JPH0524440B2 - - Google Patents

Info

Publication number
JPH0524440B2
JPH0524440B2 JP61044382A JP4438286A JPH0524440B2 JP H0524440 B2 JPH0524440 B2 JP H0524440B2 JP 61044382 A JP61044382 A JP 61044382A JP 4438286 A JP4438286 A JP 4438286A JP H0524440 B2 JPH0524440 B2 JP H0524440B2
Authority
JP
Japan
Prior art keywords
liquid
plate
steam
processing liquid
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61044382A
Other languages
Japanese (ja)
Other versions
JPS62202994A (en
Inventor
Kenzo Masutani
Kichiji Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP4438286A priority Critical patent/JPS62202994A/en
Publication of JPS62202994A publication Critical patent/JPS62202994A/en
Publication of JPH0524440B2 publication Critical patent/JPH0524440B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液流下型プレート式蒸発器における給
液分散装置に関するものであり、詳細には、低温
の処理液、例えば、糖蜜アルコールの発酵廃液等
の濃縮に使用される液流下型プレート式蒸発器に
おける給液分散装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a feed liquid dispersion device for a flow-through plate type evaporator, and in particular, it relates to a feed liquid dispersion device for a flow-through plate type evaporator, and in particular, it relates to a feed liquid dispersion device for a low-temperature processing liquid, such as a fermentation waste liquid of molasses alcohol. This invention relates to a feed liquid dispersion device for a liquid flow type plate type evaporator used for concentrating liquids, etc.

〔従来の技術〕[Conventional technology]

従来の液流下型プレート式蒸発器の構造と作用
を第7乃至第11を参照しながら説明する。
The structure and operation of a conventional liquid-flowing plate type evaporator will be explained with reference to Nos. 7 to 11.

図7乃至9において、1,2は同一形状の伝熱
プレートで、シール形状を異にする二種類のガス
ケツト3,4を交互に介在させた状態で多数枚の
伝熱プレート1,2を積層し、処理液の流れる蒸
発空間Aとスチームの流れる加熱空間Bを交互配
置することによつて例えば特公昭60−48202号公
報に見られるような液流下型プレート式蒸発器が
構成されている。以下の記述では、説明の便宜
上、蒸発空間Aを形成する伝熱プレート1を液プ
レートと称し、また、加熱空間Bを形成する伝熱
プレート2をスチームプレートと称す。液プレー
ト1は、図7に示すように、中央部上端に処理液
の導入口5を形成し、底部両側に分割された濃縮
液および蒸発ベーパ出口(第1出口)6a,6b
を形成し、また、導入口5と第1出口6a,6b
との間でプレート中央部に複数に分割されたスチ
ーム導入口7とスチームベーパドレンおよび非凝
縮性ガス出口(第2出口)8を形成してある。一
方、プレート上端には、処理液の導入口5の両側
に幅方向に延びるオーバーフロー堰9a,9bを
形成してある。
7 to 9, 1 and 2 are heat transfer plates of the same shape, and a large number of heat transfer plates 1 and 2 are laminated with two types of gaskets 3 and 4 having different seal shapes interposed alternately. By alternately arranging the evaporation spaces A through which the processing liquid flows and the heating spaces B through which the steam flows, a liquid-flowing plate type evaporator, such as that seen in Japanese Patent Publication No. 60-48202, is constructed. In the following description, for convenience of explanation, the heat transfer plate 1 forming the evaporation space A will be referred to as a liquid plate, and the heat transfer plate 2 forming the heating space B will be referred to as a steam plate. As shown in FIG. 7, the liquid plate 1 has a processing liquid inlet 5 formed at the upper end of the center, and divided concentrated liquid and evaporation vapor outlets (first outlets) 6a and 6b on both sides of the bottom.
In addition, an inlet 5 and first outlets 6a, 6b are formed.
A steam inlet 7 divided into a plurality of parts, a steam vapor drain, and a non-condensable gas outlet (second outlet) 8 are formed in the central part of the plate between the two. On the other hand, overflow weirs 9a and 9b extending in the width direction are formed on both sides of the processing liquid inlet 5 at the upper end of the plate.

処理液の導入口5、スチームの導入口7、およ
び、第2出口8にて左右に分割された液プレート
1の表面には、処理液の流下方向に沿つて液供給
分配部10、蒸発開始部11、および蒸発部12
が区分されている。液供給分配部10には、オー
バーフロー堰9a,9bに対応させて処理液を液
プレート1の伝熱幅全体に均一に分配させる補助
手段として、多数の横溝13を形成してある。蒸
発開始部11は、液供給配分10と連なり、上記
と同様に、処理液を液プレート1の伝熱幅全体に
均一に分配させると共に、液プレート1の裏面側
において供給されるスチームをも伝熱幅全体に均
一に分布させる補助手段として多数の横溝14を
形成してある。蒸発部12は、蒸発開始部11と
連なり、蒸発開始部11で分配された処理液をそ
の均一分布状態を乱すことなく液プレート1の底
部に設けられた第1出口6a,6bに流下させ、
かつ、伝熱促進、強度増加、ならびに投影面積に
対する実質伝熱面積の増加等を目的として、上記
蒸発部12には多数の縦溝15が形成されてい
る。
The surface of the liquid plate 1, which is divided into left and right parts by the processing liquid inlet 5, the steam inlet 7, and the second outlet 8, is provided with a liquid supply distribution unit 10 and an evaporation start unit along the flow direction of the processing liquid. section 11, and evaporation section 12
are separated. A large number of lateral grooves 13 are formed in the liquid supply distribution section 10 as auxiliary means for uniformly distributing the processing liquid over the entire heat transfer width of the liquid plate 1 in correspondence with the overflow weirs 9a and 9b. The evaporation start part 11 is connected to the liquid supply distribution 10, and similarly to the above, it distributes the processing liquid uniformly over the entire heat transfer width of the liquid plate 1, and also transmits the steam supplied on the back side of the liquid plate 1. A large number of transverse grooves 14 are formed as an auxiliary means for uniformly distributing the heat over the entire width. The evaporation section 12 is connected to the evaporation initiation section 11, and allows the processing liquid distributed in the evaporation initiation section 11 to flow down to the first outlets 6a and 6b provided at the bottom of the liquid plate 1 without disturbing its uniform distribution state.
In addition, a large number of vertical grooves 15 are formed in the evaporation section 12 for the purpose of promoting heat transfer, increasing strength, and increasing the substantial heat transfer area relative to the projected area.

