JPH05242748A - Manufacture of power cable - Google Patents

Manufacture of power cable

Info

Publication number
JPH05242748A
JPH05242748A JP7582392A JP7582392A JPH05242748A JP H05242748 A JPH05242748 A JP H05242748A JP 7582392 A JP7582392 A JP 7582392A JP 7582392 A JP7582392 A JP 7582392A JP H05242748 A JPH05242748 A JP H05242748A
Authority
JP
Japan
Prior art keywords
cable
temperature
insulator
cooling
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7582392A
Other languages
Japanese (ja)
Inventor
Terushi Katagai
貝 昭 史 片
Shiro Tanno
野 史 朗 丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP7582392A priority Critical patent/JPH05242748A/en
Publication of JPH05242748A publication Critical patent/JPH05242748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

PURPOSE:To increase the insulating property extensively by providing a pipe for cooling which has an optical fiber temperature radar to a core wire conductor, and letting flow a coolant to cool and solidify a cable insulator when a cable is manufactured, so as to control the cooling. CONSTITUTION:At the center of a cable conductor 11 composed of a stranded conductor, a pipe 15 for cooling is provided, and an optical fiber temperature radar 16 is set in the pipe 15. When a power cable is extruded and manufactured, the water is let flow to a gas cooling zone, a water cooling zone, and the pipe 15 as a coolant so as to cool them. In this case, the gas cooling zone is maintained at the temperature of the crystallizing temperature of a cable insulator 13 or higher, so as to prevent a solidification of the outer layer of the insulator 13. And the temperature in the water cooling zone in the longitudinal direction is monitored by the radar 16, and the flow speed of the water is regulated to have a temperature inclination from a normal temperature to 100 deg.C, from the lower side up to an extruder in order. As a result, the crystallization in the insulator 13 progresses slowly from the inner layer to the outer layer, the generation of a void is made little extremely, and the insulating property can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は電力ケーブルの製造方
法に係り、特に非架橋ポリエチレン絶縁電力ケーブルの
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a power cable, and more particularly to a method for manufacturing a non-crosslinked polyethylene insulated power cable.

【0002】[0002]

【従来の技術】電力ケーブルとして絶縁材が絶縁耐力や
誘電特性に優れているポリエチレンを母材とした非架橋
低密度ポリエチレンケーブル(以下、LDPEケーブル
と称す)、非架橋高密度ポリエチレンケーブル(以下、
HDPEケーブルと称す)が従来汎用されている。
2. Description of the Related Art As a power cable, a non-crosslinked low-density polyethylene cable (hereinafter referred to as LDPE cable) and a non-crosslinked high-density polyethylene cable (hereinafter referred to as LDPE cable) whose base material is polyethylene whose insulating material has excellent dielectric strength and dielectric properties.
An HDPE cable) has been widely used conventionally.

【0003】これらの電力ケーブルの製造は、第2図,
第3図に示すように芯線導体1の外周上に押出機3によ
りダイス2を介してポリエチレン樹脂を押出し被覆し、
架橋ケーブルの場合はガス架橋ゾーン4において高温架
橋工程を経て、また、非架橋ケーブルの場合はガス冷却
ゾーン4´においてそのまま冷却過程に入り、冷水ゾー
ン5により冷却してポリエチレンを結晶化即ち固化させ
て製造している。通常は上記冷却ゾーン4´,5はケー
ブルを加圧した状態で冷却を行うようになっている。
(特願平3−35233号参照)
The manufacture of these power cables is described in FIG.
As shown in FIG. 3, polyethylene resin is extruded and coated on the outer periphery of the core conductor 1 by an extruder 3 through a die 2,
In the case of a cross-linked cable, a high-temperature cross-linking step is performed in the gas cross-linking zone 4, and in the case of a non-cross-linked cable, the cooling process is directly performed in the gas cooling zone 4 ', and cooled in the cold water zone 5 to crystallize or solidify polyethylene. Are manufactured. Normally, the cooling zones 4'and 5 are designed to cool the cables under pressure.
(See Japanese Patent Application No. 3-35233)

【0004】[0004]

