JPH0523970B2 - - Google Patents

Info

Publication number
JPH0523970B2
JPH0523970B2 JP61170150A JP17015086A JPH0523970B2 JP H0523970 B2 JPH0523970 B2 JP H0523970B2 JP 61170150 A JP61170150 A JP 61170150A JP 17015086 A JP17015086 A JP 17015086A JP H0523970 B2 JPH0523970 B2 JP H0523970B2
Authority
JP
Japan
Prior art keywords
speed
signal
control
vehicle
control amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61170150A
Other languages
Japanese (ja)
Other versions
JPS6328735A (en
Inventor
Yasuo Naito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61170150A priority Critical patent/JPS6328735A/en
Priority to PCT/JP1987/000515 priority patent/WO1990007439A1/en
Priority to US07/186,474 priority patent/US4856609A/en
Publication of JPS6328735A publication Critical patent/JPS6328735A/en
Publication of JPH0523970B2 publication Critical patent/JPH0523970B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/06Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure
    • B60K31/10Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of a pressure which is fed into the controlling means
    • B60K31/102Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of a pressure which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator
    • B60K31/105Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of a pressure which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator in a memory, e.g. a capacitor
    • B60K31/107Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including fluid pressure actuated servomechanism in which the vehicle velocity affecting element is actuated by fluid pressure and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of a pressure which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator in a memory, e.g. a capacitor the memory being digital
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/02Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically
    • B60K31/04Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means
    • B60K31/042Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator
    • B60K31/045Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator in a memory, e.g. a capacitor
    • B60K31/047Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including electrically actuated servomechanism including an electric control system or a servomechanism in which the vehicle velocity affecting element is actuated electrically and means for comparing one electrical quantity, e.g. voltage, pulse, waveform, flux, or the like, with another quantity of a like kind, which comparison means is involved in the development of an electrical signal which is fed into the controlling means where at least one electrical quantity is set by the vehicle operator in a memory, e.g. a capacitor the memory being digital
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、車両の走行速度を自動的に一定に
保つ車両用定速走行制御装置に関するものであ
る。 〔従来技術〕 第6図aはたとえば特開昭58−39311号公報に
記載されたこの種従来の車両用定速走行設置装置
を示すブロツク図である。この第6図aにおい
て、1は運転者の操作によつて定速走行の開始が
指示されるセツトスイツチ、2はブレーキ装置
(図示せず)の操作で動作し、定速走行の解除が
指示されるキヤンセルスイツチ、3は車両の走行
速度を検出する車速センサで、四つの磁極を有
し、トランスミツシヨン(図示せず)の回転を伝
えるメータケーブル(図示せず)によつて回転さ
れる回転体3aとリードスイツチ3bとからな
り、走行速度に比例した周波数を有するパルス列
信号を出力する。 自動車用バツテリ4の電力を供給するための電
源スイツチとなるメインスイツチの投入によつて
制御装置6は給電を受けて動作し、制御装置6は
内部にマイクロコンピユータなどによる演算処理
回路6aを含んでおり、セツトスイツチ1、キヤ
ンセルスイツチ2および車速センサ3から信号を
入力し、車両の走行速度vsを目標速度vrに一致さ
せる自動制御を行うための各種演算処理を行い、
各種制御信号を出力するようになつている。 スロツトルアクチユエータ7は制御装置6の各
種制御信号を設け、エンジン(図示せず)の吸気
路8に設けられ、アクセルペダル(第6図bの1
0)と連動するスロツトル弁9を開閉駆動するモ
ータ式のスロツトルアクチユエータで、リンク7
aをモータ(第6図bの11)で回転させ、ワイ
ヤ7bを介して前記スロツトル弁9を駆動する。 このスロツトル弁9の開度に対応した前記リン
ク7aの回転角が内蔵のポテンシヨメータ(図示
せず)で検出され、スロツトル位置の信号として
制御装置6へ与えられる。 また、リンク7aとモータ11とは電磁クラツ
チ(図示せず)で連結され、制御装置6から電磁
クラツチ信号で連結状態が制御される。 次に前記のように構成された従来の車両用定速
走行制御装置の動作について説明する。まず、メ
インスイツチ1が運転者によつて投入され、自動
車用バツテリ4の電力が供給されると、制御装置
6が動作を開始し、車速センサ3の出力を処理す
る。 車速センサ3は車両が走行している場合、走行
速度vsに比例した周波数を有するパルス列信号を
出力しており、このパルス周期を制御装置6が計
測することによつて走行速度vsが求められる。 ここで、運転者がセツトスイツチ1を操作する
と、この信号が制御装置6に与えられ、このとき
の走行速度vsが目標速度vrとして記憶され、定速
走行の制御が開始される。 以後、制御装置6は目標速度vrと時々刻々求め
られる実際の走行速度vsとを比較し、車両が目標
速度vrで走行するように制御信号を出力してスロ
ツトルアクチユエータ7を駆動し、スロツトル弁
9の開度を調節する。 すなわち、実際の走行速度vsが目標速度vrより
低い場合は、スロツトル開制駆動信号を出力して
所定量開き、逆に高い場合はスロツトル閉制駆動
信号を出力してスロツトル弁9を所定量閉じるよ
う制御するので、運転者がアクセルペダルを操作
することなく、車両が一定速度で走行することに
なる。 このような定速走行の制御が行われている途中
で運転者がブレーキ装置を操作すると、キヤンセ
ルスイツチ2が動作し、定速走行の解除信号が制
御装置6に与えられる。 制御装置6はこの信号を受けると直ちに電磁ク
ラツチを解放するための信号を出力し、スロツト
ルアクチユエータ7はこの信号を受けて電磁クラ
ツチを解放する。 したがつて、以後は運転者がアクセルベダルに
よつてスロツトル弁9の開度を調整し車両の走行
速度を制御する。 〔発明が解決しようとする問題点〕 前記のように構成された従来の車両用定速走行
制御装置において、運転者が一定車速で走行させ
るためセツトスイツチ1を投入した場合、制御装
置6はまず最初に所定量(セツトアツプ量)スロ
ツトルを開制する駆動信号を出力する。その後は
目標速度vrを走行速度vsとの速度偏差εや加速度
αにより時々刻々制御量(トリム量)を演算し出
力していた。 この制御量(トリム量)は制御系のゲインに相
