JPH05241217A - Second harmonic wave generating element - Google Patents

Second harmonic wave generating element

Info

Publication number
JPH05241217A
JPH05241217A JP7848392A JP7848392A JPH05241217A JP H05241217 A JPH05241217 A JP H05241217A JP 7848392 A JP7848392 A JP 7848392A JP 7848392 A JP7848392 A JP 7848392A JP H05241217 A JPH05241217 A JP H05241217A
Authority
JP
Japan
Prior art keywords
lattice
crystal
polarization inversion
domain
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7848392A
Other languages
Japanese (ja)
Inventor
Satoshi Makio
諭 牧尾
Fumio Nitanda
文雄 二反田
Kohei Ito
康平 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7848392A priority Critical patent/JPH05241217A/en
Priority to US08/008,310 priority patent/US5412502A/en
Publication of JPH05241217A publication Critical patent/JPH05241217A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To provide the second harmonic wave generation (SHG) element which is highly efficient in SHG of blue light by using a substrate for which periodic planar spike polarization inversion gratings are used as a monolithic ring resonator. CONSTITUTION:Proton exchange layer of grating patterns are formed on the surface of the LiTaO3 crystal 11 in order to form the planar spike polarization inversion gratings 12 on the surface of the crystal. The substrate is subjected to a heat treatment within 10 minutes holding time at >=200 deg.C after the formation of the patterns. The heat treatment is executed at >=50 deg.C/min temp. gradient up to the heat treatment temp. and >=50 deg.C/min temp. falling rate from the heat treatment temp., by which the planar spike polarization inversion gratings 12 are produced. The monolithic ring resonator is constituted by subjecting both end faces of the crystal to parabolic mirror processing, by which the blue SHG element having high efficiency is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非線形強誘電体光学材料
であるLiTaO3やLiNbO3結晶を用いた第2高調
波発生素子(以下SHG素子)におけるSHG素子の高
効率化に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high efficiency SHG element in a second harmonic generation element (hereinafter referred to as SHG element) using a LiTaO 3 or LiNbO 3 crystal which is a nonlinear ferroelectric optical material.

【0002】[0002]