液プレート1用のガスケツト3は、オーバーフ
ロー堰9a,9bおよび第1出口6a,6bを含
み、液供給分配部10、蒸発開始部11および蒸
発部12の周囲を取り囲むメインシール部16と
処理液の導入口5、スチームの導入口7および第
2出口8を閉鎖するサブシール部17とからな
り、これ等のガスケツト3,17を設けることに
よつて、オーバーフロー堰9a,9bから流入す
る処理液が液供給分配部10、蒸発開始部11を
通つて夫々対応する蒸発部12,12を流下し、
その間で蒸発させられることによつて濃縮液や蒸
発ベーパとなつて第1出口6a,6bから流出す
るように構成されている。
The gasket 3 for the liquid plate 1 includes overflow weirs 9a, 9b and first outlets 6a, 6b, and connects a main seal part 16 surrounding the liquid supply distribution part 10, evaporation start part 11, and evaporation part 12 to It consists of a sub-seal part 17 that closes the inlet 5, the steam inlet 7, and the second outlet 8, and by providing these gaskets 3 and 17, the processing liquid flowing in from the overflow weirs 9a and 9b is Flowing through the supply distribution section 10 and the evaporation start section 11 into the corresponding evaporation sections 12, 12, respectively,
By being evaporated between them, it becomes a concentrated liquid or evaporated vapor and flows out from the first outlets 6a and 6b.

スチームプレート2は、図8に示すように、液
プレート1と対応して処理液の導入口5、第1出
口6a,6b、スチームの導入口7、第2出口8
およびオーバーフロー堰9a,9bを夫々形成
し、また、プレート表面に液供給分配部10、蒸
発開始部11および蒸発部12を形成してある。
液供給分配部10および蒸発開始部11には横溝
13,14が形成されており、蒸発部12には縦
溝15が形成されている。
As shown in FIG. 8, the steam plate 2 includes a processing liquid inlet 5, first outlets 6a and 6b, a steam inlet 7, and a second outlet 8, corresponding to the liquid plate 1.
and overflow weirs 9a and 9b, respectively, and a liquid supply distribution section 10, an evaporation start section 11, and an evaporation section 12 are formed on the plate surface.
Horizontal grooves 13 and 14 are formed in the liquid supply distribution section 10 and evaporation start section 11, and vertical grooves 15 are formed in the evaporation section 12.

スチームプレート2用のガスケツト4は、オー
バーフロー堰9a,9bおよび第1出口6a,6
bを含み、液供給分配部10、蒸発開始部11お
よび蒸発部12の周囲を取り囲むメインシール部
18と処理液の導入口5および液供給分配部10
を閉鎖する第1のサブシール部19と、第1出口
6a,6bの閉鎖する第2のサブシール部20
と、スチームの導入口7および第2出口8を区画
する第3のサブシール部21から構成されてい
る。そして、処理液の導入口5の下部両側に連通
状態でもぐりオリフイス22,22を形成し、第
2のサブシール部21の上下端に蒸発開始部1
1、蒸発部12、スチームの導入口7および第2
出口8の間を連通させる開口部23,23,2
4,24を形成してある。
The gasket 4 for the steam plate 2 has overflow weirs 9a, 9b and first outlets 6a, 6.
b, the main seal part 18 surrounding the liquid supply distribution part 10, the evaporation start part 11, and the evaporation part 12, the processing liquid inlet 5, and the liquid supply distribution part 10.
a first sub-seal part 19 that closes the first outlet 6a, and a second sub-seal part 20 that closes the first outlet 6a, 6b.
and a third sub-seal portion 21 that defines a steam inlet 7 and a second outlet 8. Then, sink orifices 22, 22 are formed in communication with each other on both sides of the lower part of the processing liquid inlet 5, and evaporation starting parts 1 are formed at the upper and lower ends of the second sub-seal part 21.
1, evaporation section 12, steam inlet 7 and second
Openings 23, 23, 2 that communicate between the outlets 8
4 and 24 are formed.

このスチームプレート2用のガスケツト4を設
けることによつて、処理液の導入口5から流入し
た処理液は、図8および図10に示すようにもぐ
りオリフイス22,22を通つて液供給分配部1
0の最下部へ流れ込み、充満しながら上昇し、上
端のオーバーフロー堰9a,9bを越えて隣接す
る蒸発空間Aへ流入する。一方、スチームの導入
口7から流入したスチームは、処理液と混合する
ことなく加熱空間Bの蒸発開始部11,11およ
び蒸発部12,12を流下し、その間にスチーム
プレート2および液プレート1を加熱することに
よつて蒸発空間Aを流下する処理液を蒸発させ
る。スチームは、この後、スチームドレンおよび
非凝縮性ガスとなつて第2出口8から流出する。
By providing the gasket 4 for the steam plate 2, the processing liquid flowing in from the processing liquid inlet 5 passes through the sink orifices 22, 22 to the liquid supply distribution section 1, as shown in FIGS. 8 and 10.
0, rises while filling up, passes over the overflow weirs 9a and 9b at the upper end, and flows into the adjacent evaporation space A. On the other hand, the steam flowing in from the steam inlet 7 flows down the evaporation start parts 11, 11 and the evaporation parts 12, 12 of the heating space B without mixing with the processing liquid, and the steam plate 2 and the liquid plate 1 are By heating, the processing liquid flowing down the evaporation space A is evaporated. The steam then exits from the second outlet 8 as a steam drain and non-condensable gas.