当し、走行速度vsの目標速度vrに対する収束性や
速度偏差などにより決定される。 このトリム量が多いと収束性は良いが、走行速
度がハンチングを起こし乗心地を悪くし、逆にト
リム量が少ないと収束性が悪くなる傾向がある。 一方、最初の所定量(セツトアツプ量)は目標
速度を維持するために、スロツトルの開度を必要
な開度付近まであらかじめ開制する目的である。 このセツトアツプ量はその後の走行安全性に関
与しており、セツトアツプ量が適切でないと、セ
ツト直後の変速偏差が大きくなる。 従来、このセツトアツプ量は一定値であるかま
たは走行速度や目標速度に比例した所定値であつ
た。 これはその車両における標準的スロツトルアク
チユエータ機能を有するとき、また道路が平坦と
仮定したときに定められた量であつた。 しかし、スロツトルアクチユエータの機械的な
あそび量の変動によつて要求されるセツトアツプ
量は変化するものである。 あそびについて、第6図bで説明する。この第
6図bにおいて、モータ11とリンク7aの間、
リンク7aとワイヤ7bの間、ワイヤ7b自体、
ワイヤ7bとスロツトルリンク12bの間、スロ
ツトルリンク12aと12bの間にあそびは存在
し、モータ11が回転を始めてからスロツトル弁
9がこの回転運動に応じて動きだすまでをあそび
と呼んでいる。 このあそびは車両によりバラついたり、経年変
化したりする可能性があり、あそびが大きいと、
所定のセツトアツプ量では不足し、逆にあそびが
小さいと所定のセツトアツプ量ではスロツトルを
過度に開制することになる。 また、道路状態によつても変動し、たとえば上
り坂でセツトスイツチ1を投入した場合には、所
定のセツトアツプ量では不足し、逆に下り坂のと
きには過剰となり、セツト直後の速度偏差が大き
くなる欠点があつた。 この速度偏差はセツトアツプ量出力完了後より
出力される制御量(トリム量)によって徐々に収
束されるが、トリム量は収束性と速度偏差のトレ
ードオフで決定されるため、セツトアツプ量が適
正でない場合には速度偏差が大きくなる欠点があ
つた。 特に、下り坂やあそび量が小さいときの所定の
セツトアツプ量では、セツト偏差が一時的に正、
すなわち、走行速度が目標速度を超えてしまい、
セツト直後の車の挙動としては運転者に不安を与
えるという欠点があつた。 この発明は、かかる問題点を解決するためにな
されたもので、道路状態、あそび量に対する影響
を少なくし、走行速度を目標速度にすばやく近づ
けるように制御でき、特にセツト時の速度偏差が
正となるのを防止する車両用定速走行制御装置を
得ることを目的とする。 〔問題点を解決するための手段〕 この発明に係る車両用定速走行制御装置は、運
転者によつて目標速度を設定した瞬間を検知し、
この瞬間より所定時間内は無条件に、以後は目標
車速と走行車速との速度偏差が所定値範囲外のと
き、通常定速走行時に速度偏差と加速度から制御
量演算手段により算出される通常の制御量を増加
調整する制御量調整手段を備えたものである。 〔作用〕 この発明においては、通常定速走行時に制御量
調整手段が目標速度を設定した瞬間から所定期間
内は無条件で、また所定期間後は目標車速と走行
速度との速度偏差が所定範囲外のとき、制御量演
算手段により求められた、速度偏差と加速度によ
る通常の制御量を増加調整して調整制御量に変更
し、それ以外の通常定速走行時には、無調整にし
て出力させる。 〔実施例〕 以下、この発明の車両用定速走行制御装置の実
施例について図面に基づき説明する。第1図はそ
の一実施例の構成を示すブロツク図である。 この1図において、3は車両の走行速度を検出
する走行速度検出手段、1は希望する目標速度を
運転者が設定する目標速度設定手段である。 目標速度信号発生手段13はこの目標速度設定
手段1の出力を受け、目標速度を表わす目標速度
信号vrを発生させ、走行速度信号vsと目標速度信
号vrとの速度偏差信号ε(=vr−vs)を速度偏差
演算手段14で演算するようにしている。 また、加速度演算手段15は走行速度信号vs
ら所定時間毎の加速度αを求め、制御量演算手段
18に送出するようになつている。 この制御量演算手段は、速度偏差演算手段14
からの速度偏差εとこの加速度αを入力し、走行
速度と目標速度が一致するように車両の駆動力を
制御する制御量y′を演算して、制御量調整手段1
9に出力するようになつている。 一方、定速走行開始検知手段16は、定速走行
を開始したことを検知するもので、この定速走行
開始検知手段16が設定したことを検知した瞬間
から時間計測手段17は所定時間を計測し、計測
結果を制御量調整手段19に出力するようにして
いる。 制御量調整手段19は、前記所定時間が経過し
ていない場合は制御量y′を増加調整して調整制御
量にして出力し、所定時間を経過した場合は、速
度偏差εが所定値以上ならば同様に制御量y′を増
加調整して調整制御量にして出力し、所定時間経
過後、速度偏差εが所定値未満になると制御量
y′(=y)を無調整で出力する。 スロツトル弁駆動手段7はこの制御量yの基づ
いてエンジン(図示せず)の出力を調整するスロ
ツトル弁9を駆動するものである。 次に、この発明の一実施例を第1図ないし第5
図に基づいて説明する。この第1図〜第5図にお
いて、目標設定手段1ないしメインスイツチ5、
吸気路8、スロツトル弁9はそれぞれ第6図aと
同一のものである。 なお、第2図のセツトスイツチ1、車速センサ
3は第1図に示した目標速度設定手段1、走行速
度検出手段3にそれぞれ相当するものである。 第2図の20は第6図aの制御装置6と同種の
制御装置となるマイクロコンピユータ装置で、メ
インスイツチ5の投入によつて動作し、セツトス
イツチ1、キヤンセルスイツチ2および車速セン
サ3からの信号を入力処理する入力回路20a
と、命令プログラムが記憶されたROMおよび
RAMからなるメモリ20bと、制御信号を出力
する出力回路20cと、前記メモリ20bの命令
プログラムにしたがつて動作し、前記入力回路2
0aからの信号を処理・演算して出力回路20c
に出力を与えるCPU20dとによつて構成され
ている。 21はマイクロコンピユータ装置20の制御信
号y1によつて制御される電磁弁で、負圧源(図示
せず)に連通した入力管21aと出力管21bと
を制御信号y1が“L”レベルのとき非連通とし、
“H”レベルのとき図示矢印Aに示すように連通
させるものである。 また、22は同じく制御信号y2によつて制御さ
れる電磁弁で、大気に開放された入力管22aと
出力管22bとを、制御信号y2が“L”レベルの
とき図示矢印Bに示すように連通させ、“H”レ
ベルのとき非連通とさせるものである。 ダイヤフラム装置23は電磁弁21の入力管2
1aと電磁弁22の出力管22bと接続され、ワ
イヤ23aを介してスロツトル弁9を駆動するも
ので、入力管21aと出力管22bに連通した空
気室23bを形成する筺体23cとワイヤ23a
が装着されたダイヤフラム23dと、このダイヤ
フラム23dと筺体23cとの間に装着され、ダ
イヤフラム23dを図示右方向に押圧するように
作用するスプリング23cとを備えたものであ
り、電磁弁21と22とによつてスロツトル弁駆
動手段7を構成している。 このスロツトル弁駆動手段7は次の第1表に示
すように三つの動作モードを有しており、制御信
号y1とy2がともに“H”レベルのときは電磁弁2
1は連通し、電磁弁2は非連通となるので、ダイ
ヤフラム装置23の空気室23bは負圧源とだけ
連通し、ダイヤフラム23dは図示左方向へ移動
するからスロツトル弁9は開き車速は加速され加
速モードとなる。 また、制御信号y1とy2がともに“L”レベルの
ときの減速モードにおいては、電磁弁21は非連
通となり、電磁弁22は連通するので、空気室2
3bは大気にだけ連通し、ダイヤフラム23dは
スプリング23eに押されて、図の右方向へ移動
するから、スロツトル弁9は閉じ、車両は減速さ
れる。 さらに、制御信号y1とy2がそれぞれ“L”レベ
ルと“H”レベルのときの保持モードにおいて
は、電磁弁21と22はともに非連通となるの
で、空気室23bは負圧源および大気のいずれに
も非連通となり、ダイヤフラム23dはそのとき
の位置に固定されるから、スロツトル弁9もその
ときの開度に固定される。
[Industrial Field of Application] The present invention relates to a constant speed cruise control device for a vehicle that automatically keeps the traveling speed of a vehicle constant. [Prior Art] FIG. 6a is a block diagram showing a conventional constant speed running installation device for a vehicle of this type, which is described in, for example, Japanese Patent Application Laid-Open No. 58-39311. In FIG. 6a, 1 is a set switch that is operated by the driver to start constant speed driving, and 2 is a set switch that is operated by the operation of a brake device (not shown) and is instructed to cancel constant speed driving. 3 is a vehicle speed sensor that detects the running speed of the vehicle, has four magnetic poles, and is rotated by a meter cable (not shown) that transmits the rotation of a transmission (not shown). It consists of a body 3a and a reed switch 3b, and outputs a pulse train signal having a frequency proportional to the traveling speed. When the main switch, which is a power switch for supplying power to the automobile battery 4, is turned on, the control device 6 receives power and operates, and the control device 6 includes an arithmetic processing circuit 6a such as a microcomputer therein. It inputs signals from the set switch 1, cancel switch 2, and vehicle speed sensor 3, and performs various arithmetic processing to automatically control the vehicle's running speed Vs to match the target speed VR .