【発明が解決しようとする課題】ところで、このような
冷却過程においては、ケーブル絶縁体の外層は即座に冷
却が進んで結晶化が生じるが、芯線導体1に近いケーブ
ル絶縁体の内層はなかなか冷却が進まず、外層に比べか
なりの時間を経た後に結晶化が生じることになる。この
ように絶縁体外層が先に固化した状態ではガス冷却ゾー
ン4および水冷ゾーン5における加圧効果は薄らぎ、ま
だ溶融状態にある絶縁体内層に対しては圧力がかからな
いため、絶縁体の結晶化時に生じる比容積変化のために
絶縁体内層,外層に応力が働き、最悪の場合は絶縁体中
にクラックやボイドが発生してしまうことになる。ま
た、上記のクラックやボイドが発生しないまでもポリエ
チレンの非晶領域にミクロボイドや密度の疎の部分を発
生させてしまう。このようなクラック,ボイド,ミクロ
ボイドあるいは密度の疎の領域の存在は、ケーブル絶縁
体の絶縁性能を大きく低下させる要因になってしまう。
By the way, in such a cooling process, the outer layer of the cable insulator is immediately cooled to be crystallized, but the inner layer of the cable insulator close to the core conductor 1 is hard to cool. Does not proceed, and crystallization occurs after a considerable time has passed compared to the outer layer. In such a state where the outer layer of the insulator is first solidified, the pressurizing effect in the gas cooling zone 4 and the water cooling zone 5 is weakened, and no pressure is exerted on the inner layer of the insulator which is still in a molten state. Due to the change in specific volume that occurs at times, stress acts on the inner and outer layers of the insulator, and in the worst case, cracks and voids will occur in the insulator. Further, even if the above-mentioned cracks and voids do not occur, microvoids and sparsely dense portions are generated in the amorphous region of polyethylene. The presence of such cracks, voids, microvoids, or areas of low density becomes a factor that significantly reduces the insulation performance of the cable insulator.

【0005】この発明は、このような点に鑑みてなされ
たもので、上述した従来技術の欠点を解消し、絶縁性能
を大幅に増加させることのできる新規な電力ケーブルの
構造および電力ケーブルの製造方法を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and solves the above-mentioned drawbacks of the prior art and can significantly increase the insulation performance of a novel power cable structure and manufacture of the power cable. The purpose is to provide a method.

【0006】[0006]

【課題を解決するための手段】この発明では、芯線導体
の外周部に非架橋ポリエチレンからなる絶縁材を被覆す
る電力ケーブルの製造方法において、芯線導体に光ファ
イバー温度レーダーを有する冷却用パイプを設け、ケー
ブル製造時に上記冷却用パイプに冷媒を流してケーブル
絶縁体を冷却固化させ、上記光ファイバー温度レーダー
により冷却制御を行うようにしたことを特徴とする電力
ケーブルの製造方法である。
According to the present invention, in a method of manufacturing a power cable in which an outer peripheral portion of a core conductor is coated with an insulating material made of non-crosslinked polyethylene, a core pipe is provided with a cooling pipe having an optical fiber temperature radar, In the method of manufacturing a power cable, a cooling medium is caused to flow through the cooling pipe to cool and solidify the cable insulator at the time of manufacturing the cable, and cooling control is performed by the optical fiber temperature radar.

【0007】[0007]

【作用】芯線導体に冷却用パイプを有する構造とし、さ
らに、その中に光ファイバー温度レーダーを配置した構
成にしたので、芯線導体からの絶縁体冷却を可能にし、
絶縁体内層からの冷却を行うことによりケーブル絶縁体
中にボイド,ミクロボイドなどの発生を抑えることによ
り、電力ケーブルの絶縁破壊性能を大幅に向上させるこ
とができる。
[Function] Since the core conductor has a cooling pipe and the optical fiber temperature radar is arranged in the structure, the insulator can be cooled from the core conductor.
By suppressing the generation of voids, microvoids, etc. in the cable insulator by cooling from the inner layer of the insulator, the dielectric breakdown performance of the power cable can be greatly improved.

【0008】[0008]

【実施例】以下、この発明の実施例として、HDPEケ
ーブルの製造方法を例として説明する。第1図にこの発
明により製造された電力ケーブルの構成を示す横断面図
を示す。11は撚り線導体から構成されるケーブル導体
で、この中央部には冷却用パイプ15が設けられ、この
冷却用パイプ15内には光ファイバー温度レーダー16
が設置されている。そして、ケーブル導体11の外周に
は内部半導電層12,ケーブル絶縁体13,外部半導電
層14がそれぞれ被覆して構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing an HDPE cable will be described below as an embodiment of the present invention. FIG. 1 is a cross-sectional view showing the structure of a power cable manufactured according to the present invention. Reference numeral 11 is a cable conductor composed of a stranded wire conductor. A cooling pipe 15 is provided in the center of the cable conductor, and an optical fiber temperature radar 16 is provided in the cooling pipe 15.
Is installed. The outer circumference of the cable conductor 11 is covered with an inner semiconductive layer 12, a cable insulator 13, and an outer semiconductive layer 14, respectively.

