JPH0524214B2 - - Google Patents

Info

Publication number
JPH0524214B2
JPH0524214B2 JP13289185A JP13289185A JPH0524214B2 JP H0524214 B2 JPH0524214 B2 JP H0524214B2 JP 13289185 A JP13289185 A JP 13289185A JP 13289185 A JP13289185 A JP 13289185A JP H0524214 B2 JPH0524214 B2 JP H0524214B2
Authority
JP
Japan
Prior art keywords
friction
glass
friction material
sliding
lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13289185A
Other languages
Japanese (ja)
Other versions
JPS61266542A (en
Inventor
Susumu Watanabe
Takashi Hanazawa
Osamu Fujimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP13289185A priority Critical patent/JPS61266542A/en
Publication of JPS61266542A publication Critical patent/JPS61266542A/en
Publication of JPH0524214B2 publication Critical patent/JPH0524214B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、有機系成分を含まないメタリツク
摩擦材やサーメツト摩擦材などの無機摩擦材料に
関する。 2つの物体が相互に接触を保つて運動する場
合、その接触する面上においては滑りや転がりな
どの運動が生じ、そこに摩擦力が発生する。この
摩擦力を積極的に利用する機械要素としてブレー
キやクラツチがある。 ブレーキにあつては、接触して摺動する2面の
運動を、この2面間に発生する摩擦力によつて静
止させる役目を果す。その結果、摺動面には摩擦
熱が発生する。換言すれば、ブレーキは摩擦力に
よつて運動エネルギーを熱エネルギーに変換する
役割を演じている。 他方、クラツチの役割は、互いに接触する2面
に作用する摩擦力を利用し、静止する物体に運動
エネルギーを付与することにある。別の表現をと
るならば、クラツチは摩擦力によつて一方の面か
ら他方の面に運動エネルギーを伝達する働きを持
つていると言うことができる。 このことから、ブレーキやクラツチのような機
械要素に組込まれて相対向する一方の面を構成す
る摩擦材料は、当該摩擦材料の摺接面が他の面と
接触しながら互いに摺動し、そこに摩擦力を発生
させる役割を演じるものである。このように、摩
擦材料は、摩擦熱と加圧力に耐えつゝ相手面と摺
動して使用されるものであり、したがつて、比較
的高くかつ一定した摩擦力或いは摩擦係数を要求
されるだけでなく、自分自身の摩耗は勿論のこ
と、相手面をも極力少ない摩耗で抑えることので
きる材料でなければならない。 この発明は、以上述べたようなブレーキやクラ
ツチなどの摩擦パツド材としての使用に適した摩
擦材料、特に、メタリツク摩擦材やサーメツト摩
擦材などの無機摩擦材料の改良に関する。 (従来の技術) これまでブレーキやクラツチに使用されてきた
摩擦材料の大部分は、耐熱性のあるアスベスト繊
維を必須成分とし、これに用途に応じて炭素粉
末、金属粉末、金属酸化物粉末、ゴム粉、及びナ
ツツ殻粉末などの各種粉末を加え、有機バインダ
ー(多くはフエノール樹脂)で固めた複合材料に
よつて占められていた。しかし、ブレーキやクラ
ツチの軽量化、小型化及び使用条件の過酷化に直
面して、このような材料では、耐熱性からもまた
耐圧強度的にも十分社会的ニーズに応じきれなく
なつてきた。 そこで、耐熱性の向上と強度の増大とをはかつ
て、金属成分を多く含んだセミメタリツク摩擦材
や、耐熱性に劣る有機系成分を全く含まないメタ
リツク摩擦材、或いは金属とセラミツクスとから
なるサーメツト摩擦材などの無機摩擦材料が、価
格的不利にも拘らず前記のアスベスト系摩擦材料
に代つてブレーキやクラツチの一部に使用される
ようになつてきた。 すなわち、摩擦材料が相手材と摺動されて使用
される両者の接触面上では、摩擦熱に由来する顕
著な温度の上昇がみられる。一方、物体が接触す
る場合、面の凹凸に基づき両面の接触は、全面積
に均一に当たるものではない。その一部分で行わ
れているに過ぎない。これがいわゆる真実接触点
であり、見掛けの接触面積よりは真実接触面積が
重要な意味をもつものである。換言すれば、摺動
時の真実接触点には高温と高圧とが作用すること
になる。 このために、過酷な摺動と言われる油なしのい
わゆる乾式摩擦では耐熱性と強度が重要になる。
航空機や新幹線のブレーキライニングの例を挙げ
るまでもなく、有機物を含有しないメタリツク摩
擦材やサーメツト摩擦材が高価にも拘らず賞用さ
れる理由がこの点にある。 そして、以上述べたメタリツク摩擦材やサーメ
ツト摩擦材は、いづれも金属(銅合金或いは鉄合
金)を材料構成の基本成分とし、これに鉛、黒鉛
等の固体潤滑成分と、シリカやアルミナのような
硬質で耐熱性のあるセラミツク成分とをその中に
分散保持した構造をもつている。中でもサーメツ
ト摩擦材は、特に耐熱性を高めるために金属成分
を少なくし、高融点の非金属成分を増量してこれ
に対応している。したがつて、サーメツト摩擦材
と言つても、材料組織的にはメタリツク摩擦材と
基本的に異なつた材料ではない。 (発明の背景) このような認識の下に、これら材料における固
体潤滑成分の役割に注目するならば、その作用
は、摺動面に介在して相接触する2面の真実接触
点の過大な増大を防止し、真実接触面積を調整す
ることを目的とすることがわかる。摩擦力とは、
真実接触点における2面間の凝着や、一方の軟ら
かい面に対する他方の硬い面の凸部による掘起し
作用によるものであること、すなわち、「全摩擦
力=凝着摩擦力+掘起し摩擦力」であることは、
広く認められた真実と言える。 摩擦材料にとつては、摺動時の摩擦力の高いこ
とも勿論必要であるが、それにも増して摩擦力が
安定し、可能ならば一定であることが望ましいの
である。例えば、ブレーキ制動時の静止直前にお
ける摩擦係数の急激な増大はブレーキのチヤタリ
ング現象を惹起し、運動体の停止直前における異
常振動を生起させる。また、クラツチにおける2
面の相対運動停止直前の同様な現象は、クラツチ
のジヤダーや兎飛び現象を引起す原因ともなつて
いる。したがつて、摩擦材料には、摺動速度の変
化に拘らず安定して変動の少ない摩擦係数を有す
ることが強く望まれるのである。摩擦材料に含有
される固体潤滑成分は、このような性能改善のた
めに添加される極めて重要な成分なのである。 (発明が解決しようとする問題点) 固体潤滑成分の中で最も一般的な材料は鉛と黒
鉛である。鉛の潤滑性は、軟質金属としての低剪
断力と金属に対する低溶解度特性によるものであ
る。一方、黒鉛の潤滑性は、その結晶の層状構造
に基づく低剪断力と銅合金に対する低溶解度特性
に由来するものである。特に、鉛は、低温からそ
の融点近傍の300℃付近にかけて優れた潤滑特性
を示す。また、黒鉛は、低温から1000℃と言つた
高温にかけて潤滑作用を呈する。このような理由
で、殆どのメタリツクやサーメツト摩擦材には鉛
と黒鉛が含まれ、300℃付近迄の比較的低温の摺
動には鉛の潤滑性が性能を発揮し、それ異常の高
温では、専ら黒鉛の潤滑性に依存するという方式
がとられてきた。 なお、最近では固体潤滑剤に関する技術が進歩
し、多くの優れた材料が開発されてきた。特に、
MoS2やWSeなどは、油で潤滑できない潤滑部分
や過酷な摺動部分に使われ、したがつて、摩擦材
料にも、これらの固体潤滑剤が応用されて好成績
を収めているが、これらの固体潤滑剤は価格の点
で不利であるばかりか、摩擦材料の製造過程で材
料の主要構成成分である金属成分と反応(例えば
銅合金の場合に、2Cu+MoS2→2CuS+Mo)す
るために潤滑特性を十分発揮し難く、かつ、金属
マトリツクスを脆化させて摩擦材料の強度を劣化
させるという欠点もあつた。 そうかといつて、過酷な摺動条件に曝されて使
用される耐熱性のサーメツト摩擦材にあつては、
鉛を含有した場合に300℃以上の高温では含有さ
れた鉛が液化し、金属マトリツクスの脆化を招い
て摩擦材料の強度を低下させる欠点があつた。 このような理由から、鉛に代りかつ鉛に劣らな
い潤滑作用を、低温から300℃以上の高温に至る
まで保持するような固体潤滑剤を求めて種々の試
みが行われてきた。PbOが鉛に劣らない潤滑特性
を300℃以上の高温でも有する点に着目して、こ
れを含有させる試みも企てらてきた。しかし、
PbOも金属成分と反応(PbO+2Cu→Pb+Cu2O)
し、その目的を達するのは困難であつた。PbOの
反応性を防止するためにPbOにSiO2を溶かし込
み、融点の低下を図つてPbO−SiO2系の低融点
のガラスとして添加する試みも行われているが、
思わしい成果は得られていない。 上記PbO−SiO2系ガラスを固体潤滑成分とし
て使用する試みは、その後、種々のガラスに展開
されている。金属の熱間加工用のガラス潤滑剤の
先例に倣つて、多くのガラスを利用して行われて
きた。しかし、ガラスは、低温では極めて硬い粒
子として作用するため、室温から300℃付近にか
けて実用できる摩擦材料用の低温潤滑性を備え、
十分鉛に代替できる固体潤滑剤は現在のところ開
発されていない。 (問題点を解決するための手段) この発明は、メタリツク摩擦材やサーメツト摩
擦材などの無機摩擦材料における潤滑成分の重要
性に注目して、その改善を図ることを目的とす
る。すなわち、穏やかな摺動条件から高温、高圧
の出現する過酷な摺動条件と広い使用条件に耐え
て、安定した摩擦係数と優れた耐摩耗性とを有す
る無機摩擦材料を提供することを目的とする。 (構成) この目的達成のために、この発明にあつては、
銅合金或いは鉄合金をマトリツクスと、これに重
量パーセントで黒鉛粉末を10〜20%、従来の材料
において含有される鉛の代りに後述する組織を備
えた燐酸ガラスを3〜10%含有させ、さらに、相
手材の面の掘起し効果を狙つた増摩擦性物質とし
てムライト(3Al2O3・2SiO2)或いはシリカを3
〜20%含有させることにより、摺動面に好ましい
潤滑作用を呈する低剪断性物質を形成させ、低温
から高温、低速から高速、低面圧から高面圧と、
広い範囲の摺動条件に亘つて安定した摩擦係数と
優れた耐摩耗性とを摩擦材料に与えるようにした
のである。 (発明の作用) すなわち、この発明に用いた燐酸ガラスは、
NaFを添加したためにガラスの軟化温度が低い。
しかも、含有するLi2Oの作用により温度が上昇
して600℃付近に達すると、結晶の析出が進行す
るために昇温に伴うガラスの粘度の急激な低下が
阻止される。このような粘度特性を備えた燐酸ガ
ラスの潤滑作用によつて、300℃付近から著しく
なる鉛に由来するメタリツク摩擦材やサーメツト
摩擦材などの無機摩擦材料の摩擦係数の低下と摩
耗の増大を防止することが可能になる。 さらに、摩擦熱のために摺動面温度が上昇して
500〜600℃を越えると、摩擦材料及び相手材料と
も酸化が顕著となる。その結果、摩擦材料からは
組成に応じて酸化銅、酸化錫或いは酸化鉄が、相
手材料からはそれぞれの摺動面に形成される。 これらの金属酸化物は、摩擦材料から摩耗分離
した黒鉛やセラミツクスの粉砕物と共に、前記の
燐酸ガラスの軟化物と混合かつ練り合わされ、低
剪断性の混合物となつて摺動面に介在する。この
混合物は、低剪断性のために潤滑作用を呈し、摺
動面における事実接触面積を調整して摩擦係数の
一定化に役立すことになる。 摺動条件がさらに過酷化して摺動面温度が1000
℃にも達すると、前記混合物の形成を待つまでも
なく摩擦材料と相手材料の酸化はさらに進み、多
量の酸化鉄、酸化銅、酸化錫などが形成される。
これらの金属酸化物は摺動面で高温と高圧にさら
され、流動性をもつた金属酸化物混合物となつ
て、摩擦材料の成分として含まれる黒鉛やセラミ
ツクスの摩耗した粉砕物をもその中に取込み、多
量に摺動面に存在することになる。このことは、
摺動面が低剪断性の流動性物質によつて広く覆わ
れることを意味し、結果的には、潤滑過剰となつ
て摩擦係数の低下は著しくなるが、しかし、この
発明の摩擦材料では、前記特性を備えた燐酸ガラ
スを潤滑成分として含むためにこのような潤滑過
剰の現象は生起しない。それは、500〜600℃から
形成される燐酸ガラスを含有する低剪断生混合物
が摺動面に存在してこれを薄く覆うため、摩擦材
料と相手材の両方の酸化が防止されて酸化鉄、酸
化銅、酸化錫などの生成量が少なくなり、これに
より、前記の高温になればなる程増加する流動性
の金属酸化物混合物の量が少なくなるからであ
る。 さらに、この発明の燐酸ガラスは、その中に存
在するLi2Oの作用によつて600℃付近からガラス
の結晶化が進むため、摺動面に形成された低剪断
生の混合物は温度が上昇すると却つて粘度を増
し、剪断力の顕著な低下がない。その結果、この
発明の特徴とする燐酸ガラスの不存在の場合に形
成される酸化鉄、酸化銅、酸化錫などの金属酸化
物を主体とした混合物のように、多量にしかもそ
れに加えて全摺動面に被覆されるような過剰潤滑
の状態は出現しない。すなわち、好ましい割合の
事実接触面積が確保されて摩擦力の低下がないこ
とになる。換言すれば、過酷な摺動条件にさらさ