以下、液プレート1およびスチームプレート
2、ならびにガスケツト3,4から構成されたプ
レート式蒸発器の作用を説明する。
The operation of the plate type evaporator composed of a liquid plate 1, a steam plate 2, and gaskets 3 and 4 will be explained below.

導入口5に処理液を供給し、導入口7にスチー
ムを供給する。すると、処理液は、スチームプレ
ート2の導入口5からもぐりオリフイ22,22
を通つて第1のサブシール部19によつて区画さ
れた液供給分配部10,10の最下部へ流れ込
み、ここで圧力緩和され、横溝13,13に案内
されて水平に拡散されながら充満上昇し、スチー
ムプレート2の上端に形成されたオーバーフロー
堰9a,9bに達し、ここから均一な液膜厚さで
スチームプレート2の全幅に亘つてオーバーフロ
ーし、隣接する蒸発空間Aに流入する。処理液
は、ここで横溝13,13,14,14によつて
更に幅方向に拡散され、液プレート1の全幅に亘
つて拡散された状態で蒸発開始部11,11、お
よび蒸発部12,12を流下する。
A processing liquid is supplied to the introduction port 5, and steam is supplied to the introduction port 7. Then, the processing liquid flows from the inlet 5 of the steam plate 2 to the sink orifices 22, 22.
The liquid flows into the lowest part of the liquid supply distribution parts 10, 10 divided by the first sub-seal part 19, where the pressure is relieved, and the liquid rises while being guided by the horizontal grooves 13, 13 and being spread horizontally. The liquid reaches the overflow weirs 9a and 9b formed at the upper end of the steam plate 2, and from there overflows over the entire width of the steam plate 2 with a uniform liquid film thickness, and flows into the adjacent evaporation space A. Here, the processing liquid is further spread in the width direction by the horizontal grooves 13, 13, 14, 14, and in a state where it is spread over the entire width of the liquid plate 1, it reaches the evaporation start parts 11, 11 and the evaporation parts 12, 12. flows down.

一方、スチームは、スチームプレート2のスチ
ーム導入口7から第3のサブシール部21,21
の上部開口部23,23を通つて蒸発開始部1
1,11へ流入し、横溝14,14でスチームプ
レート2の幅方向全域に亘つて拡散され、蒸発部
12,12へ流入する。
On the other hand, the steam flows from the steam inlet 7 of the steam plate 2 to the third sub-seal parts 21, 21.
The evaporation start part 1 passes through the upper openings 23, 23 of the
1, 11, is diffused across the entire width of the steam plate 2 by the horizontal grooves 14, 14, and flows into the evaporation sections 12, 12.

そして、液プレート1の蒸発開始部11,11
および蒸発部12,12を流下する処理液と、ス
チームプレート2の蒸発開始部11,11および
蒸発部12,12を流下するスチームとが、両プ
レート1,2を介して熱エネルギを交換する。液
プレート1側で生じた濃縮液と蒸発ベーパは、第
1出口6a,6bから排出され、その後、気水分
離され濃縮液として取出される。蒸発ベーパは次
の加熱に利用される。一方、スチームプレート2
側で生じたスチームドレンと非凝縮性ガスは、第
3のサブシール部21の下端開口部24,24を
通つて第2出口8内に流入し、系外に排出され
る。
Then, the evaporation start portions 11, 11 of the liquid plate 1
The processing liquid flowing down the evaporation sections 12 and 12 and the steam flowing down the evaporation start sections 11 and 11 and the evaporation sections 12 and 12 of the steam plate 2 exchange thermal energy via both plates 1 and 2. The concentrated liquid and evaporated vapor generated on the liquid plate 1 side are discharged from the first outlets 6a and 6b, and then subjected to steam and water separation and taken out as a concentrated liquid. The evaporated vapor is used for subsequent heating. On the other hand, steam plate 2
The steam drain and non-condensable gas generated on the side flow into the second outlet 8 through the lower end openings 24, 24 of the third sub-seal portion 21, and are discharged to the outside of the system.

このようにして、液プレート1の蒸発部12,
12に連続して処理液が供給され、また、スチー
ムプレート2の蒸発部12,12に連続してスチ
ームが供給されることによつて、蒸発空間Aを流
下する処理液と、加熱空間Bを流下するスチーム
の間で熱エネルギが交換され、所定濃度に濃縮さ
れた濃縮液が取出される。
In this way, the evaporation section 12 of the liquid plate 1,
12, and steam is continuously supplied to the evaporation parts 12, 12 of the steam plate 2, so that the processing liquid flowing down the evaporation space A and the heating space B are separated. Thermal energy is exchanged between the flowing steam, and a concentrated liquid concentrated to a predetermined concentration is taken out.