It is designed to output various control signals. The throttle actuator 7 is provided with various control signals for the control device 6, is provided in the intake passage 8 of the engine (not shown), and is provided with an accelerator pedal (1 in FIG. 6b).
A motor-type throttle actuator that opens and closes the throttle valve 9 that is linked to the link 7
A is rotated by a motor (11 in FIG. 6B), and the throttle valve 9 is driven via a wire 7b. The rotation angle of the link 7a corresponding to the opening degree of the throttle valve 9 is detected by a built-in potentiometer (not shown) and is provided to the control device 6 as a throttle position signal. Further, the link 7a and the motor 11 are connected by an electromagnetic clutch (not shown), and the connected state is controlled by an electromagnetic clutch signal from the control device 6. Next, the operation of the conventional vehicle constant speed cruise control device configured as described above will be explained. First, when the main switch 1 is turned on by the driver and power is supplied from the automobile battery 4, the control device 6 starts operating and processes the output of the vehicle speed sensor 3. When the vehicle is running, the vehicle speed sensor 3 outputs a pulse train signal having a frequency proportional to the running speed Vs , and the control device 6 measures this pulse cycle to determine the running speed Vs. It will be done. Here, when the driver operates the set switch 1, this signal is given to the control device 6, the running speed Vs at this time is stored as the target speed Vr , and control of constant speed running is started. Thereafter, the control device 6 compares the target speed v r with the actual traveling speed v s that is obtained from time to time, and outputs a control signal to operate the throttle actuator 7 so that the vehicle travels at the target speed v r . The throttle valve 9 is driven to adjust the opening degree of the throttle valve 9. That is, when the actual running speed V s is lower than the target speed V R , a throttle opening drive signal is output to open the throttle by a predetermined amount, and when it is higher, a throttle closing drive signal is output and the throttle valve 9 is moved to the desired position. Since it is controlled to close at a fixed amount, the vehicle runs at a constant speed without the driver operating the accelerator pedal. When the driver operates the brake device during such constant speed driving control, the cancel switch 2 is activated and a constant speed driving cancellation signal is given to the control device 6. Upon receiving this signal, the control device 6 immediately outputs a signal for releasing the electromagnetic clutch, and the throttle actuator 7 receives this signal and releases the electromagnetic clutch. Therefore, from now on, the driver adjusts the opening degree of the throttle valve 9 using the accelerator pedal to control the traveling speed of the vehicle. [Problems to be Solved by the Invention] In the conventional constant speed cruise control device for a vehicle configured as described above, when the driver turns on the set switch 1 to make the vehicle travel at a constant speed, the control device 6 first A drive signal is output to open the throttle by a predetermined amount (setup amount). Thereafter, a control amount (trim amount) was calculated and output every moment based on the speed deviation ε between the target speed V r and the traveling speed V s and the acceleration α. This control amount (trim amount) corresponds to the gain of the control system, and is determined by the convergence of the traveling speed vs with respect to the target speed v r , speed deviation, etc. If the amount of trim is large, the convergence is good, but the running speed tends to cause hunting, which worsens the ride comfort, and conversely, if the amount of trim is small, the convergence tends to be poor. On the other hand, the first predetermined amount (setup amount) is for the purpose of opening the throttle in advance to around the required opening in order to maintain the target speed. This set-up amount is related to subsequent driving safety, and if the set-up amount is not appropriate, the shift deviation immediately after the set-up will become large. Conventionally, this set-up amount has been a constant value or a predetermined value proportional to the traveling speed or target speed. This was the amount determined when the vehicle had standard throttle actuator function and assuming the road was flat. However, due to variations in the amount of mechanical play in the throttle actuator, the amount of set-up required will vary. The play will be explained with reference to FIG. 6b. In FIG. 6b, between the motor 11 and the link 7a,