【従来の技術】近年、小型軽量の青色光源として、波長
830nmの半導体レーザを導波路型のSHG素子で半
分の波長415nmの青色の光に変換することが注目さ
れている。例えば特開昭61−18934公報に記載さ
れているようにLiNbO3結晶上にプロトン交換法
(LiNbO3のLiイオンとプロトンを一部置換して
光導波路を形成する方法)により光導波路を形成し、上
記光導波路の一端に基本波を入射し、チェレンコフ放射
によりSHG光を発生させることが提案させている。こ
れを図2に示す。さらに最近では例えばElectronics Le
tters,25,11(1989年)の第731〜732頁で論
じられているように、分極反転を用いて位相整合を行う
方法が提案された。すなわち図3に示すようにLiNb
3結晶上にTi拡散によって周期格子を作製し、約1
100℃に加熱して周期格子層だけの分極を反転させ、
その後プロトン交換法によって光導波路を作製し、基本
波を入射しSHG光を取り出すものである。LiTaO
3結晶を用いる場合には例えばAppl.Phys.Lett.58(24)
(1991年)第2732〜2734頁で論じられてい
るようにTi拡散の替わりにプロトン交換法によって周
期格子を作製し、約600℃に加熱し周期格子層だけ分
極を反転させ、さらにプロトン交換法によって光導波路
を作製する方法も試みられている。これを図4に示す。
またIEEE J.QuantumElectron.,vol.QE-24(1988
年)の第913〜919頁で論じられているように共振
器内に非線形結晶であるLiNbO3を挿入し、角度お
よび温度整合によりSHG光を得る方法も試みられてい
る。これを図6に示す。
2. Description of the Related Art Recently, as a compact and lightweight blue light source, attention has been paid to converting a semiconductor laser having a wavelength of 830 nm into blue light having a wavelength of 415 nm, which is half that of a semiconductor laser. For example, as described in JP-A-61-18934, an optical waveguide is formed on a LiNbO 3 crystal by a proton exchange method (a method of partially replacing Li ions and protons of LiNbO 3 to form an optical waveguide). It is proposed that the fundamental wave be incident on one end of the optical waveguide and SHG light be generated by Cherenkov radiation. This is shown in FIG. More recently, for example, Electronics Le
As discussed in Tters, 25, 11 (1989), pages 731-732, a method of performing phase matching using polarization reversal has been proposed. That is, as shown in FIG.
O 3 to produce a periodic grating by Ti diffusion on the crystal, about 1
It is heated to 100 ℃ and the polarization of the periodic lattice layer is reversed.
After that, an optical waveguide is produced by the proton exchange method, and the fundamental wave is incident to take out SHG light. LiTaO
When using 3 crystals, for example, Appl.Phys.Lett.58 (24)
(1991) As discussed on pages 2732 to 2734, a periodic lattice was prepared by a proton exchange method instead of Ti diffusion, heated to about 600 ° C. to invert the polarization of only the periodic lattice layer, and further the proton exchange method. A method of manufacturing an optical waveguide has also been attempted. This is shown in FIG.
IEEE J. Quantum Electron., Vol. QE-24 (1988)
(1993), pages 913 to 919, a method of obtaining SHG light by angle and temperature matching by inserting LiNbO 3 which is a non-linear crystal in a resonator has been attempted. This is shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術には、次に示すような問題点があった。図2に示
すチェレンコフ放射を用いる方法では22に示すように
発生するSHG光のビーム形状が三日月型となり、極め
て波面収差が大きく、これを回折限界まで絞り込むこと
はほとんど不可能である。上記例に対して新しく提案さ
れた図3、4に示す分極反転を用いて位相整合を行う方
法はSHG光がコリメートされた光であるため、チェレ
ンコフ放射光と比較して集光が極めて容易であるという
利点を持つ。しかし、分極反転格子の断面形状が、Ti
拡散法で形成されたものは31に示すように三角形であ
り、プロトン交換法では41に示すように半円形である
ため、理想的な矩型断面の分極反転格子を持つSHG素
子本来の効率でSHG光を発生できていない。図6で示
す構成において結晶21の両端面は放物線ミラー加工さ
れており、13の内面による全反射によりモノリシック
リング共振器を形成している。LiNbO3結晶21内
で実線で表される光路内で位相整合によりSHG光17
を得るものである。この構造ではバルク結晶の常光と異
常光の屈折率分散の差を利用するもので非線形光学係数
のd31を用い、最も大きなd33を用いることができず、
LiNbO3結晶21を用いた場合、青色SHG光では
なく緑色SHGしか得られない。また、温度許容幅が
0.7℃・cmと非常に小さく107℃の高温で位相整
合させるためヒーター22内に納めることが必要である
こと等が問題である。 本発明の目的は周期的な面状の
分極反転格子結晶をモノリシックリング共振器とするこ
とで青色SHGを高効率で得られるSHG素子を実現す
ることにある。
However, the above-mentioned prior art has the following problems. In the method using Cherenkov radiation shown in FIG. 2, the beam shape of the SHG light generated as shown by 22 is crescent-shaped, and the wavefront aberration is extremely large, and it is almost impossible to narrow it down to the diffraction limit. The method for performing phase matching using polarization reversal shown in FIGS. 3 and 4 newly proposed for the above example is light in which SHG light is collimated, and therefore it is extremely easy to collect light as compared with Cherenkov radiation. Has the advantage of being. However, the cross-sectional shape of the domain-inverted lattice is Ti
Since the one formed by the diffusion method is triangular as shown by 31 and the semicircle as shown by 41 by the proton exchange method, the SHG element having the ideal polarization reversal grating of the rectangular cross section has the original efficiency. SHG light cannot be generated. In the structure shown in FIG. 6, both end surfaces of the crystal 21 are parabolic mirror processed, and a total reflection by the inner surface of 13 forms a monolithic ring resonator. In the LiNbO 3 crystal 21, the SHG light 17 is generated by phase matching in the optical path represented by the solid line.
Is what you get. In this structure, the difference in refractive index dispersion between the ordinary light and the extraordinary light of the bulk crystal is used, and the non-linear optical coefficient d 31 is used, and the largest d 33 cannot be used.
When the LiNbO 3 crystal 21 is used, only green SHG is obtained instead of blue SHG light. Further, there is a problem in that the temperature allowable width is as very small as 0.7 ° C. · cm and it is necessary to store it in the heater 22 for phase matching at a high temperature of 107 ° C. An object of the present invention is to realize an SHG element that can obtain blue SHG with high efficiency by using a periodic plane-shaped domain-inverted lattice crystal as a monolithic ring resonator.