上記のプレート式蒸発器では、処理液を液プレ
ート1へ直接供給せず、スチームプレート2に形
成された導入口5からもぐりオリフイス22,2
2を経てスチームプレート2の液供給分配部1
0,10の最下部へ流入させ、ここでガスケツト
4の第1サブシール部19によつて処理液の流下
を阻止し、横溝13,13による案内下に充満さ
せながら処理液を上昇させている。そして、もぐ
りオリフイス22,22からオーバーフロー堰9
a,9b迄の高さ(静水頭)を上昇する間に処理
液は、スチームプレート2の全幅に亘つて拡散さ
れ、この後、オーバーフロー堰9a,9bによつ
て一定の液膜厚さを維持した状態でオーバーフロ
ーし、図10に示すように液プレート1の上端へ
全幅に亘つて拡散されたまま供給される。処理液
は液プレート1を流下する際に、横溝13,1
3,14,14によつて幅方向に拡散されるの
で、液プレート1の蒸発開始部11,11の下縁
においては、伝熱面の全幅に亘つて均一な液膜厚
さを持つように拡散されている。
In the plate type evaporator described above, the processing liquid is not directly supplied to the liquid plate 1, but is inserted through the inlet 5 formed in the steam plate 2 through the sink orifices 22, 2.
2 to the liquid supply distribution section 1 of the steam plate 2
0 and 10, the first sub-seal portion 19 of the gasket 4 prevents the processing liquid from flowing down, and the processing liquid rises while being filled under the guidance of the lateral grooves 13 and 13. Then, from the sink orifice 22, 22, the overflow weir 9
The processing liquid is spread over the entire width of the steam plate 2 while rising to the heights (hydrostatic head) to a and 9b, and then a constant liquid film thickness is maintained by the overflow weirs 9a and 9b. As shown in FIG. 10, the liquid overflows and is supplied to the upper end of the liquid plate 1 while being spread over the entire width. When the processing liquid flows down the liquid plate 1, it passes through the horizontal grooves 13, 1.
3, 14, 14 in the width direction, so that at the lower edge of the evaporation start portions 11, 11 of the liquid plate 1, the liquid film thickness is uniform over the entire width of the heat transfer surface. It's being spread.

一方、スチームは、導入口7から上端開口部2
3,23を通つてスチームプレート2の蒸発開始
部11,11へ供給される。このとき、スチーム
は、横溝14,14によつて幅方向に拡散される
ので、スチームプレート2の蒸発開始部11,1
1の下縁においては、伝熱面の全幅の亘つて均一
なスチーム膜厚さを持つように拡散されている。
On the other hand, steam flows from the introduction port 7 to the upper end opening 2.
3 and 23 to the evaporation start portions 11 and 11 of the steam plate 2. At this time, the steam is diffused in the width direction by the horizontal grooves 14, 14, so the evaporation start portions 11, 1 of the steam plate 2
1, the steam is diffused so as to have a uniform thickness over the entire width of the heat transfer surface.