れて摺動面が1000℃前後の高温に達しても、摩擦
係数の低下を防止することが可能になるのであ
る。 (発明の実施例) 以下、実施例を説明するに当つて、まづ、この
発明による摩擦材料の詳細と組成範囲の選定理由
とについて述べる。 前のも述べたように、発明者らは、銅合金或い
は鉄合金をマトリツクスとし、これに重量パーセ
ントで10〜20%の黒鉛粉末と、後述する組織を備
えた燐酸ガラスを3〜10%含有させ、さらに、相
手材の面の掘起こし効果を狙つた増摩擦性物質と
してムライト(3Al2O3・2SiO2)或いはシリカを
3〜20%含有させることにより、摺動面に好まし
い潤滑作用を呈する低剪断性物質を形成させ、低
温から高温、低速から高速、低面圧から高面圧
と、広い範囲の摺動条件に亘つて安定した摩擦係
数と優れた耐摩耗性とを摩擦材料に与えることに
成功したのである。 すなわち、黒鉛は、鉛を含有しな無機摩擦材料
において極めて重要な潤滑成分であつて、この黒
鉛を10〜20%含有させることにより、静止状態の
低温から600℃付近の潤滑は黒鉛によつてその殆
どが分担されるばかりか、それ以上の温度では後
述する燐酸ガラスと協同して潤滑作用を呈する。
なお、10%以下では潤滑効果が不十分となるし、
また、20%以上では摩擦材料自体の強度が落ち、
摩擦係数が低下すると共に耐摩耗性も劣化する。 析出性の燐酸ガラスは、400℃付近から軟化し
て低剪断性の潤滑成分として作用し、特に、600
℃付近から1000℃にかけて黒鉛との協同作用によ
り、好ましい潤滑性能を保持しつづける役割を演
じる。従来、添加されたガラス性の潤滑成分は、
軟化点付近から潤滑作用が顕著となるとはいえ、
その反面、温度の上昇に伴つて粘度は減じること
から、これが摺動面に介在して好ましい潤滑作用
を保持することが不可能であつた。これにより、
特に、高温では摩擦係数が低下し、摩耗も増大す
るなどの欠点があつた。以上の欠点を取除いては
好ましい潤滑作用を呈させるために、この発明に
おいては、P2O5、B2O3及びAl2O3の3成分によ
つてガラスを構成し、これにNa2を加えて軟化温
度を下げ、さらに、NaFの添加によつてガラス
の流動性の改善を図り、400℃付近の低温から潤
滑作用を呈しさせることが可能になつた。また、
Li2Oの添加によつて600℃付近から結晶を析出さ
せ、昇温に伴うガラスの粘度の低下を防ぎ、1000
℃もの高温にかけての潤滑作用を持続させること
に成功した。 上記高温潤滑性のガラス成分としては、重量パ
ーセントでP2O5を25〜35%、B2O3を20〜30%、
Al2O3を10〜20%、Na2Oを4〜10%、Li2Oを4
〜10%、NaFを2〜6%、ZnOを1〜5%、ア
ルカリ土類金属酸化物の1種類以上を3〜15%含
有するものである。 上記成分において、P2O5はガラスの網目形成
成分であつて、25%以下では軟化温度が高くな
り、35%を越えると耐水性が劣化して実用性を失
う。B2O3もガラス網目形成成分であつて、20%
以下では軟化温度が高くなり、30%を越えると耐
水性が低下する。Al2O3もガラスの網目形成成分
であつて、10%以下では耐水性が不足し、20%以
上では軟化温度が上昇して流動性が低下する。以
上の成分によつてSiO2を含有しない低融点のガ
ラスが構成される。 Na2O添加の目的は、軟化温度を下げてガラス
の流動性を増し、金属面に対する濡れ性を増進し
て潤滑性を改善するが、4%以下では添加効果が
なく、10%を越えると耐水性が劣化する。Li2O
は、燐酸ガラスの結晶化を促進する成分であつ
て、4%以下ではその効果がないが、10%を越え
るとガラスの硬度を増して400℃以下の低温にお
いて相手材を損傷して好ましくない。また、
NaFは、ガラスの流動性を改善する役割を演じ
るが、2%以下では添加効果がなく、6%を越え
ると耐水性が低下する。アルカリ土類金属酸化物
としてはMgO、CaO、BaOが好ましく、ガラス
化温度範囲を広げる作用をもつが、3%以下では
耐水性が劣化し、15%を越えると軟化温度が上昇
して潤滑作用が低下する。ZnOは、燐酸ガラス中
のB2O3成分を安定化するが、1%以下では添加
効果がなく、5%以上では軟化温度が上昇して流
動性が下がる。 ムライト或いはシリカの役割は、摩擦材料によ
る相手面掘起こし作用による摩擦係数の増大と耐
熱性の改善とに貢献する。3%以下では添加効果
が乏しく、20%以上では相手材に対する攻撃性を
高め、相手材摩耗を増大させて好ましくない。 実施例 1 200メツシユ以下の銅粉、200メツシユ以下の錫
粉、100メツシユ以下の黒鉛粉末、100メツシユ以
下の鉛粉末、100メツシユ以下のムライト粉末、
200メツシユ以下のシリカ粉末、325メツシユ以下
のモリブデン粉末、及び150メツシユ以下の各種
潤滑性ガラス粉末を次項表1に示す割合に混合
し、いづれも3t/cm2の圧力を加えて成型した後、
H2ガス雰囲気中で最高温度800℃に30分間加熱保
持し、次で、これを室温に冷却した後、6t/cm2
加圧力で再加圧してそれぞれの摩擦材料を製造し
た。 同表1に示した比較例1は、この発明で用いら
れる潤滑性の燐酸ガラス(G−3)の代りに鉛が
用いられたクラツチ用摩擦材料の代表例の組成で
あり、また、比較例2は、鉛添加による高温摩擦
(Industrial Application Field) This invention relates to inorganic friction materials such as metallic friction materials and cermet friction materials that do not contain organic components. When two objects move while maintaining contact with each other, movement such as sliding or rolling occurs on the contacting surfaces, and frictional force is generated there. Brakes and clutches are mechanical elements that actively utilize this frictional force. In the case of a brake, the frictional force generated between the two surfaces serves to stop the movement of two sliding surfaces. As a result, frictional heat is generated on the sliding surface. In other words, the brake plays the role of converting kinetic energy into thermal energy through frictional force. On the other hand, the role of a clutch is to apply kinetic energy to a stationary object by utilizing the frictional force acting on two surfaces that are in contact with each other. Expressed in another way, the clutch can be said to have the function of transmitting kinetic energy from one surface to the other through frictional force. From this, it can be seen that friction materials that are incorporated into mechanical elements such as brakes and clutches and that constitute one opposing surface are such that the sliding surfaces of the friction materials slide against each other while contacting the other surface. It plays the role of generating frictional force. In this way, friction materials are used by sliding on a mating surface while withstanding frictional heat and pressure, and therefore are required to have a relatively high and constant frictional force or coefficient of friction. In addition, the material must be able to minimize wear on not only itself but also the other surface. The present invention relates to improvements in friction materials suitable for use as friction pad materials for brakes, clutches, etc., as described above, and in particular, inorganic friction materials such as metallic friction materials and cermet friction materials. (Prior art) Most of the friction materials that have been used for brakes and clutches have heat-resistant asbestos fiber as an essential ingredient, and depending on the application, carbon powder, metal powder, metal oxide powder, etc. Composite materials were made by adding various powders such as rubber powder and nut shell powder, and hardening them with organic binders (often phenolic resins). However, as brakes and clutches become lighter and smaller, and their usage conditions become more severe, these materials are no longer able to meet social needs in terms of heat resistance and pressure resistance. Therefore, improvements in heat resistance and strength have been achieved through semi-metallic friction materials that contain a large amount of metal components, metallic friction materials that do not contain any organic components that have poor heat resistance, or cermets made of metal and ceramics. Inorganic friction materials such as friction materials have come to be used in some parts of brakes and clutches in place of the asbestos-based friction materials, despite their cost disadvantages. That is, on the contact surface between the friction material and the mating material, where the friction material and the mating material slide, a significant temperature increase due to frictional heat is observed. On the other hand, when objects come into contact, the contact between both surfaces is not uniform over the entire area due to the unevenness of the surfaces. Only part of it is being done. This is the so-called true contact point, and the true contact area is more important than the apparent contact area. In other words, high temperature and high pressure act on the real contact point during sliding. For this reason, heat resistance and strength are important in so-called dry friction without oil, which is said to be a harsh sliding process.