【0004】[0004]

【課題を解決するための手段】本発明の目的は図1に示
すように周期的に面状の分極反転格子結晶を用いモノリ
シックリング共振器を形成することで高効率の青色SH
G光を発生させることにある。LiTaO3またはLi
NbO3結晶におけるスパイク状分域の存在は、例えば
J.Appl.Phys.vol.46,No.3(1975年)の1063頁
に見られるように良く知られていたが、これまでスパイ
ク状分域を制御する手段はなかった。本発明はこのスパ
イク状分域の生成を人為的に制御することで、結晶のc
軸方向に垂直に延びる性質を利用して、高効率SHG素
子を達成するというものである。そこで我々はスパイク
状分域領域が出現する条件について検討したところ、L
iTaO3またはLiNbO3結晶が比較的急速な熱履歴
を受けたときにスパイク状分域領域が多く出現すること
を見いだした。このことは急速な熱変化に対応して分極
の大きさが急激に変化し、そのため分域壁周辺に実効的
な電界が発生するためであり、このためスパイク状分域
が分極の方向であるc軸に沿って成長するものと考えら
れる。このため同様の現象は熱変化だけでなく例えば応
力によってもスパイク状分域を生成できる可能性がある
と考えられる。もし分域の芽を周期的に形成すれば、こ
のスパイク状分域を周期的に配置することができると考
えるに至った。分域の芽としては、局所的に分極の大き
さあるいはその向きが周辺部分と異なった領域が分域の
芽となりうる可能性があると考えられる。以上の考えに
基づき、LiTaO3またはLiNbO3結晶に面状の周
期的スパイク状分極反転格子を形成するために、結晶表
面に周期的な格子パタ−ンを形成後、適当な昇降温速度
で熱処理を行い周期的なスパイク状の分極反転格子を発
現せしめ、それを用いてモノリシックリング共振器を形
成することで高効率のSHG素子を実現できると考え
た。また分極反転格子の幅は使用する光の波長によって
選ばれるがほぼ1μm以上10μm以下の範囲で表面に
形成した分域の芽領域の幅とほぼ等しくすることにより
望ましい矩型状の分極反転格子が実現できる。前記スパ
イク状分極反転格子は結晶表面より内部方向に形成さ
れ、その先端が単一ないし複数のスパイクの集まりで、
また深さが結晶の厚さより小さく位相整合する部分以外
には分極反転格子がないことを特徴としている。
The object of the present invention is to provide a highly efficient blue SH by forming a monolithic ring resonator using periodically plane-inverted lattice crystals as shown in FIG.
G light is generated. LiTaO 3 or Li
The existence of spike domains in NbO 3 crystals is
As is well known, as seen on page 1063 of J. Appl. Phys. Vol. 46, No. 3 (1975), there has been no means to control spike-shaped domains. The present invention artificially controls the generation of this spike-shaped domain, and
A high-efficiency SHG element is achieved by utilizing the property of extending perpendicularly to the axial direction. Therefore, we examined the conditions under which the spike-shaped domain region appears and found that L
It has been found that many spike-like domain regions appear when the iTaO 3 or LiNbO 3 crystal undergoes a relatively rapid thermal history. This is because the magnitude of polarization changes abruptly in response to a rapid thermal change, and an effective electric field is generated around the domain wall. Therefore, the spike domain is the direction of polarization. It is considered to grow along the c-axis. Therefore, it is considered that the same phenomenon may possibly generate spike-like domains not only due to thermal change but also due to stress, for example. We have come to think that this spike-shaped domain can be arranged periodically if the domain buds are formed periodically. It is conceivable that the bud of the domain may be a bud of the domain in which the magnitude or direction of polarization locally differs from that of the peripheral portion. Based on the above idea, in order to form a plane periodic spike-shaped polarization inversion lattice in the LiTaO 3 or LiNbO 3 crystal, after forming a periodic lattice pattern on the crystal surface, heat treatment at an appropriate temperature rising / falling rate. It was thought that a highly efficient SHG element could be realized by performing a periodical spike-shaped polarization inversion grating and forming a monolithic ring resonator using it. The width of the polarization inversion grating is selected according to the wavelength of the light to be used, but by making it approximately equal to the width of the bud region of the domain formed on the surface in the range of approximately 1 μm or more and 10 μm or less, a desirable rectangular polarization inversion grating can be obtained. realizable. The spike-shaped polarization inversion lattice is formed inward from the crystal surface, and its tip is a collection of a single or a plurality of spikes,
Further, it is characterized in that there is no domain-inverted lattice other than the portion where the depth is smaller than the crystal thickness and the phase is matched.