between the link 7a and the wire 7b, the wire 7b itself;
There is play between the wire 7b and the throttle link 12b and between the throttle links 12a and 12b, and the period from when the motor 11 starts rotating until the throttle valve 9 starts moving in response to this rotational movement is called play. This play may vary depending on the vehicle or change over time, and if the play is large,
If the predetermined set-up amount is insufficient, and conversely the play is small, the throttle will be opened excessively with the predetermined set-up amount. It also varies depending on the road condition; for example, when setting switch 1 is turned on on an uphill slope, the predetermined amount of set up is insufficient, and on the other hand, when going downhill, it becomes excessive, resulting in a large speed deviation immediately after setting. It was hot. This speed deviation is gradually converged by the control amount (trim amount) that is output after the setup amount output is completed, but since the trim amount is determined by a trade-off between convergence and speed deviation, if the setup amount is not appropriate had the disadvantage of increasing speed deviation. In particular, for a given set-up amount on a downhill slope or when the amount of play is small, the set deviation will temporarily be positive and
In other words, the traveling speed exceeds the target speed,
The car's behavior immediately after the set-up had the disadvantage of causing anxiety to the driver. This invention was made to solve these problems, and it is possible to control the running speed so that it quickly approaches the target speed by reducing the influence on the road condition and the amount of play, and in particular, it is possible to control the speed deviation at the time of setting to be positive. It is an object of the present invention to provide a constant speed running control device for a vehicle that prevents the above from occurring. [Means for Solving the Problems] The constant speed cruise control device for a vehicle according to the present invention detects the moment when a target speed is set by the driver,
From this moment onwards, if the speed deviation between the target vehicle speed and the traveling vehicle speed is outside the specified value range, the normal It is equipped with a control amount adjusting means for increasing the control amount. [Function] In this invention, during normal constant speed driving, the control amount adjusting means sets the target speed unconditionally within a predetermined period, and after the predetermined period, the speed deviation between the target vehicle speed and the traveling speed is within a predetermined range. When the vehicle is running at a normal constant speed, the normal control amount based on the speed deviation and acceleration determined by the control amount calculating means is increased and changed to an adjusted control amount, and during other normal constant speed driving, no adjustment is made and the output is made. [Example] Hereinafter, an example of the constant speed cruise control device for a vehicle according to the present invention will be described based on the drawings. FIG. 1 is a block diagram showing the configuration of one embodiment. In this figure, numeral 3 denotes a traveling speed detecting means for detecting the traveling speed of the vehicle, and numeral 1 denotes a target speed setting means for setting a desired target speed by the driver. The target speed signal generating means 13 receives the output of the target speed setting means 1, generates a target speed signal v r representing the target speed, and calculates a speed deviation signal ε (= v r −v s ) is calculated by the speed deviation calculation means 14. Further, the acceleration calculation means 15 calculates the acceleration α at predetermined time intervals from the traveling speed signal vs , and sends it to the control amount calculation means 18. This control amount calculation means is a speed deviation calculation means 14.