This is the reason why metallic friction materials and cermet friction materials that do not contain organic substances are preferred despite their high prices, as is the case with brake linings for aircraft and Shinkansen trains. The metallic friction materials and cermet friction materials mentioned above both have metal (copper alloy or iron alloy) as the basic material component, and solid lubricant components such as lead and graphite, and silica and alumina. It has a structure in which hard and heat-resistant ceramic components are dispersed and held. Among these, cermet friction materials are designed to meet this demand by reducing the amount of metal components and increasing the amount of non-metal components with high melting points in order to particularly improve heat resistance. Therefore, even though it is called a cermet friction material, it is not fundamentally different from a metallic friction material in terms of material structure. (Background of the Invention) Based on this recognition, if we pay attention to the role of the solid lubricant component in these materials, its action is due to the excessive increase in the true contact point of the two surfaces interposed in the sliding surface and in contact with each other. It can be seen that the purpose is to prevent increase and adjust the true contact area. What is frictional force?
This is due to the adhesion between the two surfaces at the real contact point and the digging action of the convex part of the other hard surface against the soft surface of the other, that is, "total friction force = adhesive friction force + digging “Frictional force” means that
This is a widely accepted truth. Of course, it is necessary for the friction material to have a high frictional force during sliding, but it is even more desirable that the frictional force be stable and, if possible, constant. For example, a sudden increase in the coefficient of friction just before the moving body comes to a standstill during braking causes chattering of the brakes, which causes abnormal vibrations just before the moving body comes to a stop. Also, 2 in clutch
A similar phenomenon immediately before the relative motion of the surfaces stops is also the cause of clutch swerving and rabbit-jumping phenomena. Therefore, it is strongly desired that the friction material has a coefficient of friction that is stable and has little fluctuation regardless of changes in sliding speed. The solid lubricant component contained in friction materials is an extremely important component added to improve performance. (Problems to be Solved by the Invention) The most common materials among solid lubricant components are lead and graphite. The lubricity of lead is due to its low shear force as a soft metal and its low solubility properties in metals. On the other hand, the lubricity of graphite is derived from its low shear force based on its crystalline layered structure and its low solubility in copper alloys. In particular, lead exhibits excellent lubricating properties from low temperatures to around 300°C, near its melting point. Furthermore, graphite exhibits a lubricating effect from low temperatures to high temperatures such as 1000°C. For this reason, most metallic and cermet friction materials contain lead and graphite, and the lubricating properties of lead are effective when sliding at relatively low temperatures of around 300℃, but at abnormally high temperatures. , a method has been adopted that relies exclusively on the lubricity of graphite. Note that technology regarding solid lubricants has recently progressed, and many excellent materials have been developed. especially,
MoS 2 , WSe, etc. are used for lubricated parts that cannot be lubricated with oil and for harsh sliding parts. Therefore, these solid lubricants have been applied to friction materials and have achieved good results. Solid lubricants are not only disadvantageous in terms of price, but also have poor lubricating properties because they react with metal components, which are the main constituents of friction materials (for example, in the case of copper alloys, 2Cu + MoS 2 → 2CuS + Mo). It was difficult to achieve sufficient performance, and it also had the disadvantage of embrittling the metal matrix and deteriorating the strength of the friction material. However, in the case of heat-resistant cermet friction materials used under harsh sliding conditions,
If it contains lead, it liquefies at high temperatures of 300°C or higher, causing the metal matrix to become brittle and reducing the strength of the friction material. For these reasons, various attempts have been made to find a solid lubricant that can replace lead and maintain a lubricating effect comparable to that of lead from low temperatures to high temperatures of 300°C or higher. Focusing on the fact that PbO has lubricating properties comparable to lead even at high temperatures of 300°C or higher, attempts have been made to incorporate PbO into it. but,
PbO also reacts with metal components (PbO + 2Cu → Pb + Cu 2 O)
However, it was difficult to achieve that goal. In order to prevent the reactivity of PbO, attempts have been made to dissolve SiO 2 into PbO and add it as a PbO-SiO 2 glass with a low melting point in order to lower the melting point.
No desired results have been obtained. Attempts to use the above-mentioned PbO-SiO 2 glass as a solid lubricant component have since been developed into various glasses. Following the precedent of glass lubricants for hot working of metals, many types of glass have been used. However, glass acts as extremely hard particles at low temperatures, so it has low-temperature lubricity for practical friction materials from room temperature to around 300℃.