この結果、液プレート1およびスチームプレー
ト2の夫々の蒸発部12,12を流下する処理液
とスチームは、伝熱面の全幅に亘つて均一に拡散
される。この均一拡散作用は、縦溝15,15に
よつて持続される。このようにして広い伝熱面積
と高い伝熱係数が確保されるため、処理速度が早
くなると共に熱交換効率が高くなる。
As a result, the processing liquid and steam flowing down the evaporation sections 12, 12 of the liquid plate 1 and the steam plate 2 are uniformly diffused over the entire width of the heat transfer surface. This uniform diffusion effect is maintained by the longitudinal grooves 15,15. In this way, a large heat transfer area and a high heat transfer coefficient are ensured, resulting in faster processing speed and higher heat exchange efficiency.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の液流下型プレート式蒸発器は、蒸発開始
部11,11および蒸発部12,12に沿つて流
下する処理液を、伝熱面の全幅に亘つて均一に拡
散される手段として極めて有用であるが、導入口
5内における処理液の流下量を夫々熱交換セクシ
ヨン毎に計測すると、液プレート1およびスチー
ムプレート2の積層方向に沿う流量比の変動を減
少させるためには導入口5内における処理液の分
散機能が必ずしも十分でない場合がある。例えば
図11は、夫々10枚の液プレート1とスチームプ
レート2をガスケツト3,4の介在下に交互に積
層して1つの熱交換セクシヨンを形成し、これと
同一の積層構造を具えた第1乃至第6の6つの熱
交換セクシヨンを組合わせることによつて構成さ
れた液流下型プレート式蒸発器に毎時70m3の割合
で処理液(糖蜜アルコールの発酵廃液)を供給
し、夫々の熱交換セクシヨン毎に処理液の流下流
量比を測定した結果を示す。図11から、図7乃
至図10に示す液流下型プレート式蒸発器で導入
口5内へ所定量の処理液が定量供給されているに
も拘らず、上記幅方向への拡散機能とは無関係に
導入口5の軸線方向、即ち、6つの熱交換セクシ
ヨンの整列方向に沿つて測つた処理液の流下流量
比が大きく変動していることがわかる。図11
は、処理液の流量の総加平均を1とした場合の各
熱交換セクシヨンにおける流量分布を示すもので
あるが、従来装置では導入口5の軸線方向に沿う
処理液の圧力分布が背圧や流動抵抗等の影響を受
けて変化するため、給液側の流量が吐液側の流量
よりも少なくなり、夫々の熱交換セクシヨンの液
プレート1上を流下する処理液に等量分布状態が
確保されなくなる。このように導入口5内に処理
液の不均一流れが発生し、これによつて夫々の液
プレート1で処理液の流下量比が変動すると、一
部の液プレートに処理液が殆ど供給されなくな
り、液プレート1の表面への処理液の焼付きや汚
れ等の問題が発生する。液プレート1の表面に一
部でも許容限度を越えた焼付きや汚れが発生する
と処理液が汚染され、製品の品質に悪影響が及ぼ
されるから、これを防止するため操業を停止し、
液流下型プレート式蒸発器を分解して液プレート
1を洗浄し焼付きや汚れを除去しなければなら
ず、生産性の低下が省力化の阻害等の問題が発生
する。
The liquid-flowing plate type evaporator described above is extremely useful as a means for uniformly dispersing the processing liquid flowing down along the evaporation start sections 11, 11 and the evaporation sections 12, 12 over the entire width of the heat transfer surface. However, if the flow rate of the processing liquid in the inlet 5 is measured for each heat exchange section, in order to reduce the fluctuation in the flow rate ratio along the stacking direction of the liquid plate 1 and the steam plate 2, The dispersion function of the processing liquid may not always be sufficient. For example, FIG. 11 shows one heat exchange section formed by alternately stacking ten liquid plates 1 and ten steam plates 2 with the intervening gaskets 3 and 4, and a first heat exchange section having the same stacked structure. The processing liquid (fermentation waste liquid of molasses alcohol) is supplied at a rate of 70 m 3 per hour to a liquid flow type plate type evaporator constructed by combining six heat exchange sections. The results of measuring the flow rate ratio of the processing liquid for each section are shown. From FIG. 11, it can be seen that although a predetermined amount of processing liquid is supplied into the inlet 5 in the liquid flow plate type evaporator shown in FIGS. 7 to 10, it has no relation to the above-mentioned diffusion function in the width direction. It can be seen that the flow rate ratio of the processing liquid measured along the axial direction of the inlet 5, that is, the direction in which the six heat exchange sections are aligned, fluctuates greatly. Figure 11
shows the flow rate distribution in each heat exchange section when the total average flow rate of the processing liquid is 1. However, in the conventional device, the pressure distribution of the processing liquid along the axial direction of the inlet 5 is due to back pressure and Since the flow rate changes due to the influence of flow resistance, etc., the flow rate on the liquid supply side becomes lower than the flow rate on the liquid discharge side, ensuring an equal distribution of the processing liquid flowing down on the liquid plate 1 of each heat exchange section. It will no longer be done. In this way, if an uneven flow of the processing liquid occurs in the inlet 5, and as a result, the flow rate ratio of the processing liquid changes in each liquid plate 1, most of the processing liquid is supplied to some of the liquid plates. As a result, problems such as burning and staining of the processing liquid on the surface of the liquid plate 1 occur. If even a portion of the surface of the liquid plate 1 is burnt or dirty beyond the allowable limit, the processing liquid will be contaminated and the quality of the product will be adversely affected.To prevent this, the operation will be stopped.
It is necessary to disassemble the liquid-flowing plate type evaporator and clean the liquid plate 1 to remove seizing and dirt, which causes problems such as a decrease in productivity and an impediment to labor saving.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題の解決手段として本発明は、液出入口
およびスチーム出入口を有する液プレートとスチ
ームプレートとを、二種類のガスケツトを介して
多数枚交互に積層し、各プレート間に処理液が流
れる蒸発空間とスチームが流れる加熱空間を交互
に配設してなるプレート式蒸発器において、上記
液プレートおよびスチームプレートの上部に設け
られた処理液の導入口内に、周壁面に軸線方向に
沿つて多数の細孔を穿設してなる中空円筒状の給
液ヘツダを嵌挿固着したことを特徴とする、液流
下型プレート式蒸発器における給液分散装置を提
供するものである。
As a means for solving the above problems, the present invention alternately stacks a large number of liquid plates and steam plates each having a liquid inlet/outlet and a steam inlet/outlet via two types of gaskets, and creates an evaporation space between each plate through which the processing liquid flows. In a plate type evaporator in which heating spaces through which steam flows are arranged alternately, a large number of pores are formed along the axial direction on the peripheral wall surface in the processing liquid inlet provided at the upper part of the liquid plate and the steam plate. The present invention provides a liquid supply dispersion device for a liquid-flowing plate type evaporator, characterized in that a hollow cylindrical liquid supply header formed by a hollow cylinder is inserted and fixed therein.

〔作用〕[Effect]

処理液の導入口と出口、ならびにスチームの導
入口と出口を有する液プレートとスチームプレー
トとを、シール形状を異にする二種類のガスケツ
トを介して多数枚交互に積層することによつて、
内部に処理液の蒸発空間とスチームによる加熱空
間を交互に配設してなるプレート式蒸発器を構成
する。そして、上記液プレートおよびスチームプ
レートの上部に設けられた処理液の導入口内に、
プレートの積層方向に沿う処理液の等量分散部材
として周壁面に軸線方向に沿つて多数の細孔を穿
設してなる中空円筒状の給液ヘツダを嵌挿固着す
る。
By alternately stacking a large number of liquid plates and steam plates each having an inlet and outlet for processing liquid and an inlet and outlet for steam through two types of gaskets with different seal shapes,
A plate-type evaporator is constructed in which a processing liquid evaporation space and a steam heating space are alternately arranged inside. Then, in the processing liquid inlet provided at the upper part of the liquid plate and the steam plate,
A hollow cylindrical liquid supply header having a large number of pores formed along the axial direction on the peripheral wall surface is inserted and fixed as a member for distributing the processing liquid in an equal amount along the stacking direction of the plates.

供給ヘツダ内に供給された処理液は、上記給液
ヘツダの周壁面に穿設された流量分布調節用の細
孔を通つて導入口内に押出され、この後、液プレ
ートおよびスチームプレートの上部に設けられた
もぐりオリフイスとオーバーフロー堰を通つて蒸
発空間に流入する。上記細孔の直径と穿設ピツチ
を処理液の単位時間当り流量が粘度、導入口の口
径に応じて選定することによつて、給液ヘツダの
軸線方向に沿う処理液の流量を調節し、これによ
つて夫々の蒸発空間への処理液の流下量を均一に
する。
The processing liquid supplied into the supply header is pushed out into the inlet through the pores for adjusting the flow rate distribution drilled in the peripheral wall of the liquid supply header, and is then pushed out onto the upper part of the liquid plate and the steam plate. It flows into the evaporation space through the provided sink orifice and overflow weir. By selecting the diameter and drilling pitch of the pores according to the viscosity of the flow rate per unit time of the processing liquid and the diameter of the inlet, the flow rate of the processing liquid along the axial direction of the liquid supply header is adjusted; This makes the amount of processing liquid flowing down into each evaporation space uniform.