【0005】[0005]

【実施例】以下、本発明の実施例について詳しく説明す
る。図1は本発明によるSHG素子の実施例を示す構成
および動作説明図、図5(a)〜(g)は上記SHG素
子の製造工程を示す図である。図7はスパイク状分極反
転格子を示す写真である。図1において、11は表面が
−c面であるLiTaO3単結晶基板で自発分極の向き
は下向きである。12は分極がスパイク状に反転された
部分で、この部分では分極の向きは上向きである。M.Di
domenico Jr.らの文献 Journal of Applied Physics Vo
l.40, No.2 720〜734頁によると非線形光学係数
の符号はLiNbO3またはLiTaO3等の空間群R3
cの強誘電体結晶の場合自発分極の向きと一致する。従
って、本実施例の結晶の非線形光学係数d33も周期的に
反転されているといえる。この構成において結晶11の
両端面は放物線ミラー加工されており、13の内面によ
る全反射によりモノリシックリング共振器を形成してい
る。結晶11内で実線で表される光路内で位相整合によ
りSHG光17を得るものである。この構成においてS
HG出射側ミラー16の表面は基本波を反射しSHG光
は透過する誘電体多層膜を形成している。14は入射基
本波で結晶表面に垂直方向に偏光している。15は結晶
内部で発生したSHG光であり結晶表面に垂直な方向に
偏光している。次に、本発明の分極反転格子の形成方法
を図5を用いて説明する。図5(a)に示すようにLi
TaO3結晶の−Z(c)面を使用するレーザ光波長λ
の1/10程度まで研磨した結晶11を用意する。
(b)11の−Z面上にTa膜51を30nmスパッタ
リングで成膜する。(c)51膜上にホトレジスト52
をスピンコートし、分極反転12を行う部分が窓あけさ
れたホトマスクを用い、通常のホトリソグラフィ技術に
よりホトレジスト52のパターニングを行った。ホトマ
スクのパタ−ン周期は1〜10μmで発生させるSHG
光の周期に合わせてある。(d)パターニングしたホト
レジスト52をマスクとして、CF3Clガスを用いた
RIEによるドライエッチングにより、Ta膜51をパ
ターニングする。(e)ホトレジスト52をアセトンに
より除去し、ピロ燐酸を用いてプロトン交換を260
℃、30〜60分で行うことで、53のプロトン交換層
が形成される。(f)Ta膜51をNaOHの水溶液で
エッチングする。(g)上記53のプロトン交換層が形
成された結晶を電気炉に挿入し、熱処理を行うことでス
パイク状分極反転層12を形成させる。熱処理条件は温
度540℃で保持時間0.5分、熱処理温度までの昇温
速度を50℃/分以上で行い、熱処理温度からの降温速
度を50℃/分以上で行うことによりスパイク状分極反
転格子12が作製できた。その深さは結晶表面に形成さ
れるプロトン交換格子パタ−ン深さより大きく結晶厚さ
より小さかった。またその幅はプロトン交換パタ−ンの
幅とほぼ等しい。この結晶の両端面を放物線ミラー加工
する事でモノリシックリング共振器が形成される。図7
は作製されたスパイク状分極反転格子の断面写真であ
る。以上示した作製方法で面状スパイク分極反転格子を
作製し、光の入射端面を放物線ミラー研磨し、素子長1
0mmのモノリシックリング共振器SHG素子を作製し
た。作製したSHG素子に波長830nmの基本波を入
射したところ、415nmの青色SHG光が得られた。
この時のSHG光出力は0.5mWであり、SHG効率
は5%であった。このことにより、面状スパイク分極反
転格子を用いることが高効率のSHG素子に有用である
ことが分かった。
EXAMPLES Examples of the present invention will be described in detail below. FIG. 1 is a configuration and operation explanatory view showing an embodiment of an SHG element according to the present invention, and FIGS. 5A to 5G are views showing a manufacturing process of the SHG element. FIG. 7 is a photograph showing a spike-shaped polarization inversion grating. In FIG. 1, 11 is a LiTaO 3 single crystal substrate whose surface is the −c plane, and the direction of spontaneous polarization is downward. Reference numeral 12 is a portion where the polarization is inverted in a spike shape, and the polarization direction is upward in this portion. M.Di
Domenico Jr. et al. Journal of Applied Physics Vo
L.40, according to the No.2, pages 720-734 sign of the nonlinear optical coefficient is LiNbO 3 or LiTaO 3 or the like space group R3
In the case of the ferroelectric crystal of c, it coincides with the direction of spontaneous polarization. Therefore, it can be said that the nonlinear optical coefficient d 33 of the crystal of this example is also periodically inverted. In this structure, both end surfaces of the crystal 11 are parabolic mirror processed, and a total reflection by the inner surface of 13 forms a monolithic ring resonator. The SHG light 17 is obtained by phase matching in the optical path represented by the solid line in the crystal 11. S in this configuration
The surface of the HG emission side mirror 16 forms a dielectric multilayer film that reflects the fundamental wave and transmits the SHG light. The incident fundamental wave 14 is polarized in the direction perpendicular to the crystal surface. Reference numeral 15 denotes SHG light generated inside the crystal, which is polarized in a direction perpendicular to the crystal surface. Next, a method for forming a domain-inverted grating according to the present invention will be described with reference to FIG. As shown in FIG.
Laser light wavelength λ using −Z (c) plane of TaO 3 crystal
The crystal 11 polished to about 1/10 is prepared.
(B) A Ta film 51 is formed on the −Z plane of 11 by sputtering with a thickness of 30 nm. (C) 51 photoresist 52 on the film
Was spin-coated, and the photoresist 52 was patterned by a normal photolithography technique using a photomask in which a portion where the polarization inversion 12 was performed was opened. SHG generated with a photomask pattern period of 1 to 10 μm
Matched to the light cycle. (D) Using the patterned photoresist 52 as a mask, the Ta film 51 is patterned by dry etching by RIE using CF 3 Cl gas. (E) The photoresist 52 is removed with acetone, and the proton exchange is performed 260 using pyrophosphoric acid.
The proton exchange layer of 53 is formed by performing the treatment at 30 ° C. for 30 to 60 minutes. (F) The Ta film 51 is etched with an aqueous solution of NaOH. (G) The crystal in which the proton exchange layer of 53 is formed is inserted into an electric furnace and heat-treated to form the spike-shaped polarization inversion layer 12. The heat treatment conditions are a temperature of 540 ° C., a holding time of 0.5 minutes, a temperature rising rate up to the heat treatment temperature of 50 ° C./min or more, and a temperature lowering rate from the heat treatment temperature of 50 ° C./min or more to cause spike-like polarization reversal. The lattice 12 was produced. The depth was larger than the depth of the proton exchange lattice pattern formed on the crystal surface and smaller than the crystal thickness. Its width is almost equal to that of the proton exchange pattern. A monolithic ring resonator is formed by processing both end faces of this crystal with a parabolic mirror. Figure 7
[Fig. 3] is a cross-sectional photograph of the produced spike-shaped polarization inversion grating. A planar spike polarization-inverted grating was prepared by the above-described manufacturing method, the light incident end face was polished by a parabolic mirror, and the device length was set to 1
A 0 mm monolithic ring resonator SHG element was produced. When a fundamental wave having a wavelength of 830 nm was incident on the manufactured SHG element, blue SHG light of 415 nm was obtained.
At this time, the SHG light output was 0.5 mW and the SHG efficiency was 5%. From this, it was found that the use of the plane spike polarization inversion grating is useful for a highly efficient SHG element.

【0006】[0006]

【発明の効果】以上の説明から明らかなように、本発明
によれば、周期的な面状スパイク分極反転格子を用いた
結晶をモノリシックリング共振器に用いることで青色S
HGを高効率で得られるSHG素子が実現できた。
As is apparent from the above description, according to the present invention, a blue S is obtained by using a crystal using a periodic plane spike polarization inversion grating in a monolithic ring resonator.
The SHG element which can obtain HG with high efficiency was realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を説明するための構造図であ
る。
FIG. 1 is a structural diagram for explaining an embodiment of the present invention.

【図2】チェレンコフ輻射を用いた従来のSHG素子を
示す図である。
FIG. 2 is a diagram showing a conventional SHG element using Cherenkov radiation.

【図3】三角形状の分極反転格子を用いた従来のSHG
素子を示す図である。
FIG. 3 is a conventional SHG using a triangular polarization inversion grating.
It is a figure which shows an element.

【図4】半円状の分極反転格子を用いた従来のSHG素
子を示す図である。
FIG. 4 is a diagram showing a conventional SHG element using a semicircular polarization inversion grating.

【図5】(a)〜(g)はそれぞれ本発明に係る面状ス
パイク分極反転格子の作製方法を示す図である。
5 (a) to 5 (g) are diagrams showing a method of manufacturing the planar spike polarization inversion grating according to the present invention.

【図6】LiNbO3を用いた従来のモノリシックリン
グ共振器SHG素子を示す図である。
FIG. 6 is a diagram showing a conventional monolithic ring resonator SHG element using LiNbO 3 .

【図7】スパイク状分極反転格子を示す金属組織写真で
ある。
FIG. 7 is a photograph of a metal structure showing a spike-shaped polarization inversion lattice.

【符号の説明】[Explanation of symbols]

11 結晶(LiTaO3) 12 面状スパイク分極反転領域 13 全反射ミラー 14 基本波 15 SHG出力光 16 誘電体多層膜 21 結晶(LiNbO3) 22 チェレンコフSHG光 23 光導波路 31 三角状分極反転領域 41 半円状分極反転領域 51 Ta膜 52 ホトレジスト 53 プロトン交換領域 61 ヒーター11 crystal (LiTaO 3 ) 12 planar spike polarization inversion region 13 total reflection mirror 14 fundamental wave 15 SHG output light 16 dielectric multilayer film 21 crystal (LiNbO 3 ) 22 Cerenkov SHG light 23 optical waveguide 31 triangular polarization inversion region 41 half Circular polarization inversion region 51 Ta film 52 Photoresist 53 Proton exchange region 61 Heater