A solid lubricant that can adequately replace lead has not yet been developed. (Means for Solving the Problems) The present invention aims to improve the importance of lubricating components in inorganic friction materials such as metallic friction materials and cermet friction materials. In other words, the purpose is to provide an inorganic friction material that can withstand harsh sliding conditions ranging from mild sliding conditions to high temperatures and pressures, and a wide range of usage conditions, and has a stable coefficient of friction and excellent wear resistance. do. (Structure) In order to achieve this objective, this invention has the following features:
A matrix of copper alloy or iron alloy, containing 10 to 20% by weight of graphite powder, 3 to 10% of phosphoric acid glass having the structure described below in place of lead contained in conventional materials, and further , Mullite (3Al 2 O 3・2SiO 2 ) or silica was used as a friction-increasing substance aiming at the digging effect of the surface of the mating material.
By containing up to 20%, a low shear material is formed that exhibits a favorable lubricating effect on sliding surfaces, and is capable of changing from low to high temperatures, from low speeds to high speeds, and from low to high surface pressures.
This provides the friction material with a stable coefficient of friction and excellent wear resistance over a wide range of sliding conditions. (Action of the invention) That is, the phosphoric acid glass used in this invention is
The softening temperature of the glass is low due to the addition of NaF.
Moreover, when the temperature rises to around 600° C. due to the action of Li 2 O contained in the glass, crystal precipitation progresses, thereby preventing the viscosity of the glass from rapidly decreasing as the temperature rises. The lubricating action of phosphoric acid glass, which has such viscosity characteristics, prevents the decrease in the friction coefficient and increase in wear of inorganic friction materials such as lead-derived metallic friction materials and cermet friction materials, which become noticeable at around 300℃. It becomes possible to do so. Furthermore, the sliding surface temperature increases due to frictional heat.
When the temperature exceeds 500 to 600°C, oxidation of both the friction material and the mating material becomes significant. As a result, depending on the composition, copper oxide, tin oxide, or iron oxide is formed from the friction material, and from the mating material, it is formed on the respective sliding surfaces. These metal oxides are mixed and kneaded with the softened phosphoric acid glass, together with the crushed graphite and ceramics separated by abrasion from the friction material, to form a low shear mixture that is present on the sliding surface. This mixture exhibits a lubricating effect due to its low shear properties, and in fact adjusts the contact area on the sliding surface and helps to stabilize the coefficient of friction. The sliding conditions have become even more severe and the sliding surface temperature has reached 1000°C.
℃, the oxidation of the friction material and the mating material proceeds further without waiting for the formation of the mixture, and a large amount of iron oxide, copper oxide, tin oxide, etc. is formed.
These metal oxides are exposed to high temperatures and pressures on sliding surfaces, becoming a fluid metal oxide mixture that also contains worn-out crushed graphite and ceramics, which are components of friction materials. A large amount of it will be present on the sliding surface. This means that
This means that the sliding surface is extensively covered with a low shear fluid material, which results in excessive lubrication and a significant drop in the coefficient of friction. However, in the friction material of this invention, Such a phenomenon of excessive lubrication does not occur because the phosphoric acid glass having the above characteristics is included as a lubricating component. Because a low-shear raw mixture containing phosphoric acid glass formed at 500-600℃ exists on the sliding surface and covers it thinly, oxidation of both the friction material and the mating material is prevented. This is because the amount of copper, tin oxide, etc. produced decreases, and as a result, the amount of the fluid metal oxide mixture, which increases as the temperature increases, decreases. Furthermore, in the phosphoric acid glass of this invention, crystallization of the glass proceeds from around 600℃ due to the action of Li 2 O present in it, so the temperature of the low-shear mixture formed on the sliding surface increases. On the contrary, the viscosity increases and there is no significant decrease in shearing force. As a result, a mixture mainly composed of metal oxides such as iron oxide, copper oxide, and tin oxide, which is formed in the absence of phosphoric acid glass, which is a feature of this invention, is produced in large amounts and in addition to the total sintering. There is no excessive lubrication that coats the moving surfaces. In other words, a desirable proportion of the actual contact area is ensured and there is no decrease in frictional force. In other words, even if the sliding surface reaches a high temperature of around 1000°C due to severe sliding conditions, it is possible to prevent the coefficient of friction from decreasing. (Embodiments of the Invention) In describing the embodiments below, details of the friction material according to the present invention and reasons for selecting the composition range will be described first. As mentioned above, the inventors used a copper alloy or iron alloy as a matrix containing 10 to 20% by weight of graphite powder and 3 to 10% of phosphoric acid glass having the structure described below. Furthermore, by containing 3 to 20% of mullite (3Al 2 O 3・2SiO 2 ) or silica as a friction-increasing substance aiming at the effect of digging up the surface of the mating material, a favorable lubricating effect is achieved on the sliding surface. By forming a low shear material that exhibits the same properties as above, the friction material has a stable coefficient of friction and excellent wear resistance over a wide range of sliding conditions, from low to high temperatures, low to high speeds, and low to high surface pressure. He succeeded in giving. In other words, graphite is an extremely important lubricating component in inorganic friction materials that do not contain lead, and by containing 10 to 20% of this graphite, lubrication from a static low temperature to around 600℃ is achieved by graphite. Not only does it share most of the heat, but at temperatures higher than that, it exhibits a lubricating effect in cooperation with phosphoric acid glass, which will be described later.