The control amount adjusting means 1 inputs the speed deviation ε from
It is now output to 9. On the other hand, the constant speed running start detecting means 16 detects the start of constant speed running, and the time measuring means 17 measures a predetermined time from the moment when the constant speed running start detecting means 16 detects the setting. Then, the measurement results are output to the control amount adjusting means 19. If the predetermined time has not elapsed, the control amount adjusting means 19 increases the control amount y' and outputs it as an adjusted control amount; if the predetermined time has elapsed, if the speed deviation ε is equal to or greater than a predetermined value, Similarly, the controlled variable y′ is increased and outputted as an adjusted controlled variable, and after a predetermined period of time, when the speed deviation ε becomes less than the predetermined value, the controlled variable
Output y′ (=y) without adjustment. The throttle valve drive means 7 drives a throttle valve 9 that adjusts the output of the engine (not shown) based on the control amount y. Next, an embodiment of the present invention will be described in FIGS. 1 to 5.
This will be explained based on the diagram. 1 to 5, the goal setting means 1 to the main switch 5,
The intake passage 8 and the throttle valve 9 are the same as those shown in FIG. 6a. The set switch 1 and vehicle speed sensor 3 shown in FIG. 2 correspond to the target speed setting means 1 and the traveling speed detecting means 3 shown in FIG. 1, respectively. Reference numeral 20 in FIG. 2 is a microcomputer device which is the same type of control device as the control device 6 in FIG. An input circuit 20a that inputs and processes
and ROM where instruction programs are stored and
A memory 20b consisting of a RAM, an output circuit 20c that outputs a control signal, and an input circuit 20 that operates according to the instruction program of the memory 20b.
Output circuit 20c processes and calculates the signal from 0a
The CPU 20d provides output to the CPU 20d. Reference numeral 21 denotes a solenoid valve controlled by a control signal y1 from the microcomputer device 20, and the control signal y1 connects an input pipe 21a and an output pipe 21b, which are connected to a negative pressure source (not shown), when the control signal y1 is at "L" level. It is assumed that there is no communication when
When the level is "H", communication is established as shown by arrow A in the figure. Reference numeral 22 designates a solenoid valve which is also controlled by the control signal y2 , and connects the input pipe 22a and output pipe 22b, which are open to the atmosphere, as shown by arrow B when the control signal y2 is at the "L" level. When the signal is at "H" level, the signal is communicated and disconnected. The diaphragm device 23 is the input pipe 2 of the solenoid valve 21.
1a and the output pipe 22b of the solenoid valve 22 to drive the throttle valve 9 via a wire 23a, and a housing 23c and wire 23a forming an air chamber 23b communicating with the input pipe 21a and the output pipe 22b.
The spring 23c is installed between the diaphragm 23d and the housing 23c and acts to press the diaphragm 23d to the right in the figure. This constitutes a throttle valve driving means 7. This throttle valve driving means 7 has three operation modes as shown in Table 1 below, and when both control signals y 1 and y 2 are at "H" level, the solenoid valve 2
1 is in communication and the solenoid valve 2 is out of communication, so the air chamber 23b of the diaphragm device 23 is in communication only with the negative pressure source, and the diaphragm 23d moves to the left in the figure, so the throttle valve 9 opens and the vehicle speed is accelerated. It becomes acceleration mode. Furthermore, in the deceleration mode when both the control signals y 1 and y 2 are at the "L" level, the solenoid valve 21 is out of communication and the solenoid valve 22 is in communication, so that the air chamber 2
3b communicates only with the atmosphere, and the diaphragm 23d is pushed by the spring 23e and moves to the right in the figure, so the throttle valve 9 is closed and the vehicle is decelerated. Furthermore, in the holding mode when the control signals y 1 and y 2 are at the "L" level and "H" level, respectively, the solenoid valves 21 and 22 are out of communication, so the air chamber 23b is connected to the negative pressure source and the atmosphere. Since the diaphragm 23d is fixed at the position at that time, the throttle valve 9 is also fixed at the opening degree at that time.