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 LiTaO3またはLiNbO3結晶に周
期的な面状の分極反転領域を形成した分極反転格子結晶
を用いることを特徴とする第2高調波発生素子。
1. A second harmonic generation device comprising a polarization inversion lattice crystal in which a periodic plane polarization inversion region is formed in a LiTaO 3 or LiNbO 3 crystal.
【請求項2】 前記分極反転格子結晶の両端面をミラー
とするモノリシックリング共振器を形成して第2高調波
を発生させることを特徴とする請求項1の第2高調波発
生素子。
2. A second harmonic generation element according to claim 1, wherein a monolithic ring resonator having mirrors on both end faces of the polarization inversion lattice crystal is formed to generate a second harmonic.
【請求項3】 前記分極反転領域の幅は結晶の幅と同じ
ないし小さいことを特徴とする請求項1ないし2の分極
反転格子結晶を用いた第2高調波発生素子。
3. The second harmonic generation element using a polarization inversion lattice crystal according to claim 1, wherein the width of the polarization inversion region is equal to or smaller than the width of the crystal.
【請求項4】 前記分極反転領域の深さ方向は先端が単
一ないし複数のスパイク状の尖った形状を持つことを特
徴とする請求項1ないし3の分極反転格子結晶を用いた
第2高調波発生素子。
4. The second harmonic using the domain-inverted lattice crystal according to claim 1, wherein a tip of the domain-inverted region in the depth direction has a single or a plurality of spike-like sharp points. Wave generating element.
【請求項5】 前記分極反転領域の周期方向の幅が1μ
m以上10μm以下であることを特徴とする請求項1な
いし4の分極反転格子結晶を用いた第2高調波発生素
子。
5. The width of the domain-inverted region in the periodic direction is 1 μm.
The second harmonic generation element using the domain-inverted lattice crystal according to any one of claims 1 to 4, wherein the second harmonic generation element has a thickness of m or more and 10 µm or less.
【請求項6】 前記分極反転領域はその深さが周期方向
の幅より大きいことを特徴とする請求項1ないし5の分
極反転格子結晶を用いた第2高調波発生素子。
6. The second harmonic generation element using a polarization inversion lattice crystal according to claim 1, wherein the polarization inversion region has a depth larger than a width in the periodic direction.
【請求項7】 前記分極反転領域は熱処理により形成さ
れることを特徴とする請求項1ないし6の分極反転格子
結晶を用いた第2高調波発生素子。
7. The second harmonic generation device using a polarization inversion lattice crystal according to claim 1, wherein the polarization inversion region is formed by heat treatment.
【請求項8】 前記熱処理温度までの昇温時もしくは熱
処理温度からの降温時の一方または両方に50℃/分以
上の温度変化速度を含むことを特徴とする請求項7の分
極反転格子結晶を用いた第2高調波発生素子。
8. The polarization inversion lattice crystal according to claim 7, wherein a temperature change rate of 50 ° C./min or more is included in one or both of the temperature rising to the heat treatment temperature and the temperature decrease from the heat treatment temperature. Second harmonic generator used.
【請求項9】 前記結晶表面に分域反転の核となる格子
パタ−ンを形成し、その格子パターンと周期が一致した
周期を持つ分極反転領域を形成することを特徴とする請
求項1ないし8の分極反転格子結晶を用いた第2高調波
発生素子。
9. A domain inversion region is formed on the crystal surface as a nucleus of domain inversion, and a domain inversion region having a period which coincides with the lattice pattern is formed. A second harmonic generation element using the polarization inversion lattice crystal of No. 8.
【請求項10】 前記格子パタ−ンの周期方向の幅が1
μm以上10μm以下であり、分域反転領域の幅が格子
パタ−ン幅とほぼ等しいことを特徴とする請求項9の分
極反転格子結晶を用いた第2高調波発生素子。
10. The width in the periodic direction of the lattice pattern is 1
10. The second harmonic generating element using the polarization inverting lattice crystal according to claim 9, wherein the domain inversion region has a width of .mu.m or more and 10 .mu.m or less and the width of the domain inversion region is substantially equal to the lattice pattern width.
【請求項11】 前記結晶表面に格子パタ−ン状のプロ
トン交換層を形成し熱処理を行うことを特徴とする請求
項9ないし10の分極反転格子結晶を用いた第2高調波
発生素子。
11. The second harmonic generation device using a polarization inversion lattice crystal according to claim 9, wherein a proton exchange layer having a lattice pattern shape is formed on the crystal surface and heat treatment is performed.
【請求項12】 前記格子パタ−ン状のプロトン交換層
の形成後、熱処理温度が200℃以上でありかつ熱処理
時間が10分以内であることを特徴とする請求項9の分
極反転格子結晶を用いた第2高調波発生素子。
12. The polarization inversion lattice crystal according to claim 9, wherein the heat treatment temperature is 200 ° C. or higher and the heat treatment time is within 10 minutes after the formation of the lattice-patterned proton exchange layer. Second harmonic generator used.
【請求項13】 前記分極反転格子は結晶表面より内部
に形成し、深さが結晶の厚さより小さく位相整合する部
分以外には分極反転格子がないことを特徴とする請求項
1ないし12の分極反転格子結晶を用いた第2高調波発
生素子。
13. The polarization inversion lattice according to claim 1, wherein the polarization inversion lattice is formed inside the crystal surface, and there is no polarization inversion lattice except in a portion having a depth smaller than the crystal thickness and phase matching. A second harmonic generation element using an inverted lattice crystal.
JP7848392A 1992-01-24 1992-02-28 Second harmonic wave generating element Pending JPH05241217A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7848392A JPH05241217A (en) 1992-02-28 1992-02-28 Second harmonic wave generating element
US08/008,310 US5412502A (en) 1992-01-24 1993-01-25 Second harmonic generating element and the production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7848392A JPH05241217A (en) 1992-02-28 1992-02-28 Second harmonic wave generating element

Publications (1)

Publication Number Publication Date
JPH05241217A true JPH05241217A (en) 1993-09-21

Family

ID=13663242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7848392A Pending JPH05241217A (en) 1992-01-24 1992-02-28 Second harmonic wave generating element

Country Status (1)

Country Link
JP (1) JPH05241217A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015863A1 (en) * 1995-10-26 1997-05-01 Mitsubishi Cable Industries, Ltd. Optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015863A1 (en) * 1995-10-26 1997-05-01 Mitsubishi Cable Industries, Ltd. Optical device

Similar Documents

Publication Publication Date Title
US5714198A (en) Method of controlling regions of ferroelectric polarization domains in solid state bodies
JP5235994B2 (en) Ferroelectric domain inversion method
JP3052501B2 (en) Manufacturing method of wavelength conversion element
US7170671B2 (en) High efficiency wavelength converters
JP3397433B2 (en) Polarization inversion layer forming method and optical wavelength conversion element
JP3332363B2 (en) Method of manufacturing domain-inverted region, optical wavelength conversion element using the same, and method of manufacturing the same
JPH11212128A (en) Wavelength converting element, production thereof and solid laser device using the same
JPH05241217A (en) Second harmonic wave generating element
JP2910370B2 (en) Optical wavelength conversion element and short wavelength laser light source using the same
JPH05241216A (en) Second harmonic wave generating element
JPH05241215A (en) Second harmonic wave generating element
JP2718259B2 (en) Short wavelength laser light source
JP3316987B2 (en) Method of forming domain-inverted grating and optical waveguide
JP2973642B2 (en) Manufacturing method of optical wavelength conversion element
JP2962024B2 (en) Method for manufacturing optical waveguide and method for manufacturing optical wavelength conversion element
JP2921209B2 (en) Manufacturing method of wavelength conversion element
JPH06265951A (en) Optical wavelength converter
JPH04296731A (en) Short-wavelength laser beam source
JP3398144B2 (en) Method for manufacturing domain-inverted region
JP3052654B2 (en) Optical wavelength conversion element
JPH0756201A (en) Formation of polarization inversion grating and optical waveguide
JPH0756203A (en) Formation of polarization inversion grating and optical waveguide
JPH043128A (en) Formation of partial polarization inversion region
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
JPH04340525A (en) Wavelength conversion element