【0009】この電力ケーブルの押出し製造時に、第2
図のガス冷却ゾーン4´の下側からあるいは第3図の水
冷ゾーン5内に水を流し、ケーブル導体1側からも冷却
パイプ5に冷媒として水を流し冷却を行った。このと
き、第2図のガス冷却ゾーン4´はケーブル絶縁体の結
晶化温度(120℃)以上に保ち、ガス冷却ゾーン4´
において絶縁体3の外層が固化しないようにした。ま
た、第2図および第3図の水冷ゾーン5内の長さ方向の
温度は、光ファイバー温度レーダー16で監視し、下か
ら順に押出機に至るまで常温から100℃まで温度勾配
を持つように水の流速を調整した。このような水の流速
の調整により、電力ケーブルの絶縁体内の結晶化はゆっ
くりと内層から外層に向け進むことになる。
During the extrusion manufacturing of this power cable, the second
Water was made to flow from below the gas cooling zone 4'in the figure or in the water cooling zone 5 in FIG. 3, and water was also made to flow from the cable conductor 1 side to the cooling pipe 5 as a refrigerant for cooling. At this time, the gas cooling zone 4'of FIG. 2 is kept above the crystallization temperature (120 ° C) of the cable insulator, and the gas cooling zone 4 '
In, the outer layer of the insulator 3 was prevented from solidifying. The temperature in the lengthwise direction in the water cooling zone 5 shown in FIGS. 2 and 3 is monitored by the optical fiber temperature radar 16 so that the temperature gradient from room temperature to 100 ° C. is maintained from the bottom to the extruder. Was adjusted. By adjusting the flow velocity of water in this manner, crystallization in the insulator of the power cable slowly proceeds from the inner layer to the outer layer.

【0010】架橋ケーブルの場合は、冷媒を油として第
3図の架橋ゾーン4の押出機側において油温を150℃
〜200℃となるように調整することにより電力ケーブ
ルの架橋効率を高めることも可能である。
In the case of a crosslinked cable, the oil temperature is 150 ° C. on the extruder side of the crosslinked zone 4 in FIG. 3 using oil as the refrigerant.
It is also possible to increase the cross-linking efficiency of the power cable by adjusting the temperature to be ~ 200 ° C.

【0011】表1に本実施例で得られたHDPEケーブ
ルの絶縁破壊性能を従来の方法で得られたHDPEケー
ブルと比較して示す。ACおよびDC破壊強度は大幅に
上昇した。また、絶縁体を顕微鏡で観察しボイドの大き
さを調べたところ、10μm以上のボイドは全く検出さ
れなかった。さらに、透過型電子顕微鏡(TEM)で結
晶状態を観察したところ、ミクロボイドの発生も極めて
少なかった。
Table 1 shows the dielectric breakdown performance of the HDPE cable obtained in this example in comparison with the HDPE cable obtained by the conventional method. The AC and DC fracture strength increased significantly. Also, when the size of the void was examined by observing the insulator with a microscope, no void of 10 μm or more was detected. Furthermore, when the crystal state was observed with a transmission electron microscope (TEM), the generation of microvoids was extremely small.

【0012】[0012]

【発明の効果】以上説明したとおり、この発明の電力ケ
ーブルの製造方法によれば、絶縁体のボイドの発生が極
めて少なく、これらに起因する電力ケーブル絶縁破壊電
圧の低下が解消され、これに伴って絶縁体の厚さを薄く
することが可能となり、電力ケーブルの小型化,軽量化
を図ることができる。さらに、冷却パイプ内の冷媒の温
度は押出機付近では100℃付近に調整されるため、絶
縁体押出し被覆前のケーブル導体の予測としても活用で
きる。また、冷却パイプ内の光ファイバー温度レーダー
は、ケーブル布設後の運転時にケーブル温度の監視とし
て活用できることは言うまでもない。
As described above, according to the method of manufacturing a power cable of the present invention, the generation of voids in the insulator is extremely small, and the decrease in the breakdown voltage of the power cable due to these is eliminated. As a result, the thickness of the insulator can be reduced, and the power cable can be reduced in size and weight. Furthermore, since the temperature of the refrigerant in the cooling pipe is adjusted to around 100 ° C. near the extruder, it can be utilized as a prediction of the cable conductor before extrusion coating of the insulator. Further, it goes without saying that the optical fiber temperature radar in the cooling pipe can be used as a cable temperature monitor during operation after the cable is laid.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の製造方法によって製造される電力ケ
ーブルの構成を示す横断面図、
FIG. 1 is a cross-sectional view showing a configuration of a power cable manufactured by a manufacturing method of the present invention,

【図2】従来の電力ケーブルの製造方法に使用される製
造機の概略構成図、
FIG. 2 is a schematic configuration diagram of a manufacturing machine used in a conventional power cable manufacturing method,

【図3】先行攻技術のXLPLケーブルの製造方法に使
用される製造機の概略構成図である。
FIG. 3 is a schematic configuration diagram of a manufacturing machine used in a manufacturing method of a prior art XLPL cable.

【符号の説明】[Explanation of symbols]

1 芯線導体 2 ダイス 3 押出機 4 ガス架橋ゾーン 4´ ガス冷却ゾーン 5 水冷ゾーン 11 ケーブル導体 12 内部半導電層 13 ケーブル絶縁体 14 外部半導電層 15 冷却用パイプ 16 光ファイバー温度レーダー 1 core conductor 2 die 3 extruder 4 gas bridge zone 4'gas cooling zone 5 water cooling zone 11 cable conductor 12 inner semi-conductive layer 13 cable insulator 14 outer semi-conductive layer 15 cooling pipe 16 optical fiber temperature radar

【表1】 [Table 1]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年11月24日[Submission date] November 24, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 芯線導体の外周部に非架橋ポリエチレン
からなる絶縁材を被覆する電力ケーブルの製造方法にお
いて、芯線導体に光ファイバー温度レーダーを有する冷
却用パイプを設け、ケーブル製造時に上記冷却用パイプ
に冷媒を流してケーブル絶縁体を冷却固化させ、上記光
ファイバ−温度レーダーにより冷却制御を行うようにし
たことを特徴とする電力ケーブルの製造方法。
1. A method of manufacturing a power cable in which an insulating material made of non-crosslinked polyethylene is coated on an outer peripheral portion of a core conductor, wherein the core conductor is provided with a cooling pipe having an optical fiber temperature radar, and the cooling pipe is used at the time of manufacturing the cable. A method for producing an electric power cable, characterized in that a cooling medium is flowed to cool and solidify the cable insulator, and cooling control is performed by the optical fiber-temperature radar.
JP7582392A 1992-02-28 1992-02-28 Manufacture of power cable Pending JPH05242748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7582392A JPH05242748A (en) 1992-02-28 1992-02-28 Manufacture of power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7582392A JPH05242748A (en) 1992-02-28 1992-02-28 Manufacture of power cable

Publications (1)

Publication Number Publication Date
JPH05242748A true JPH05242748A (en) 1993-09-21

Family

ID=13587299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7582392A Pending JPH05242748A (en) 1992-02-28 1992-02-28 Manufacture of power cable

Country Status (1)

Country Link
JP (1) JPH05242748A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243720A (en) * 2007-03-28 2008-10-09 Ube Nitto Kasei Co Ltd Manufacturing method of hollow core for coaxial cable
JP4651260B2 (en) * 2000-04-28 2011-03-16 エービービー エービー Stationary induction machine and cable therefor
JP2012119328A (en) * 2012-02-01 2012-06-21 Ube Nitto Kasei Co Ltd Manufacturing apparatus for coaxial cable hollow core body
JP2012124172A (en) * 2012-02-01 2012-06-28 Ube Nitto Kasei Co Ltd Molding die used for manufacturing hollow core body for coaxial cable

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4651260B2 (en) * 2000-04-28 2011-03-16 エービービー エービー Stationary induction machine and cable therefor
JP2008243720A (en) * 2007-03-28 2008-10-09 Ube Nitto Kasei Co Ltd Manufacturing method of hollow core for coaxial cable
JP2012119328A (en) * 2012-02-01 2012-06-21 Ube Nitto Kasei Co Ltd Manufacturing apparatus for coaxial cable hollow core body
JP2012124172A (en) * 2012-02-01 2012-06-28 Ube Nitto Kasei Co Ltd Molding die used for manufacturing hollow core body for coaxial cable

Similar Documents

Publication Publication Date Title
EP0058550B1 (en) Method and apparatus for fabricating a tree resistant power cable
US3849192A (en) Method of applying and cooling low density polyethylene cable insulation
JPH05242748A (en) Manufacture of power cable
JPH052936A (en) Manufacture of power cable
KR100271880B1 (en) Heat treatment of cable
JPS60180017A (en) Method of producing high foamable material insulated wire
CN106847412A (en) The preparation technology of waterproof high anti-oxidation network electric power
JP2901289B2 (en) How to connect the power cable
CA1196162A (en) Tree resistant power cable
US2799608A (en) Electric cables
JPS6028113A (en) Method of producing power cable
JPS5837954B2 (en) How to connect cross-linked polyethylene cable
JPH11345524A (en) Fire-resisting wire
JPS6314819B2 (en)
JPS60165009A (en) Method of producing power cable
JPS63268414A (en) Manufacture of molded joint
JPH035028B2 (en)
JPH01105410A (en) Manufacture of conductor for acoustic equipment
JPS60185308A (en) Method of producing power cable
JPS5826762B2 (en) Coaxial cable manufacturing method
JPH02276115A (en) Manufacture of foam plastic insulated wire
JP2001136628A (en) Joint for submarine cv cable
JPH11283452A (en) Manufacture of organic polymer insulated cable and manufacturing device therefor
JPH0142585B2 (en)
JPS60218714A (en) Method of producing rubber, plastic wire and cable