【表】 次に前記のように構成された第2図の実施例の
動作について説明するが、マイクロコンピユータ
装置20の動作については特に第3図aないし第
3図cのフローチヤートに沿つて説明する。 まず、メインスイツチ5が投入されマイクロコ
ンピユータ装置20は給電を受けて動作を始め、
第3図aのメインルーチン処理を実行する。 一方、車両が走行していると、車速センサ3が
走行速度に比例した周波数をもつ第4図のような
パルス列信号を出力し、この信号がマイクロコン
ピユータ装置20に第3図bに示すような割込ル
−チン処理を行わせる。 すなわち、第4図のパルス列信号の立上りが入
力されるごとに第3図bの処理がなされ、ステツ
プ201に示すように立上りが入力された時刻to
タイマ(図示せず)から読み込み、ステツプ202
で前回の立上り時刻to-1との差Δt(=to−to-1)、
すなわち周期を求め、第3図aのメインルーチン
へ戻る。 このようにパルス列信号の周期がわかれば、後
述するようにその逆数値から走行速度が換算され
る。 次に、走行中運転者が定速走行を開始するため
にセツトスイツチ1を操作すると、ステツプ101
で初期化され、マイクロコンピユータ装置20は
第3図aのステツプ102に示すようにこのスイツ
チ操作を入力し、ステツプ103でセツトスイツチ
1からの信号であると判断すると、ステツプ104
で第3図bの割込ルーチン処理によつて得られて
いるパルス周期Δtから目標速度信号vrを設定す
る。 ステツプ105では、前記スイツチ入力信号がキ
ヤンセルスイツチ(第2図の2)か否かを調べ、
キヤンセル信号であれば、ステツプ106で定速走
行制御を中止するようにキヤンセル信号をスロツ
トル弁駆動手段7に出力する。 ステツプ107でタイマ(TMR)を零とし、ス
テツプ108でスロツトル弁駆動信号出力中フラグ
を「L」とする。 ステツプ109では、タイマTMRが零か否かを
調べる。ステツプ110では、走行速度を第3図b
によつて得られている最新のパルス周期Δtから
次の(1)式にて求められる。 vo=N/Δt ……(1) ただし、Nは速度に換算するための定数であ
る。ステツプ111では、走行速度vの雑音成分を
低減させるため平滑させる。平滑手段にはデイジ
タルフイルムを用い、たとえば次に(2)式のように
して走行速度vsoを求める。 vso=avso-1+bvo ……(2) ただし、a,bは平滑特性を表わす定数であ
る。nは今回の値を示しn−1は前回の値を示
す。 ステツプ112では、目標速度vrと走行速度vs
の速度偏差εを次の(3)式にて求める。 εo=vr−Vso ……(3) ステツプ113では、走行速度Vsの一定時間T0
の加速度を次の(4)式にて求める。 αo=vso−vso-1/T0 ……(4) ステツプ114では、タイマTRMに7を加える。 ステツプ115では、現在スロツトル弁を駆動さ
せる信号が出力されているか否かを調べ、出力さ
れていない場合は、ステツプ116で所定値A以下
か否かを調べる。タイマTMR>Aならば、ステ
ツプ117でタイマにAを代入する。 ステツプ118で速度偏差εが所定値Bの範囲外
か否かを調べる。ステツプ120では、通常のスロ
ツトル弁駆動用制御量を演算する。方法として
は、たとえば速度偏差εと加速度αを利用し、次
の(5)式で演算するものが考えられる。 T=K1εo+K2αo ……(5) ただし、K1とK2は定数である。 一方、ステツプ119では、セツトスイツチを投
入して所定時間A以内または速度偏差が所定値B
以外の範囲にある間は次の(6)式にてスロツトル弁
駆動用制御量を増加させるように演算する。 T=K3(K1εo+K2αo) ……(6) ただしK3は定数である。 ステツプ121では、演算された制御量出力時間
Tの符号によつて制御信号y1とy2の出力レベルを
次の第2表から求めて出力し、また出力時間Tを
タイマ(図示せず)にセツトする。
[Table] Next, the operation of the embodiment of FIG. 2 configured as described above will be explained, and the operation of the microcomputer device 20 will be explained in particular along the flowcharts of FIGS. 3a to 3c. do. First, the main switch 5 is turned on and the microcomputer device 20 receives power and starts operating.
The main routine process shown in FIG. 3a is executed. On the other hand, when the vehicle is running, the vehicle speed sensor 3 outputs a pulse train signal as shown in FIG. 4 having a frequency proportional to the running speed, and this signal is sent to the microcomputer device 20 as shown in FIG. Performs interrupt routine processing. That is, each time the rising edge of the pulse train signal shown in FIG. 4 is input, the process shown in FIG. 202
The difference from the previous rise time t o-1 is Δt (= t o − t o-1 ),
That is, the period is determined and the process returns to the main routine shown in FIG. 3a. Once the period of the pulse train signal is known in this way, the traveling speed can be converted from its reciprocal value as described later. Next, when the driver operates the set switch 1 to start constant speed driving while the vehicle is running, the process proceeds to step 101.
The microcomputer device 20 inputs this switch operation as shown in step 102 of FIG.
Then, the target speed signal v r is set from the pulse period Δt obtained by the interrupt routine processing shown in FIG. 3b. In step 105, it is checked whether the switch input signal is a cancel switch (2 in FIG. 2),
If it is a cancel signal, the cancel signal is outputted to the throttle valve driving means 7 in step 106 so as to cancel the constant speed running control. In step 107, the timer (TMR) is set to zero, and in step 108, the throttle valve drive signal outputting flag is set to "L". In step 109, it is checked whether timer TMR is zero. In step 110, the traveling speed is determined as shown in Fig. 3b.
It is obtained from the latest pulse period Δt obtained by the following equation (1). v o =N/Δt...(1) However, N is a constant for converting into speed. In step 111, the traveling speed v is smoothed to reduce noise components. A digital film is used as the smoothing means, and the traveling speed v so is determined using, for example, equation (2). v so =av so-1 +bv o ...(2) However, a and b are constants representing smoothing characteristics. n indicates the current value, and n-1 indicates the previous value. In step 112, the speed deviation ε between the target speed v r and the traveling speed v s is determined using the following equation (3). ε o =v r −V so (3) In step 113, the acceleration of the traveling speed V s at every fixed time T 0 is calculated using the following equation (4). α o =v so −v so-1 /T 0 (4) At step 114, 7 is added to the timer TRM. In step 115, it is checked whether a signal for driving the throttle valve is currently being output. If not, in step 116, it is checked whether the signal is below a predetermined value A. If timer TMR>A, then in step 117, A is assigned to the timer. In step 118, it is checked whether the speed deviation ε is outside the predetermined value B range. In step 120, a normal control amount for driving the throttle valve is calculated. As a method, for example, the speed deviation ε and the acceleration α may be used to calculate the following equation (5). T=K 1 ε o +K 2 α o ...(5) However, K 1 and K 2 are constants. On the other hand, in step 119, the set switch is turned on and the speed deviation is within the predetermined time A or the speed deviation is the predetermined value B.
While the value is outside the range, the following equation (6) is used to calculate the throttle valve drive control amount to increase. T=K 3 (K 1 ε o +K 2 α o ) ...(6) However, K 3 is a constant. In step 121, the output levels of the control signals y 1 and y 2 are determined from the following Table 2 according to the sign of the calculated controlled variable output time T, and are output. Set to .

〔効果〕〔effect〕

この発明は以上説明したとおり、定速走行制御
を開始した時点より所定期間は制御ゲインを増加
させ、その後は速度偏差に対応して制御ゲインを
元へ戻すような制御を採用しているため、道路の
上り下り状態、スロツトル弁開制のためのあそび
量が変動により、定速走行制御開始直後の速度偏
差が大きくなる可能性がなくなり、特に下り坂や
あそび量が小さいときに走行速度が目標速度を超
えることがない。 さらに、従来装置では独立にセツトアツプ量お
よびトリム量の制御量を設定していたがこの発明
では調整量はほぼ2倍に固定すればよく、制御量
の設定はトリム量だけで可能という長所を有して
いる。
As explained above, this invention employs a control in which the control gain is increased for a predetermined period from the time when constant speed driving control is started, and then the control gain is returned to the original value in response to the speed deviation. There is no possibility that the speed deviation will become large immediately after starting constant speed driving control due to the uphill/downhill conditions of the road or fluctuations in the amount of free play for opening and controlling the throttle valve.This eliminates the possibility that the speed deviation will become large immediately after the start of constant speed driving control, especially when the driving speed is downhill or when the amount of free play is small. never exceed the speed. Furthermore, in the conventional device, the control amount of the setup amount and the trim amount were set independently, but in this invention, the adjustment amount only needs to be fixed to approximately twice, and the control amount can be set using only the trim amount. are doing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の車両用定速走行制御装置の
一実施例の構成を示すブロツク図、第2図は同上
車両用定速走行制御装置におけるマイクロコンピ
ユータとスロツトル弁駆動手段の部分の構成を示
す図、第3図aないし第3図cはそれぞれ第2図
におけるマイクロコンピユータ装置の動作を説明
するためのフローチヤート、第4図は第2図で用
いられる車速センサの出力波形図、第5図は車両
の走行状態、スイツチ入力、制御信号、スロツト
ル弁の動きを示すタイムチヤート、第6図aは従
来の車両用定速走行制御装置の全体構成を示すブ
ロツク図、第6図bは従来の車両用定速走行制御
装置におけるスロツトルアクチユエータの機械的
あそびを説明するための図である。 1……目標速度設定手段、2……ブレーキ装
置、3……走行速度検出手段、7……スロツトル
弁駆動手段、9……スロツトル弁、13……目標
速度信号発生手段、14……速度偏差演算手段、
15……加速度演算手段、16……定速走行開始
検知手段、17……時間計測手段、18……制御
量演算手段、19……制御量調整手段、20……
マイクロコンピユータ装置。なお、図中同一符号
は同一または相当部分を示す。
FIG. 1 is a block diagram showing the configuration of an embodiment of the constant speed cruise control device for a vehicle according to the present invention, and FIG. 2 shows the configuration of the microcomputer and throttle valve drive means in the same constant speed cruise control device for a vehicle. 3a to 3c are flowcharts for explaining the operation of the microcomputer device in FIG. 2, FIG. 4 is an output waveform diagram of the vehicle speed sensor used in FIG. 2, and FIG. The figure is a time chart showing the running state of the vehicle, switch inputs, control signals, and the movement of the throttle valve. Figure 6a is a block diagram showing the overall configuration of a conventional constant speed cruise control device for a vehicle. Figure 6b is a conventional one. FIG. 3 is a diagram for explaining mechanical play of a throttle actuator in the constant speed cruise control device for a vehicle. DESCRIPTION OF SYMBOLS 1... Target speed setting means, 2... Brake device, 3... Running speed detection means, 7... Throttle valve driving means, 9... Throttle valve, 13... Target speed signal generating means, 14... Speed deviation calculation means,
15... Acceleration calculating means, 16... Constant speed running start detecting means, 17... Time measuring means, 18... Controlled amount calculating means, 19... Controlled amount adjusting means, 20...
Microcomputer equipment. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 車両の走行速度を検出する走行速度検出手
段、この走行速度検出手段で検出された走行速度
信号から所定時間毎に車両の加速度を求めて加速
度信号を出力する加速度演算手段、車両を一定の
速度に保つため目標速度を設定する目標速度設定
手段、この目標速度を表わす目標速度信号を発生
する目標速度信号発生手段、前記走行速度信号と
目標速度信号との速度偏差を演算して速度偏差信
号を発生する速度偏差演算手段、車両の駆動力を
制御する駆動力制御手段、前記加速度信号と速度
偏差信号とを入力し目標速度と走行速度が一致す
るように車両の駆動力を制御する制御量を演算す
る制御量演算手段、前記目標速度設定手段より定
速走行が開始されたことを検知する定速走行開始
検知手段、この定速走行開始時点より所定時間を
計測する時間計測手段、前記速度偏差信号と前記
時間計測手段による時間計測情報とを入力すると
共に前記制御量演算手段により演算された前記制
御量を入力し、前記所定時間が経過していない
か、あるいは前記所定時間を経過し且つ速度偏差
が所定値以上のときには、前記制御量演算手段で
演算された制御量を増加させるように調整した調
整制御量を前記駆動力制御手段に出力し、前記所
定時間を経過し且つ速度偏差が所定値未満のとき
には、前記制御量を無調整で前記駆動力制御手段
に出力する制御量調整手段を備えたことを特徴と
する車両用定速走行制御装置。
1. A traveling speed detecting means for detecting the traveling speed of the vehicle; an acceleration calculating means for calculating the acceleration of the vehicle at predetermined time intervals from the traveling speed signal detected by the traveling speed detecting means and outputting an acceleration signal; target speed setting means for setting a target speed to maintain the target speed, target speed signal generating means for generating a target speed signal representing the target speed, and calculating a speed deviation between the traveling speed signal and the target speed signal to generate a speed deviation signal. A speed deviation calculation means to be generated, a driving force control means to control the driving force of the vehicle, and a control amount to input the acceleration signal and the speed deviation signal to control the driving force of the vehicle so that the target speed and the running speed match. control amount calculation means for calculating, constant speed running start detection means for detecting that constant speed running has started from the target speed setting means, time measuring means for measuring a predetermined time from the start of constant speed running, and the speed deviation. Input the signal and the time measurement information by the time measurement means, and input the control amount calculated by the control amount calculation means, and check whether the predetermined time has not elapsed or if the predetermined time has elapsed and the speed When the deviation is greater than or equal to a predetermined value, an adjustment control amount adjusted to increase the control amount calculated by the control amount calculation means is output to the driving force control means, and when the predetermined time has elapsed and the speed deviation is a predetermined value. A constant speed cruise control device for a vehicle, comprising a control amount adjusting means for outputting the control amount to the driving force control means without adjustment when the control amount is less than a value.
JP61170150A 1986-07-18 1986-07-18 Constant speed travel controller for vehicle Granted JPS6328735A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61170150A JPS6328735A (en) 1986-07-18 1986-07-18 Constant speed travel controller for vehicle
PCT/JP1987/000515 WO1990007439A1 (en) 1986-07-18 1987-07-15 Controller for running a vehicle at a constant speed
US07/186,474 US4856609A (en) 1986-07-18 1987-07-15 Constant-speed running control device for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61170150A JPS6328735A (en) 1986-07-18 1986-07-18 Constant speed travel controller for vehicle

Publications (2)

Publication Number Publication Date
JPS6328735A JPS6328735A (en) 1988-02-06
JPH0523970B2 true JPH0523970B2 (en) 1993-04-06

Family

ID=15899603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61170150A Granted JPS6328735A (en) 1986-07-18 1986-07-18 Constant speed travel controller for vehicle

Country Status (2)

Country Link
JP (1) JPS6328735A (en)
WO (1) WO1990007439A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202539A (en) * 1988-02-05 1989-08-15 Honda Motor Co Ltd Cruise control device
JP2901610B2 (en) * 1988-02-09 1999-06-07 富士通テン株式会社 Constant speed traveling device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA814691B (en) * 1980-08-08 1983-02-23 Ass Eng Ltd Automatic speed control systems
JPS5894849U (en) * 1981-12-21 1983-06-27 富士通テン株式会社 automobile speed control device

Also Published As

Publication number Publication date
WO1990007439A1 (en) 1990-07-12
JPS6328735A (en) 1988-02-06

Similar Documents

Publication Publication Date Title
JPH0347210B2 (en)
JP3358509B2 (en) Travel control device for vehicles
US5048631A (en) System and method for automatically controlling vehicle speed to cruise speed
JPH07251651A (en) Intervehicle distance control device
JPH0523969B2 (en)
JPH0741806B2 (en) Constant-speed running control device for vehicle
US4829437A (en) System and method for automatically controlling a vehicle speed to a desired cruising speed
JPS611549A (en) Car-speed controller for automobile
JP2696027B2 (en) Constant speed cruise control device for vehicles
JPH0523213B2 (en)
JPH04176736A (en) Constant speed traveling control device for vehicle
JPH0523970B2 (en)
JPS63258230A (en) Constant speed travel control device for vehicle
US4856609A (en) Constant-speed running control device for vehicles
JPH05262164A (en) Automatic traveling speed controller
US5337237A (en) Constant speed driving device
JP2508042B2 (en) Vehicle running control device
JP3719032B2 (en) Driving force control device for vehicle equipped with continuously variable transmission
JP2920032B2 (en) Constant speed cruise control device for vehicles
JPS63154837A (en) Throttle valve controller
JP3235435B2 (en) Vehicle speed control device
JPH0722354Y2 (en) Constant-speed traveling device for automobiles
JPS6264635A (en) Constant speed running device for car
JPS642819Y2 (en)
JPH0649427B2 (en) Constant-speed running control device for vehicle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term