Note that if it is less than 10%, the lubrication effect will be insufficient.
In addition, if it exceeds 20%, the strength of the friction material itself decreases,
As the coefficient of friction decreases, the wear resistance also deteriorates. Precipitable phosphoric acid glass softens at around 400°C and acts as a low shear lubricating component, especially at 600°C.
It plays a role in maintaining favorable lubrication performance from around ℃ to 1000℃ through its cooperative action with graphite. Conventionally, the glassy lubricant component added is
Although the lubrication effect becomes noticeable near the softening point,
On the other hand, since the viscosity decreases as the temperature rises, it has been impossible for the viscosity to intervene on the sliding surface and maintain a desirable lubricating effect. This results in
In particular, there were drawbacks such as a decrease in the coefficient of friction and an increase in wear at high temperatures. In order to eliminate the above drawbacks and exhibit a preferable lubricating effect, in the present invention, the glass is composed of three components, P 2 O 5 , B 2 O 3 and Al 2 O 3 , and Na is added to the glass. 2 was added to lower the softening temperature, and NaF was added to improve the fluidity of the glass, making it possible to exhibit lubricating effects from low temperatures around 400°C. Also,
By adding Li 2 O, crystals are precipitated from around 600℃, preventing the decrease in glass viscosity caused by temperature rise, and increasing the temperature to 1000℃.
We succeeded in maintaining the lubricating effect at temperatures as high as ℃. The above-mentioned high temperature lubricity glass components include 25 to 35% P 2 O 5 , 20 to 30% B 2 O 3 , and
Al 2 O 3 10-20%, Na 2 O 4-10%, Li 2 O 4
-10%, NaF 2-6%, ZnO 1-5%, and one or more alkaline earth metal oxides 3-15%. Among the above components, P 2 O 5 is a glass network forming component, and if it is less than 25%, the softening temperature becomes high, and if it exceeds 35%, water resistance deteriorates and practicality is lost. B 2 O 3 is also a glass network forming component and contains 20%
If the softening temperature is below 30%, the softening temperature will be high, and if it exceeds 30%, the water resistance will decrease. Al 2 O 3 is also a network forming component of glass, and if it is less than 10%, water resistance is insufficient, and if it is more than 20%, the softening temperature increases and fluidity decreases. The above components constitute a low melting point glass that does not contain SiO 2 . The purpose of adding Na 2 O is to lower the softening temperature, increase the fluidity of the glass, improve wettability to metal surfaces, and improve lubricity, but if it is less than 4% it has no effect, and if it exceeds 10% Water resistance deteriorates. Li2O
is a component that promotes the crystallization of phosphoric acid glass, and if it is less than 4%, it has no effect, but if it exceeds 10%, it increases the hardness of the glass and damages the mating material at low temperatures below 400°C, which is not desirable. . Also,
NaF plays a role in improving the fluidity of glass, but if it is less than 2%, it has no effect, and if it exceeds 6%, the water resistance decreases. MgO, CaO, and BaO are preferred as alkaline earth metal oxides and have the effect of widening the vitrification temperature range, but if it is less than 3%, water resistance deteriorates, and if it exceeds 15%, the softening temperature increases and the lubricating effect is reduced. decreases. ZnO stabilizes the B 2 O 3 component in the phosphoric acid glass, but if it is less than 1%, there is no effect when added, and if it is more than 5%, the softening temperature increases and the fluidity decreases. The role of mullite or silica is to contribute to an increase in the coefficient of friction and an improvement in heat resistance due to the digging action of the friction material on the opposing surface. If it is less than 3%, the effect of addition is poor, and if it is more than 20%, it increases the aggressiveness toward the mating material and increases the wear of the mating material, which is undesirable. Example 1 Copper powder of 200 mesh or less, tin powder of 200 mesh or less, graphite powder of 100 mesh or less, lead powder of 100 mesh or less, mullite powder of 100 mesh or less,
Silica powder of 200 mesh or less, molybdenum powder of 325 mesh or less, and various lubricating glass powders of 150 mesh or less are mixed in the proportions shown in Table 1 below, and after molding by applying a pressure of 3 t/cm 2 to each,
Each friction material was manufactured by heating and holding the sample at a maximum temperature of 800° C. for 30 minutes in an H 2 gas atmosphere, then cooling it to room temperature, and then pressurizing it again with a pressure of 6 t/cm 2 . Comparative Example 1 shown in Table 1 is a typical composition of a friction material for a clutch in which lead is used instead of lubricating phosphoric acid glass (G-3) used in the present invention. 2. High temperature friction due to lead addition