〔実施例〕〔Example〕

以下、図1乃至図6を参照して本発明に係る液
流下型プレート式蒸発器の給液分散装置を説明す
る。尚、以下の記述において従来技術を示す図7
乃至図10と同一の構成部材は同一の参照番号で
表示し、重複する事項に関しては説明を省略す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A feed liquid dispersion device for a falling liquid plate type evaporator according to the present invention will be described below with reference to FIGS. 1 to 6. In addition, in the following description, FIG. 7 showing the prior art
Components that are the same as those in FIGS. 10 to 10 are indicated by the same reference numerals, and descriptions of duplicate items will be omitted.

液流下型プレート式蒸発器は、図1および図4
に示すように処理液の導入口5とスチームの導入
口7を設けた液プレート1とスチームプレート2
とを、シール形状を異にする二種類のガスケツト
3,4を介して所定枚数交互に積層することによ
つて、スタンドフレーム30とエンドフレーム3
1の間に、蒸発空間Aと加熱空間Bの交互配置構
体からなる6つの熱交換セクシヨンを配設してい
る。夫々の熱交換セクシヨンは、夫々10枚の液プ
レート1と、スチームプレート2をガスケツト
3,4の介在下に交互配置状態で積層することに
よつて構成されている。液プレート1およびスチ
ームプレート2の上部には処理液の導入口5が穿
設されており、ガスケツト3,4の介在下に所定
枚数の液プレート1とスチームプレート2を積層
したとき、夫々のプレート1,2の導入口5同士
が連通し、スタンドフレーム30とエンドフレー
ム31の間に処理液の供給管路32が形成され
る。この処理液の供給管路32内には、中空円筒
状の給液ヘツダ33が位置決め状態で嵌挿固着さ
れており、この供給ヘツダ33の円筒状周壁面に
は、処理液の流量分布調節部材として軸線方向に
沿つて多数の細孔34が穿設されている。図1お
よび図4に示す具体例では、給液ヘツダ33の軸
線方向に沿う略全域に亘つて、直径10mmの細孔3
4が20mm間隔で2列設けられている。この実施例
で夫々の細孔例は、図2および図3に示すように
給液ヘツダ33の周壁下面の左右に夫々約30゜の
開き角を維持して整列しているが、細孔34の孔
径と穿設間隔は処理液の粘度特性や単位時間当り
の供給量に応じて変更することができる。即ち、
供給管路32内に嵌挿固着する供給ヘツダ33の
寸法特性、殊に細孔34の孔径とその配設ピツチ
を、処理液の種類や単位時間当り流量の変化に応
じて選択することによつて、給液ヘツダ33の軸
線方向に沿つて流れる処理液に略同等の流量分布
機能を発生させる。
The liquid flow plate type evaporator is shown in Figures 1 and 4.
As shown in the figure, a liquid plate 1 and a steam plate 2 are provided with a processing liquid inlet 5 and a steam inlet 7.
By alternately stacking a predetermined number of gaskets 3 and 4 with two types of gaskets 3 and 4 having different seal shapes, the stand frame 30 and the end frame 3
1, six heat exchange sections consisting of alternating structures of evaporation spaces A and heating spaces B are arranged. Each heat exchange section is constructed by stacking ten liquid plates 1 and ten steam plates 2 in an alternating arrangement with gaskets 3 and 4 interposed therebetween. A processing liquid inlet 5 is provided in the upper part of the liquid plate 1 and the steam plate 2, and when a predetermined number of liquid plates 1 and steam plates 2 are stacked with the gaskets 3 and 4 interposed, each plate The first and second inlet ports 5 communicate with each other, and a processing liquid supply conduit 32 is formed between the stand frame 30 and the end frame 31. A hollow cylindrical liquid supply header 33 is fitted and fixed in the processing liquid supply pipe line 32 in a positioned manner, and a processing liquid flow rate distribution adjusting member is provided on the cylindrical peripheral wall surface of the supply header 33. A large number of pores 34 are bored along the axial direction. In the specific example shown in FIG. 1 and FIG.
4 are provided in two rows at 20mm intervals. In this embodiment, the pores are arranged on the left and right sides of the lower surface of the peripheral wall of the liquid supply header 33, maintaining an opening angle of approximately 30 degrees, as shown in FIGS. 2 and 3. The hole diameter and drilling interval can be changed depending on the viscosity characteristics of the processing liquid and the supply amount per unit time. That is,
By selecting the dimensional characteristics of the supply header 33 that is inserted and fixed in the supply pipe line 32, especially the diameter of the pores 34 and the arrangement pitch thereof, depending on the type of processing liquid and changes in the flow rate per unit time. As a result, substantially the same flow rate distribution function is generated for the processing liquid flowing along the axial direction of the liquid supply header 33.

本発明の一具体例においては、夫々10枚の液プ
レート1とスチームプレート2をガスケツト3,
4の介在下に交互に積層して1つの熱交換セクシ
ヨンを形成し、これと同一のプレート積層構造を
具えた第1乃至第6の6つの熱交換セクシヨンを
組合わせることによつて液流下型プレート式蒸発
器を構成すると共に、このプレート式蒸発器の処
理液導入口5内に直径125mmの給液ヘツダ33を
嵌挿固着することによつて給液分散装置35が形
成されている。以前説明したように、細孔34の
直径10mmに、また、細孔34の配置間隔は2列と
も20mmとなるように給液ヘツダ33の寸法諸元が
設計されている。
In one embodiment of the present invention, 10 liquid plates 1 and 10 steam plates 2 are connected to gaskets 3 and 10, respectively.
4 are alternately stacked to form one heat exchange section, and by combining six heat exchange sections 1 to 6, which have the same plate lamination structure, a liquid flow type. A plate type evaporator is constructed, and a liquid supply dispersion device 35 is formed by fitting and fixing a liquid supply header 33 having a diameter of 125 mm into the processing liquid inlet 5 of the plate type evaporator. As previously explained, the dimensions of the liquid supply header 33 are designed so that the diameter of the pores 34 is 10 mm, and the spacing between the pores 34 in both rows is 20 mm.

給液ヘツダ33内に処理液、例えば、糖蜜アル
コールの発酵液を導入すると、この処理液は給液
ヘツダ33の周壁面に穿設された細孔34を通つ
て等量分布状態で導入口5内に押出され、この
後、液プレート1およびスチームプレート2の上
部に設けられたもぐりオリフイス22,22、液
供給分布部10,10、オーバーフロー堰9a,
9bを通つて蒸発空間Aに流入する。蒸発空間A
に流入した処理液は、横溝13,13,14,1
4によつて液プレート1の幅方向に拡散され、蒸
発開始部11,11および蒸発部12,12を流
下する。
When a processing liquid, for example, a fermented liquid of molasses alcohol, is introduced into the liquid supply header 33, this processing liquid passes through the pores 34 formed in the peripheral wall of the liquid supply header 33 and enters the inlet 5 in an equal amount distribution state. After that, the sink orifices 22, 22 provided on the upper part of the liquid plate 1 and the steam plate 2, the liquid supply distribution parts 10, 10, the overflow weir 9a,
It flows into the evaporation space A through 9b. Evaporation space A
The processing liquid that has flowed into the horizontal grooves 13, 13, 14, 1
4 in the width direction of the liquid plate 1, and flows down through the evaporation starting parts 11, 11 and the evaporating parts 12, 12.

図6は、図1乃至図5に示す給液分散装置付き
の液流下型プレート式蒸発器に毎時70m3の割合で
糖蜜アルコールの発酵廃液を供給し、夫々の熱交
換セクシヨン毎に処理液の流下流量比を測定した
結果を示す。従来装置と同様に流下流量比は処理
液の流量の総加平均を1とした場合の流量分布を
示すものであるが、図6の例示から、各熱交換セ
ツクシヨンに流入する処理液に略同等の流量分布
機能が発生していることが読取れる。
Fig. 6 shows a flowchart in which fermentation waste liquid of molasses alcohol is supplied at a rate of 70 m 3 per hour to the flow-through plate type evaporator equipped with the liquid supply dispersion device shown in Figs. 1 to 5. The results of measuring the downstream flow rate ratio are shown. As with the conventional device, the downstream flow rate ratio indicates the flow rate distribution when the summed average of the flow rates of the processing liquid is taken as 1, but from the example shown in Figure 6, the flow rate ratio is approximately equivalent to the processing liquid flowing into each heat exchange section. It can be seen that the flow rate distribution function is occurring.

〔発明の効果〕〔Effect of the invention〕

周壁面に多数の細孔を穿設した中空円筒状の給
液ヘツダを使用することによつて処理液の流量分
布が均一化され、熱交換セクシヨン毎の流下流量
比の変動に起因する給液不足や焼付き、あるいは
処理液の汚染等の問題が解決される。この結果、
製品の品質向上、稼動効率の向上、ならびに保守
管理作業の省力化の促進に対して大きな効果が発
揮される。
By using a hollow cylindrical liquid supply header with a large number of holes in the peripheral wall, the flow rate distribution of the processing liquid is made uniform, and the liquid supply header that is caused by fluctuations in the flow rate ratio of each heat exchange section is made uniform. Problems such as shortage, seizure, and contamination of the processing liquid are solved. As a result,
It is highly effective in improving product quality, improving operating efficiency, and promoting labor-saving maintenance work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る給液分散装置付きプレー
ト式蒸発器の縦断面図、第2図は液プレートの正
面図、第3図はスチームプレート正面図、第4図
は第1図−線での横断平面図、第5図は給液
ヘツダの縦断面図、第6図は熱交換セクシヨンと
流下流量比の関係を示すグラブ、第7図は従来型
液プレートの正面図、第8図は従来型スチームプ
レートの正面図、第9図は液プレートとスチーム
プレートの積層状態の説明図、第10図は処理液
の流下状態を説明するプレート式蒸発器上部の縦
断面図、第11図は従来の熱交換セクシヨンと流
下流量比の関係を示すグラフである。 1……液プレート、2……スチームプレート、
3……ガスケツト、4……ガスケツト、5……処
理液の導入口、6a……第1出口、6b……第1
出口、7……スチーム導入口、8……第2出口、
9a……オーバーフロー堰、9b……オーバーフ
ロー堰、A……蒸発空間、B……加熱空間、30
……スタンドフレーム、31……エンドフレー
ム、32……処理液の供給管路、33……給液ヘ
ツダ、34……細孔、35……給液分散装置。
Fig. 1 is a longitudinal sectional view of a plate type evaporator with a feed liquid dispersion device according to the present invention, Fig. 2 is a front view of the liquid plate, Fig. 3 is a front view of the steam plate, and Fig. 4 is a line taken from Fig. 1. Figure 5 is a longitudinal cross-sectional view of the liquid supply header, Figure 6 is a grab showing the relationship between the heat exchange section and the downstream flow rate ratio, Figure 7 is a front view of the conventional liquid plate, and Figure 8 is a cross-sectional view of the liquid supply header. 9 is a front view of a conventional steam plate, FIG. 9 is an explanatory diagram of the laminated state of the liquid plate and steam plate, FIG. 10 is a vertical cross-sectional view of the upper part of the plate type evaporator to explain the flowing state of the processing liquid, and FIG. 11 is is a graph showing the relationship between the conventional heat exchange section and the downstream flow rate ratio. 1...liquid plate, 2...steam plate,
3... Gasket, 4... Gasket, 5... Processing liquid inlet, 6a... First outlet, 6b... First
Exit, 7... Steam introduction port, 8... Second exit,
9a... Overflow weir, 9b... Overflow weir, A... Evaporation space, B... Heating space, 30
... Stand frame, 31 ... End frame, 32 ... Processing liquid supply pipe line, 33 ... Liquid supply header, 34 ... Pore, 35 ... Liquid supply distribution device.

Claims (1)

【特許請求の範囲】[Claims] 1 液出入口およびスチーム出入口を有する液プ
レートとスチームプレートとを、二種類のガスケ
ツトを介して多数枚交互に積層し、各プレート間
に処理液が流れる蒸発空間とスチームが流れる加
熱空間を交互に配設してなるプレート式蒸発器に
おいて、上記液プレートおよびスチームプレート
の上部に設けられた処理液の導入口内に、周壁面
に軸線方向に沿つて上記蒸発空間に臨む多数の細
孔を穿設してなる中空円筒状の給液ヘツダを嵌挿
固着したことを特徴とする、液流下型プレート式
蒸発器における給液分散装置。
1 A large number of liquid plates and steam plates each having a liquid inlet/outlet and a steam inlet/outlet are alternately stacked via two types of gaskets, and evaporation spaces through which processing liquid flows and heating spaces through which steam flows are alternately arranged between each plate. In the plate type evaporator, a number of pores facing the evaporation space are bored along the axial direction in the peripheral wall surface in the processing liquid inlet provided at the upper part of the liquid plate and the steam plate. 1. A liquid supply dispersion device for a liquid flow down type plate type evaporator, characterized in that a hollow cylindrical liquid supply header is inserted and fixed therein.
JP4438286A 1986-02-28 1986-02-28 Heat exchanger of multi-plate thin film flow type Granted JPS62202994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4438286A JPS62202994A (en) 1986-02-28 1986-02-28 Heat exchanger of multi-plate thin film flow type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4438286A JPS62202994A (en) 1986-02-28 1986-02-28 Heat exchanger of multi-plate thin film flow type

Publications (2)

Publication Number Publication Date
JPS62202994A JPS62202994A (en) 1987-09-07
JPH0524440B2 true JPH0524440B2 (en) 1993-04-07

Family

ID=12689952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4438286A Granted JPS62202994A (en) 1986-02-28 1986-02-28 Heat exchanger of multi-plate thin film flow type

Country Status (1)

Country Link
JP (1) JPS62202994A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207809A (en) * 2011-03-29 2012-10-25 T Rad Co Ltd Laminated heat exchanger
CN104896461B (en) * 2015-06-29 2016-10-12 东方电气集团东方锅炉股份有限公司 A kind of adjustable steam cooler of built-in part flow arrangement

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829780A (en) * 1988-01-28 1989-05-16 Modine Manufacturing Company Evaporator with improved condensate collection
JP3596642B2 (en) * 1996-05-14 2004-12-02 株式会社ササクラ Plate type fresh water generator
JP4568973B2 (en) * 2000-08-10 2010-10-27 ダイキン工業株式会社 Plate type heat exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467257A (en) * 1977-08-26 1979-05-30 Unilever Nv Plate type heat exchanger
JPS6048202A (en) * 1983-08-29 1985-03-15 Toyoda Mach Works Ltd Cutting tool feed device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467257A (en) * 1977-08-26 1979-05-30 Unilever Nv Plate type heat exchanger
JPS6048202A (en) * 1983-08-29 1985-03-15 Toyoda Mach Works Ltd Cutting tool feed device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207809A (en) * 2011-03-29 2012-10-25 T Rad Co Ltd Laminated heat exchanger
CN104896461B (en) * 2015-06-29 2016-10-12 东方电气集团东方锅炉股份有限公司 A kind of adjustable steam cooler of built-in part flow arrangement

Also Published As

Publication number Publication date
JPS62202994A (en) 1987-09-07

Similar Documents

Publication Publication Date Title
US4511436A (en) Apparatus for the desalination of sea water
GB2089226A (en) Plate evaporator
US4646822A (en) Heat exchanger
CA2195181C (en) Heat exchanger
US7168483B2 (en) Heat transfer plate, plate pack and plate heat exchanger
JP2968041B2 (en) Plate evaporator
US5512141A (en) Distillation apparatus
US3738410A (en) Film evaporator panel
US5770020A (en) Distillation apparatus
EP0621940B1 (en) Distribution pattern of a plate heat exchanger
US5431858A (en) Energy conserving fluid flow distribution system with internal strainer aNd method of use for promoting uniform water distribution
CA2035506C (en) Device for the recovery of a processed liquid in the form of a condensate on a liquid to be processed
RU2077010C1 (en) Heat exchanger with jet escape of liquid and plant for separation of air by distillation
JPH0133201B2 (en)
US3735793A (en) Plate evaporators
JPH0524440B2 (en)
JPH0526588A (en) Liquid dispersing device for liquid downflow type plate system heat exchanger
US4450903A (en) Plate type heat exchanger with transverse hollow slotted bar
DE2552335A1 (en) Heat exchanger plates for liquids - have corrugations setting up channels ensuring full width uniformity of flow speed
JPH11287572A (en) Brazing plate type heat exchanger
DE10236665A1 (en) Gas-liquid heat exchanger for a boiler has modular heat exchanger plates for the heat exchange between a gas and a heat carried liquid
JPS6048202B2 (en) Liquid flow plate type evaporator
CN219956258U (en) Liquid distribution device with uniform liquid distribution
JP2694772B2 (en) Vertical falling film evaporator
JPS6215653Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees