2.0 m 3 N / h · dry MEA aqueous solution (L) MEA concentration: 30 wt% MEA aqueous solution flow rate: 4.0 liters / h MEA aqueous solution temperature: 60 ° C. L / G ratio: 2. 0 L / m 3 N superficial velocity of gas: 3.1 mN / s

【0036】(2)実験結果(2) Experimental result

【表2】 [Table 2]

【0037】CO2 の吸収率はいずれも95%であっ
た。上記表2から分かるように、SO 2 はMEA水溶液
に吸収されて、いずれも検出限界以下、すなわち1pp
m以下に抑えることができた。また、NO2 はいずれも
ほぼ20%の吸収率であった。また、CO2 の吸収率は
上記の通り、SO2 やNO2 の濃度に影響されないこと
も分かった。この実験終了後に、MEA水溶液を蒸発乾
固させたところ、安定塩が得られた。これをバーナで燃
焼試験をしたところ、支障なく燃焼した。
CO2The absorption rate of each is 95%
It was As can be seen from Table 2 above, SO 2Is an MEA aqueous solution
Absorbed below the detection limit, that is, 1pp
It could be suppressed to m or less. Also, NO2Are both
The absorption rate was almost 20%. Also, CO2The absorption rate of
As above, SO2And NO2Not be affected by the concentration of
I also understood. After this experiment was completed, the MEA aqueous solution was evaporated and dried.
Upon solidification, a stable salt was obtained. Burn this with a burner
As a result of a baking test, it burned without any trouble.

【0038】[0038]

【発明の効果】以上詳細に述べたごとく、本発明の方法
により、燃焼排ガスからCO2 を除去すると共に、副次
的にもSOxを発生させることなくほぼ完全にSOxを
除去することが可能となった。
As described in detail above, according to the method of the present invention, it is possible to remove CO 2 from the combustion exhaust gas and to almost completely remove SOx without secondary generation of SOx. became.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で採用する工程の説明図。FIG. 1 is an explanatory diagram of a process adopted in the present invention.

【図2】本発明で採用することが好ましい高性能脱硫工
程の一態様の説明図。
FIG. 2 is an explanatory diagram of one embodiment of a high-performance desulfurization process that is preferably adopted in the present invention.

【図3】本発明で採用する脱CO2 工程の一態様の説明
図。
FIG. 3 is an explanatory diagram of one embodiment of a CO 2 removal step adopted in the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀田 善次 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 小林 賢治 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 吉田 邦彦 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 下條 繁 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 北村 耕一 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 川崎 雅己 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 瀬戸 徹 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 光岡 薫明 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 本田 充康 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 (72)発明者 飯島 正樹 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Zenji Hotta 3-3-22 Nakanoshima, Kita-ku, Osaka-shi, Osaka Kansai Electric Power Co., Inc. (72) Kenji Kobayashi 3-chome Nakanoshima, Kita-ku, Osaka-shi, Osaka No. 22 in Kansai Electric Power Co., Inc. (72) Inventor Kunihiko Yoshida 3-3 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture No. 22 Inside Kansai Electric Power Co., Inc. (72) Shigeru Shimojo 3-3 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture No.22 in Kansai Electric Power Co., Inc. (72) Inventor Koichi Kitamura 3-3 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture No. 22 Inside Kansai Electric Power Co., Inc. (72) Masami Kawasaki 3-chome, Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture No.22 in Kansai Electric Power Co., Inc. (72) Inventor Toru Seto 4-6-22 Kannon-shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Prefecture Mitsubishi Heavy Industries Ltd. Hiroshima Research Institute (72) Inventor Mitsuoka Ming 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Institute (72) Inventor Mitsuyasu Honda 6-22 Kannon-shinmachi, Nishi-ku, Hiroshima City, Hiroshima Mitsubishi Heavy Industries Ltd. 72) Inventor Masaki Iijima 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃焼装置から発生するSOxを含む燃焼
排ガスを脱硫処理する工程および前記脱硫処理されたガ
スをアルカノールアミン水溶液と接触させてCO2 を除
去する脱CO2 工程により燃焼排ガス中のCO2 とSO
xを除去する方法において、脱CO2 工程から発生する
リクレーマよりのスラッジを前記燃焼装置で燃焼させる
ことを特徴とする燃焼排ガス中のCO2 とSOxを除去
する方法。
1. CO in flue gas by a step of desulfurizing combustion exhaust gas containing SOx generated from a combustion device and a CO 2 removing step of contacting the desulfurized gas with an aqueous alkanolamine solution to remove CO 2. 2 and SO
In the method of removing x, a method of removing CO 2 and SOx in the combustion exhaust gas, which comprises burning sludge from the reclaimer generated from the CO 2 removal step in the combustion device.
【請求項2】 脱硫処理する工程により脱硫処理ガス中
のSOx濃度が5〜10ppmの範囲内になるように脱
硫処理したのち、前記脱硫処理ガスを脱CO 2 工程によ
りCO2 を除去すると共に脱CO2 処理ガス中のSOx
の濃度が1ppm以下となるようにSOxを除去するこ
とを特徴とする請求項1記載の燃焼排ガス中のCO2
SOxを除去する方法。
2. In the desulfurization treatment gas according to the desulfurization treatment step
So that the SOx concentration is within the range of 5-10ppm.
After the sulfur treatment, the desulfurization treatment gas is subjected to CO removal. 2By process
Ri CO2To remove CO2SOx in process gas
SOx must be removed so that the concentration of
CO in combustion exhaust gas according to claim 1, characterized in that2When
A method of removing SOx.
JP04524592A 1992-03-03 1992-03-03 Method for removing carbon dioxide and sulfur oxides from flue gas Expired - Lifetime JP3504674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04524592A JP3504674B2 (en) 1992-03-03 1992-03-03 Method for removing carbon dioxide and sulfur oxides from flue gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04524592A JP3504674B2 (en) 1992-03-03 1992-03-03 Method for removing carbon dioxide and sulfur oxides from flue gas

Publications (2)

Publication Number Publication Date
JPH05245339A true JPH05245339A (en) 1993-09-24
JP3504674B2 JP3504674B2 (en) 2004-03-08

Family

ID=12713878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04524592A Expired - Lifetime JP3504674B2 (en) 1992-03-03 1992-03-03 Method for removing carbon dioxide and sulfur oxides from flue gas

Country Status (1)

Country Link
JP (1) JP3504674B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895634A (en) * 1996-05-28 1999-04-20 Mitsubishi Heavy Industries, Ltd. Desulfurization and decarbonation process
EP1967250A1 (en) 2007-02-27 2008-09-10 Mitsubishi Heavy Industries, Ltd. CO2 recovery system and solid-particles removing method for use in the same
EP1970115A2 (en) * 2007-03-14 2008-09-17 Mitsubishi Heavy Industries, Ltd. CO2 recovery system and waste-product removing method
EP2085133A1 (en) 2008-02-01 2009-08-05 Mitsubishi Heavy Industries, Ltd. CO2 recovery system with a filtration apparatus and method for cleaning the filtration apparatus
JP2010530802A (en) * 2007-06-22 2010-09-16 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Improved method for transferring CO2 from a gas stream to an ammonia solution
EP2322264A1 (en) 2009-10-19 2011-05-18 Mitsubishi Heavy Industries Reclaiming apparatus and reclaiming method
JP2011098340A (en) * 2009-10-07 2011-05-19 Toshiba Corp Co2 recovery system and co2 absorption liquid
WO2011096250A1 (en) 2010-02-08 2011-08-11 三菱重工業株式会社 System and method for recovering heat from co2 recovery device
WO2011105120A1 (en) 2010-02-23 2011-09-01 三菱重工業株式会社 Co2 recovery device and method for recovering co2
WO2011152549A1 (en) * 2010-05-31 2011-12-08 三菱重工業株式会社 Exhaust gas treatment system and method
WO2011152548A1 (en) * 2010-05-31 2011-12-08 三菱重工業株式会社 Exhaust gas treatment system and method
WO2011152547A1 (en) * 2010-05-31 2011-12-08 三菱重工業株式会社 Exhaust gas treatment system and method
WO2012029447A1 (en) 2010-09-02 2012-03-08 三菱重工業株式会社 Reclaiming apparatus and reclaiming method
US8679431B2 (en) 2010-05-31 2014-03-25 Mitsubishi Heavy Industries, Ltd. Air pollution control system and method
US8871164B2 (en) 2010-05-31 2014-10-28 Mitsubushi Heavy Industries, Ltd. Air pollution control system and method
US8894941B2 (en) 2010-05-31 2014-11-25 Mitsubishi Heavy Industries, Ltd. Air pollution control system and method
WO2015056677A1 (en) 2013-10-18 2015-04-23 三菱重工業株式会社 Reclaiming device and method, and device for recovering co2 and/or h2s
WO2015068576A1 (en) 2013-11-05 2015-05-14 三菱重工業株式会社 Reclaiming device and method and recovery device for co2, h2s, or both
WO2015107958A1 (en) 2014-01-17 2015-07-23 三菱重工業株式会社 Reclaiming device and method, and recovery device for co2 or h2s or both
JPWO2014136599A1 (en) * 2013-03-04 2017-02-09 三菱重工業株式会社 CO2 recovery system and CO2 recovery method
US10010828B2 (en) 2014-02-05 2018-07-03 Mitsubishi Heavy Industries, Ltd. CO2 recovery device and method for cleaning filtration membrane device of CO2 recovery device
WO2023218707A1 (en) * 2022-05-13 2023-11-16 三菱重工業株式会社 Exhaust gas treatment system, power generation facility comprising same, and exhaust gas treatment method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5639814B2 (en) * 2010-08-10 2014-12-10 バブコック日立株式会社 Thermal power generation system with CO2 removal equipment

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895634A (en) * 1996-05-28 1999-04-20 Mitsubishi Heavy Industries, Ltd. Desulfurization and decarbonation process
US8016919B2 (en) 2007-02-27 2011-09-13 Mitsubishi Heavy Industries, Ltd. CO2 recovery system and solid-particles removing method for use in the same
EP1967250A1 (en) 2007-02-27 2008-09-10 Mitsubishi Heavy Industries, Ltd. CO2 recovery system and solid-particles removing method for use in the same
EP1970115A2 (en) * 2007-03-14 2008-09-17 Mitsubishi Heavy Industries, Ltd. CO2 recovery system and waste-product removing method
EP1970115A3 (en) * 2007-03-14 2010-04-21 Mitsubishi Heavy Industries, Ltd. CO2 recovery system and waste-product removing method
US8137441B2 (en) 2007-03-14 2012-03-20 Mitsubishi Heavy Industries Ltd. CO2 recovery system and waste-product removing method
JP2010530802A (en) * 2007-06-22 2010-09-16 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Improved method for transferring CO2 from a gas stream to an ammonia solution
EP2085133A1 (en) 2008-02-01 2009-08-05 Mitsubishi Heavy Industries, Ltd. CO2 recovery system with a filtration apparatus and method for cleaning the filtration apparatus
US7938889B2 (en) 2008-02-01 2011-05-10 Mitsubishi Heavy Industries, Ltd. CO2 recovery system and method of cleaning filtration membrane apparatus
JP2011098340A (en) * 2009-10-07 2011-05-19 Toshiba Corp Co2 recovery system and co2 absorption liquid
US9254462B2 (en) 2009-10-19 2016-02-09 Mitsubishi Heavy Industries Ltd. Reclaiming apparatus and reclaiming method
US8927450B2 (en) 2009-10-19 2015-01-06 Mitsubishi Heavy Industries, Ltd. Reclaiming method
EP2322264A1 (en) 2009-10-19 2011-05-18 Mitsubishi Heavy Industries Reclaiming apparatus and reclaiming method
US8425849B2 (en) 2009-10-19 2013-04-23 Mitsubishi Heavy Industries, Ltd. Reclaiming apparatus
WO2011096250A1 (en) 2010-02-08 2011-08-11 三菱重工業株式会社 System and method for recovering heat from co2 recovery device
WO2011105120A1 (en) 2010-02-23 2011-09-01 三菱重工業株式会社 Co2 recovery device and method for recovering co2
US9662607B2 (en) 2010-02-23 2017-05-30 Mitsubishi Heavy Industries, Ltd. CO2 recovery unit and CO2 recovery method
US9383101B2 (en) 2010-02-23 2016-07-05 Mitsubishi Heavy Industries, Ltd. CO2 recovery unit and CO2 recovery method
AU2011259874B2 (en) * 2010-05-31 2014-08-14 Mitsubishi Heavy Industries, Ltd. Air pollution control system and method
JP2015166089A (en) * 2010-05-31 2015-09-24 三菱重工業株式会社 Exhaust gas treatment system and exhaust gas treatment method
JPWO2011152547A1 (en) * 2010-05-31 2013-08-01 三菱重工業株式会社 Exhaust gas treatment system and method
US8668889B2 (en) 2010-05-31 2014-03-11 Mitsubishi Heavy Industries, Ltd. Air pollution control system and method
US8679431B2 (en) 2010-05-31 2014-03-25 Mitsubishi Heavy Industries, Ltd. Air pollution control system and method
AU2011259875B2 (en) * 2010-05-31 2014-08-07 Mitsubishi Heavy Industries, Ltd. Air pollution control system and method
JPWO2011152548A1 (en) * 2010-05-31 2013-08-01 三菱重工業株式会社 Exhaust gas treatment system and method
US8871164B2 (en) 2010-05-31 2014-10-28 Mitsubushi Heavy Industries, Ltd. Air pollution control system and method
AU2011259876B2 (en) * 2010-05-31 2014-11-20 Mitsubishi Heavy Industries, Ltd. Exhaust gas treatment system and method
US8894941B2 (en) 2010-05-31 2014-11-25 Mitsubishi Heavy Industries, Ltd. Air pollution control system and method
US10835862B2 (en) 2010-05-31 2020-11-17 Mitsubishi Heavy Industries Engineering, Ltd. Air pollution control system and method
AU2011259878B2 (en) * 2010-05-31 2015-01-15 Mitsubishi Heavy Industries, Ltd. Exhaust gas processing system and method
WO2011152549A1 (en) * 2010-05-31 2011-12-08 三菱重工業株式会社 Exhaust gas treatment system and method
WO2011152548A1 (en) * 2010-05-31 2011-12-08 三菱重工業株式会社 Exhaust gas treatment system and method
US9381461B2 (en) 2010-05-31 2016-07-05 Mitsubishi Heavy Industries, Ltd. Air pollution control system and method
JPWO2011152549A1 (en) * 2010-05-31 2013-08-01 三菱重工業株式会社 Exhaust gas treatment system and method
JP2015205274A (en) * 2010-05-31 2015-11-19 三菱重工業株式会社 exhaust gas treatment system and method
WO2011152547A1 (en) * 2010-05-31 2011-12-08 三菱重工業株式会社 Exhaust gas treatment system and method
WO2012029447A1 (en) 2010-09-02 2012-03-08 三菱重工業株式会社 Reclaiming apparatus and reclaiming method
JPWO2014136599A1 (en) * 2013-03-04 2017-02-09 三菱重工業株式会社 CO2 recovery system and CO2 recovery method
US9623366B2 (en) 2013-03-04 2017-04-18 Mitsubishi Heavy Industries, Ltd. CO2 recovery system and CO2 recovery method
WO2015056677A1 (en) 2013-10-18 2015-04-23 三菱重工業株式会社 Reclaiming device and method, and device for recovering co2 and/or h2s
US9901875B2 (en) 2013-10-18 2018-02-27 Mitsubishi Heavy Industries, Ltd. Reclaiming device, method, and recovery unit of CO2, H2S, or both of CO2 and H2S
WO2015068576A1 (en) 2013-11-05 2015-05-14 三菱重工業株式会社 Reclaiming device and method and recovery device for co2, h2s, or both
US10137415B2 (en) 2013-11-05 2018-11-27 Mitsubishi Heavy Industries Engineering, Ltd. Reclaiming device, method, and recovery unit of CO2, H2S, or both of CO2 and H2S
WO2015107958A1 (en) 2014-01-17 2015-07-23 三菱重工業株式会社 Reclaiming device and method, and recovery device for co2 or h2s or both
US10471379B2 (en) 2014-01-17 2019-11-12 Mitsubishi Heavy Industries Engineering, Ltd. Reclaiming device, reclaiming method, and recovery unit for CO2 or H2S or both
US10940431B2 (en) 2014-01-17 2021-03-09 Mitsubishi Heavy Industries Engineering, Ltd. Reclaiming method
US10010828B2 (en) 2014-02-05 2018-07-03 Mitsubishi Heavy Industries, Ltd. CO2 recovery device and method for cleaning filtration membrane device of CO2 recovery device
WO2023218707A1 (en) * 2022-05-13 2023-11-16 三菱重工業株式会社 Exhaust gas treatment system, power generation facility comprising same, and exhaust gas treatment method

Also Published As

Publication number Publication date
JP3504674B2 (en) 2004-03-08

Similar Documents

Publication Publication Date Title
JP3504674B2 (en) Method for removing carbon dioxide and sulfur oxides from flue gas
KR101111997B1 (en) Use of so2 from flue gas for acid wash of ammonia
US8329128B2 (en) Gas treatment process and system
JP3233802B2 (en) Method for removing carbon dioxide and nitrogen oxides from flue gas
JP6072055B2 (en) Exhaust gas treatment system and method
WO2011152551A1 (en) Exhaust gas processing system and method
WO2011152552A1 (en) Exhaust gas treatment system and method
JP3486220B2 (en) Combustion exhaust gas purification method and apparatus
WO2011152550A1 (en) Exhaust gas treatment system and method
CN103429317A (en) Apparatus and system for NOX reduction in wet flue gas
JPH0751537A (en) Removal of co2 in co2-containing gas
JPH07246313A (en) Method for removing carbon dioxide and sox in exhaust combustion gas
JP2006218415A (en) Method and system for treating exhaust gas
WO2011152547A1 (en) Exhaust gas treatment system and method
WO2011152546A1 (en) Exhaust gas treatment system and method
CN108704463A (en) Sintering flue gas desulfurization and denitrification and flue gas whitening comprehensive treatment system and process
JP2786562B2 (en) Treatment method of combustion exhaust gas
JPH05184866A (en) Equipment for removing carbon dioxide in combustion exhaust gas and method therefor
JP3716195B2 (en) Desulfurization decarboxylation method
JP3305001B2 (en) Method for removing carbon dioxide and sulfur oxides from flue gas
JPWO2014129402A1 (en) Exhaust gas treatment system and exhaust gas treatment method
JP2554167B2 (en) Combustor exhaust gas desulfurization method
JPS6061024A (en) Process for removing sox and nox simultaneously
TOMESCU et al. Critical Analysis of the Main Advanced Post-combustion CO
Gal et al. Use of SO 2 from flue gas for acid wash of ammonia

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031211

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091219

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101219

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 9