【表】【table】

【表】【table】

【表】 性能の劣化を防いだ重負荷のクラツチ用摩擦材料
として広く使用されている組成である。それに対
し、比較例3及び4は、この発明に至るまでの試
作品の組成で、これらはいづれも発明品と同一条
件で製造した。また、この発明で使用した潤滑性
のガラス成分G−3、及び比較例として使用した
他の潤滑性ガラス成分組成表を頁21の表2に示し
た。表2中の比較例1は、PbO−SiO2ガラスで
あり、比較例2と3は、この発明に至るまでの試
作ガラスである。 実施例で得られた試料について、鋳鉄(FC−
25材)製デイスクを相手材とし、摺動速度20m/
s、荷重7.5Kg/cm2、摺動温度200℃の条件で25秒
間摺動させ、5秒間摺動を休止させる一連の操作
を50回反復する摩擦試験を行い、その性能を比較
した結果を19頁の表3に示した。この表3から明
らかなように、この発明による摩擦材料は、潤滑
が適度に行われているために摩擦係数が0.48と高
いにも拘らず安定した値を示し、摩耗は、摩擦材
料自身と相手材ともに少ない。
[Table] This composition is widely used as a friction material for heavy-load clutches that prevents performance deterioration. On the other hand, Comparative Examples 3 and 4 have the compositions of prototype products up to the present invention, and both were manufactured under the same conditions as the invented product. Table 2 on page 21 shows the composition of the lubricating glass component G-3 used in this invention and other lubricating glass components used as comparative examples. Comparative Example 1 in Table 2 is PbO-SiO 2 glass, and Comparative Examples 2 and 3 are trial glasses made up to the present invention. Regarding the samples obtained in the examples, cast iron (FC-
25 material) was used as the mating material, and the sliding speed was 20 m/
A friction test was conducted in which the series of operations of sliding for 25 seconds and pausing for 5 seconds was repeated 50 times at a load of 7.5Kg/cm 2 and a sliding temperature of 200℃, and the performance was compared. It is shown in Table 3 on page 19. As is clear from Table 3, the friction material according to the present invention exhibits a stable value even though the coefficient of friction is as high as 0.48 due to appropriate lubrication, and the wear is caused by the wear of the friction material itself and the friction material. Both materials are scarce.

【表】 これに対し、比較例1の摩擦材料は、鉛の溶解
のため摩擦係数が低下し、相手材への摩擦材料の
擬着もあつて摩耗も比較的多く、また、比較例2
の摩擦材料は、無鉛のため耐熱性がありかつ摩擦
係数も高いが、潤滑作用が不足し、摩擦係数の変
動が激しく、相手材の摩耗も多い。さらに比較例
3の摩擦材料は、潤滑成分として加えた鉛量を減
らして4%としたため、低温域での鉛による潤滑
が不十分となつた。また、300℃を越えると鉛の
溶解のため摩擦材料の強度が低下した。そのた
め、摩擦材料の摩耗も増え、摩擦係数は低下し、
その変動も激しくなつた。すなわち、この材料に
加えたPbO−SiO2ガラスの潤滑作用は期待した
効果を示さなかつた。比較例4の摩擦材料は、こ
の発明に達する直前の試作組成で、燐酸ガラスの
添加による潤滑性能改善の効果はかなり認めら
れ、摩擦係数も0.45と比較的高く、安定した値が
得られたが、相手材に対する攻撃性が若干残り
(スクラツチの発生)、摩耗量も予想以上に多かつ
た。 実施例 2 200メツシユ以下の銅粉、200メツシユ以下の錫
粉、150メツシユ以下の鉄粉末、100メツシユ以下
の黒鉛粉末、100メツシユ以下の鉛粉末、325メツ
シユ以下のモリブデン粉末、及び前記21頁の表2
に示した組成をもつ150メツシユ以下の各種潤滑
性ガラス粉末を次項の表4に示す割合に混合し、
いづれも3t/cm2の圧力を加えて成型した後、H2
ガス雰囲気中で最高温度1000℃に30分間加熱保持
し、次で、室温まで冷却した後に6t/cm2の加圧力
で再加圧し、この発明による摩擦材料を製造し
た。 同24頁の表4に示した比較例1は、この発明の
摩擦材料において用いられた潤滑性の燐酸ガラス
G−3の代りに鉛が用いられたデイスクブレーキ
パツド用摩擦材料の例であり、比較例2は鉛を含
有しない耐熱性の重負荷クラツチ用の摩擦材料と
して使用されているものである。また、比較品3
と4は、この発明に至るまでの試作品組成であ
り、これらはいづれも、この発明による摩擦材料
と同一条件で製造した。
[Table] On the other hand, in the friction material of Comparative Example 1, the friction coefficient decreased due to the dissolution of lead, and the friction material adhered to the mating material, resulting in relatively high wear.
Because the friction material is lead-free, it is heat resistant and has a high coefficient of friction, but it lacks lubricating action, has large fluctuations in the coefficient of friction, and causes a lot of wear on the mating material. Further, in the friction material of Comparative Example 3, the amount of lead added as a lubricating component was reduced to 4%, so lubrication by lead became insufficient in a low temperature range. Furthermore, when the temperature exceeded 300°C, the strength of the friction material decreased due to the dissolution of lead. As a result, wear of the friction material increases, and the coefficient of friction decreases.
The fluctuations have also become more intense. That is, the lubricating effect of PbO-SiO 2 glass added to this material did not have the expected effect. The friction material of Comparative Example 4 had a prototype composition just before reaching the present invention, and the effect of improving the lubricating performance by adding phosphoric acid glass was considerably recognized, and the coefficient of friction was also relatively high at 0.45, and a stable value was obtained. However, there remained some aggressiveness towards the mating material (occurrence of scratches), and the amount of wear was greater than expected. Example 2 Copper powder of 200 meshes or less, tin powder of 200 meshes or less, iron powder of 150 meshes or less, graphite powder of 100 meshes or less, lead powder of 100 meshes or less, molybdenum powder of 325 meshes or less, and the Table 2
Mix various lubricating glass powders of 150 mesh or less with the composition shown in the ratio shown in Table 4 below,
After molding with a pressure of 3t/ cm2 , H2
The friction material according to the present invention was manufactured by heating and holding the material at a maximum temperature of 1000° C. for 30 minutes in a gas atmosphere, and then cooling it to room temperature and then pressurizing it again with a pressure of 6 t/cm 2 . Comparative Example 1 shown in Table 4 on page 24 is an example of a friction material for disc brake pads in which lead was used in place of the lubricating phosphoric acid glass G-3 used in the friction material of the present invention. , Comparative Example 2 is a heat-resistant friction material for a heavy-load clutch that does not contain lead. Also, comparison product 3
and 4 are the compositions of prototype products developed up to the present invention, and these were all manufactured under the same conditions as the friction material according to the present invention.

【表】【table】

【表】 この実施例で得られた試料については、鋳鉄製
(FC−25材)デイスクを相手材とし、実施例1で
行つた試験と同一条件の下で摩擦試験を行い、そ
の性能を評価した結果を前頁の表5に示す。比較
例1は、鉛潤滑による低温摩擦の安定を狙つた製
品であるが、摺動面温度が300℃を越えると前記
実施例1における比較例1の鉛潤滑の場合と同様
に摩擦係数が低下し、相手材に対する摩擦材料の
転移が認められた。比較例2は、鉛を除去して黒
鉛のみの潤滑とした耐熱性の優れた摩擦材料であ
る。但し、潤滑成分が不足するために相手材の摩
耗が多く、摩擦係数は比較的変動が多かつた。比
較例3は、PbO−SiO2系のガラスによる潤滑性
能の改善を図つた試作品であるが、期待した効果
が得られず、初期摩耗の段階で相手材に対する攻
撃性がみられ、その結果、相手材にスクラツチ痕
が発生し、摩擦材料の摩耗も多くなつた。比較例
4は、試作段階にあつた燐酸ガラスG−2により
潤滑性能の向上を図つたもので、摩擦係数の点で
かなり改善効果はあつたが、まだ潤滑が不足して
摩耗も比較的多く、相手材にスクラツチの発生が
みられた。それに対し、これらの比較例に比べて
この発明による摩擦材料は、燐酸ガラスG−3に
よる潤滑効果が顕著であつて高い摩擦係数が得ら
れ、摩耗の点でも摩擦材料、相手材とも減少し
た。 (発明の効果) 以上のように、この発明によれば、穏やかな摺
動条件から高温、高圧の出現する過酷な摺動条件
と広い使用条件に亘り、安定した摩擦係数と優れ
た耐摩耗性とを備えた摺動摩擦材料を提供するこ
とが可能となつたのである。
[Table] The sample obtained in this example was subjected to a friction test using a cast iron (FC-25 material) disk as a counterpart material under the same conditions as the test conducted in Example 1, and its performance was evaluated. The results are shown in Table 5 on the previous page. Comparative Example 1 is a product that aims to stabilize low-temperature friction through lead lubrication, but when the sliding surface temperature exceeds 300°C, the friction coefficient decreases as in the case of lead lubrication in Comparative Example 1 in Example 1. However, transfer of the friction material to the mating material was observed. Comparative Example 2 is a friction material with excellent heat resistance in which lead has been removed and lubricant is only graphite. However, due to the lack of lubricating components, there was a lot of wear on the mating material, and the friction coefficient fluctuated relatively frequently. Comparative Example 3 is a prototype that aims to improve the lubrication performance using PbO-SiO 2 glass, but the expected effect was not obtained and aggressiveness towards the mating material was observed at the initial wear stage, resulting in , scratch marks were generated on the mating material, and the wear of the friction material increased. In Comparative Example 4, the lubrication performance was improved using phosphoric acid glass G-2, which was in the prototype stage, and although there was a considerable improvement in terms of the coefficient of friction, lubrication was still insufficient and wear was relatively high. , scratches were observed on the mating material. On the other hand, compared to these comparative examples, the friction material according to the present invention had a remarkable lubricating effect due to the phosphoric acid glass G-3, and a high coefficient of friction was obtained, and the wear of both the friction material and the mating material was reduced. (Effects of the Invention) As described above, according to the present invention, a stable coefficient of friction and excellent wear resistance can be achieved over a wide range of usage conditions, from gentle sliding conditions to harsh sliding conditions with high temperatures and pressures. It has now become possible to provide a sliding friction material having the following features.

Claims (1)

【特許請求の範囲】[Claims] 1 金属マトリツクスが銅合金または鉄合金から
なるメタリツク摩擦材或いはサーメツト摩擦材に
おいて、重量パーセント表示でP2O5が25〜35%、
B2O3が20〜30%、Al2O3が10〜20%、Na2Oが4
〜10%、Li2Oが4〜10%、NaFが2〜6%、
ZnOが1〜5%、アルカリ土類金属酸化物の1種
以上が3〜15%の組成からなる潤滑性ガラスを3
〜10%、黒鉛を10〜20%、シリカ或いはムライト
を3〜20%含有させたことを特徴とする無機摩擦
材料。
1 In a metallic friction material or a cermet friction material in which the metal matrix is made of a copper alloy or an iron alloy, P 2 O 5 is 25 to 35% expressed as a weight percentage,
20-30 % B2O3 , 10-20% Al2O3 , 4% Na2O
~10%, Li2O 4-10%, NaF 2-6%,
Lubricating glass with a composition of 1 to 5% ZnO and 3 to 15% of one or more alkaline earth metal oxides
An inorganic friction material characterized by containing ~10% graphite, 10~20% graphite, and 3~20% silica or mullite.
JP13289185A 1985-05-20 1985-05-20 Inorganic friction material Granted JPS61266542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13289185A JPS61266542A (en) 1985-05-20 1985-05-20 Inorganic friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13289185A JPS61266542A (en) 1985-05-20 1985-05-20 Inorganic friction material

Publications (2)

Publication Number Publication Date
JPS61266542A JPS61266542A (en) 1986-11-26
JPH0524214B2 true JPH0524214B2 (en) 1993-04-07

Family

ID=15091968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13289185A Granted JPS61266542A (en) 1985-05-20 1985-05-20 Inorganic friction material

Country Status (1)

Country Link
JP (1) JPS61266542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586408U (en) * 1992-05-08 1993-11-22 ユキワ精工株式会社 Collet chuck holder

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2905730B2 (en) * 1995-10-20 1999-06-14 東京窯業株式会社 Brake lining material for crane motor
JP2905731B2 (en) * 1995-10-20 1999-06-14 東京窯業株式会社 Brake lining material for tilting motor
JP2905732B2 (en) * 1995-10-20 1999-06-14 東京窯業株式会社 Brake lining material for conveyor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586408U (en) * 1992-05-08 1993-11-22 ユキワ精工株式会社 Collet chuck holder

Also Published As

Publication number Publication date
JPS61266542A (en) 1986-11-26

Similar Documents

Publication Publication Date Title
JP5716494B2 (en) Sintered friction material for high-speed railway
JP5189333B2 (en) Amorphous composite alkali metal titanate composition and friction material
EP1291542B1 (en) Non-asbestos-based friction materials
CN107523716B (en) Sintered friction material for friction linings
CN101823856A (en) Copper-free ceramic friction material with little falling ash and preparation method thereof
WO2016190403A1 (en) Sintered friction material for high speed railway vehicles and method for manufacturing same
JPH08100227A (en) Sintered sliding member
US3844800A (en) Friction material
EP1482204A1 (en) Friction material
JPH0524214B2 (en)
CN113444915A (en) Low-cost copper-based powder metallurgy friction material and preparation method thereof
US4274874A (en) Copper-tin type sintered alloy for oil-impregnated bearing excellent in bearing performance as bearing used in low-load and high-velocity region
CN112538393A (en) Lubricant for hot extrusion molding of titanium alloy pipe and preparation method and application thereof
US3370006A (en) Bearings
JPS63109131A (en) Friction material of sintered alloy
US6004370A (en) Sintered friction material
US5346634A (en) Lubricant composition for hot plastic working
JP2983186B2 (en) Self-lubricating composite material
US4350530A (en) Sintered alloy for friction materials
KR100190324B1 (en) Cu sintering alloy
CN112646428B (en) Coating for converter slag-stopping sliding plate brick and preparation method thereof
JPH1060466A (en) Self-lubricant composite material
KR0185277B1 (en) Sintered metal brake lining for a railway car
JPH07102335A (en) Sintered sliding member
JPS5940221B2 (en) Sintered iron-based friction material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees