JPH05238833A - Production of aluminum nitride substrate - Google Patents

Production of aluminum nitride substrate

Info

Publication number
JPH05238833A
JPH05238833A JP4039592A JP3959292A JPH05238833A JP H05238833 A JPH05238833 A JP H05238833A JP 4039592 A JP4039592 A JP 4039592A JP 3959292 A JP3959292 A JP 3959292A JP H05238833 A JPH05238833 A JP H05238833A
Authority
JP
Japan
Prior art keywords
firing
carbon
atmosphere
aln
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4039592A
Other languages
Japanese (ja)
Inventor
Hiroshi Makihara
宏 牧原
Hitoshi Oishi
仁 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4039592A priority Critical patent/JPH05238833A/en
Publication of JPH05238833A publication Critical patent/JPH05238833A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a process for the production of a ceramic circuit board for mounting silicon LSI element, etc., especially aluminum nitride substrate and suitable for the industrial mass-production of aluminum nitride substrate having high thermal conductivity without necessitating troublesome operations. CONSTITUTION:A compound of alkaline earth metal or rare earth metal is used as a sintering assistant. The 1st-stage baking is carried out in a non-carbon atmosphere essentially excluding the contact of the baking object with carbon and the 2nd-stage baking is carried out in a carbon atmosphere to ensure sufficient contact of the baking object with carbon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコンLSI素子等
を搭載するためのセラミック回路基板、特に窒化アルミ
ニウム基板の製造方法に関する。窒化アルミニウム(A
lN)は放熱性に優れ、半導体素子を構成するシリコン
と熱膨張係数が近いことから、以前から用いられている
アルミナに代わるパッケージ材料および回路基板として
有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic circuit board, particularly an aluminum nitride board, for mounting a silicon LSI element or the like. Aluminum nitride (A
1N) is excellent in heat dissipation and has a thermal expansion coefficient close to that of silicon which constitutes a semiconductor element, and thus is useful as a package material and a circuit board replacing alumina which has been used in the past.

【0002】[0002]

【従来の技術】このように、高熱伝導はAlNの優れた
特性であるが、焼成原料として用いるAlN粉末中の不
純物酸素は、焼成後のAlNの熱伝導を阻害する。これ
を解消するために、AlNの焼成には酸素と反応して液
相を生成する焼結助剤を用い、そしてこの液相生成物を
系外に排除する必要がある。このような焼結助剤として
希土類およびアルカリ土類の酸化物が優れていることが
しられている(米屋他:窯業協会誌,89,6,198
1,pp330−336)。そしてこれらの助剤を用
い、助剤と不純物酸素との液相生成物を系外に排除する
ことにより高い熱伝導率のAlN焼結体を得る方法とし
て、AlNを長時間カーボン雰囲気中で焼成する方法
(堀口他:日本セラミックス協会年会予稿集,198
9.p969)、焼成圧力を高くする方法(牧原他:第
3回マイクロエレクトロニクスシンポジウム論文集,1
989,p23−25)等が提案されている。
2. Description of the Related Art As described above, high heat conduction is an excellent characteristic of AlN, but the impurity oxygen in the AlN powder used as a firing raw material impedes the heat conduction of AlN after firing. In order to solve this, it is necessary to use a sintering aid that reacts with oxygen to generate a liquid phase for firing AlN, and to exclude the liquid phase product from the system. It is known that rare earth oxides and alkaline earth oxides are excellent as such sintering aids (Yoneya et al .: Journal of Ceramic Industry Association, 89, 6, 198).
1, pp330-336). Then, as a method for obtaining an AlN sintered body having a high thermal conductivity by removing the liquid phase product of the auxiliary agent and impurity oxygen out of the system by using these auxiliary agents, AlN is burned in a carbon atmosphere for a long time. Method (Horiguchi et al .: Proceedings of Annual Meeting of the Ceramic Society of Japan, 198)
9. p969), a method of increasing the firing pressure (Makihara et al .: Proc. of the 3rd Microelectronics Symposium, 1
989, p23-25) and the like have been proposed.

【0003】しかしこれらの方法では、焼成に長時間を
要したり、あるいは焼成容器内に原料AlN粉末の詰め
粉をするなど煩雑な操作を必要としたりするため、また
得られる焼成体のサイズも非常に小さいものに限られる
ため、実用に適したAlN基板を工業的に量産するには
適さないという問題があった。
However, these methods require a long time for firing or require complicated operations such as filling the raw material AlN powder in a firing vessel, and the size of the obtained fired body is also large. Since it is limited to a very small size, there is a problem that it is not suitable for industrial mass production of a practically suitable AlN substrate.

【0004】[0004]

【発明が解決しようとする課題】本発明は、高い熱伝導
率を有するAlN基板を、煩雑な操作を要さずに工業的
に量産するのに適した窒化アルミニウム基板の製造方法
を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a method for producing an aluminum nitride substrate suitable for industrially mass-producing an AlN substrate having high thermal conductivity without requiring complicated operations. With the goal.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の窒化アルミニウム基板の製造方法は、焼
結助剤としてアルカリ土類または希土類の化合物を用
い、被焼成体とカーボンとの接触を実質的に排除した非
カーボン雰囲気中で第1段階の焼成を行った後、被焼成
体とカーボンとの接触を充分に確保したカーボン雰囲気
中で第2段階の焼成を行うことを特徴とする。
In order to achieve the above-mentioned object, the method for producing an aluminum nitride substrate of the present invention uses an alkaline earth or rare earth compound as a sintering aid, and a sintered body and carbon. The first stage firing is performed in a non-carbon atmosphere in which the contact between the two is substantially eliminated, and then the second stage firing is performed in a carbon atmosphere in which the contact between the body to be fired and the carbon is sufficiently ensured. And

【0006】[0006]

【作用】AlNは融点を持たず単体では焼結が困難であ
るため、焼結助剤を添加してAlN粉末中の不純物酸素
と液相反応させて焼結させる。ここで生成した液相生成
物は焼結後のAlNの粒界に残留する。AlN焼結体の
高い熱伝導率を確保するためには、この粒界の液相生成
物を焼結体から排除する必要がある。
Since AlN does not have a melting point and is difficult to sinter by itself, a sintering aid is added to cause liquid-phase reaction with impurity oxygen in AlN powder for sintering. The liquid phase product generated here remains at the grain boundaries of AlN after sintering. In order to secure the high thermal conductivity of the AlN sintered body, it is necessary to exclude the liquid phase product at the grain boundary from the sintered body.

【0007】AlNをカーボン雰囲気中で焼成すると、
助剤と不純物酸素が反応し液相を生成する前に、AlN
粉末中の不純物酸素がCO2 ガスとなって排除されてし
まうため、AlNの焼結が起こらない。そこで、先ず原
料AlN粉末とカーボンとの接触を実質的に排除したい
わゆる非カーボン雰囲気中で第1段階の焼成を行う。第
1段階の焼成は、非カーボン雰囲気で且つ高い焼成温度
で行うために、窒化硼素、窒化アルミニウム、または焼
成温度で安定な高融点金属の焼成容器および雰囲気内保
持具を用いて行うことができる。
When AlN is fired in a carbon atmosphere,
Before the auxiliary agent and the oxygen impurity react to form a liquid phase, AlN
Since the impurity oxygen in the powder is removed as CO 2 gas, AlN is not sintered. Therefore, first, the first-stage firing is performed in a so-called non-carbon atmosphere in which the contact between the raw material AlN powder and carbon is substantially excluded. Since the first-stage firing is performed in a non-carbon atmosphere and at a high firing temperature, it can be performed using a firing container of boron nitride, aluminum nitride, or a refractory metal that is stable at the firing temperature and a holder in the atmosphere. ..

【0008】第1段階の焼成によりAlNを緻密化させ
る。これにより得られるAlN焼結体中には液相生成物
が残留しているため、熱伝導率は高くない。しかし、液
相生成物を介在させることによりAlNは均一に粒成長
し、基板全体の収縮が一様となる。次の第2段階におい
て、カーボン雰囲気中で焼成することにより、液相生成
物をカーボンの還元力により焼結体の外部へ排除し、こ
れにより不純物酸素を除去してAlNの熱伝導率を高め
る。カーボン雰囲気を確保するために、カーボン製の焼
成容器および雰囲気内保持具を用いる。
AlN is densified by the first-stage firing. Since the liquid phase product remains in the AlN sintered body obtained by this, the thermal conductivity is not high. However, by interposing the liquid phase product, AlN grains are uniformly grown and the shrinkage of the entire substrate becomes uniform. In the next second stage, by firing in a carbon atmosphere, the liquid phase product is removed to the outside of the sintered body by the reducing power of carbon, thereby removing the impurity oxygen and increasing the thermal conductivity of AlN. .. In order to secure a carbon atmosphere, a firing container made of carbon and an in-atmosphere holder are used.

【0009】本発明に用いる焼成雰囲気は、基本的には
窒素ガスを主成分とする非酸化性のガスから成る雰囲気
であり、カーボン雰囲気とは、この基本雰囲気中に気相
あるいは固相のカーボンを含有する雰囲気であって、カ
ーボン微粉が浮遊している雰囲気も含む。非カーボン雰
囲気は、実質的に上記基本雰囲気から成り、カーボンを
含まない。
The firing atmosphere used in the present invention is basically an atmosphere composed of a non-oxidizing gas containing nitrogen gas as a main component, and the carbon atmosphere is a gas phase or solid phase carbon in this basic atmosphere. And an atmosphere in which fine carbon powder is suspended. The non-carbon atmosphere consists essentially of the above basic atmosphere and does not contain carbon.

【0010】第1段階の焼成による焼結密度はできるだ
け高いことが望ましい。第1焼成後の密度が低すぎる
と、粒界の残留液相が第2焼成時にカーボンにより急激
に排除されてポーラスになって焼結による緻密化が進行
せず、高い熱伝導率のAlNが得られない。この観点か
ら、第1焼成後の密度は少なくとも約90%程度とする
ことが望ましい。
It is desirable that the sintering density in the first-stage firing is as high as possible. If the density after the first firing is too low, the residual liquid phase at the grain boundaries is rapidly removed by the carbon during the second firing and becomes porous, so that the densification due to sintering does not proceed and AlN having a high thermal conductivity is formed. I can't get it. From this viewpoint, it is desirable that the density after the first firing be at least about 90%.

【0011】焼結助剤としてアルカリ土類の化合物を用
いる場合には、焼成雰囲気圧力を常圧より高くした方
が、液相生成物(例えばアルミン酸カルシウム)が蒸発
し易く、高い熱伝導率のAlN基板が得易い。以下に、
実施例によって本発明を更に詳細に説明する。
When an alkaline earth compound is used as a sintering aid, the liquid phase product (for example, calcium aluminate) is more likely to evaporate and the thermal conductivity is higher when the firing atmosphere pressure is higher than atmospheric pressure. It is easy to obtain the AlN substrate. less than,
The present invention will be described in more detail by way of examples.

【0012】[0012]

【実施例】【Example】

〔実施例1〕含有酸素量1%のAlN粉末に、Y2 3
粉末を5wt%添加し、溶剤(MEK)、バインダー
(PMMA)を加えてボールミルで混練した。得られた
スラリーからドクターブレード法により厚さ300μ
m、90×90mmのグリーンシートを作製した。これ
を8層に積層し、600℃で脱脂した後、BN容器に収
容し、1800℃で6時間窒素ガス雰囲気中で焼成した
(第1焼成)。第1焼成したAlN基板をカーボン容器
に収容し、窒素雰囲気中で1800℃で6時間焼成した
(第2焼成)。以上の工程により厚さ300μm、90
×90mmのAlN基板が得られた。
In Example 1 contained oxygen of 1% of the AlN powder, Y 2 O 3
5 wt% of powder was added, a solvent (MEK) and a binder (PMMA) were added, and the mixture was kneaded with a ball mill. The thickness of the obtained slurry is 300μ by the doctor blade method.
A green sheet of m, 90 × 90 mm was prepared. This was laminated in 8 layers, degreased at 600 ° C., housed in a BN container, and fired at 1800 ° C. for 6 hours in a nitrogen gas atmosphere (first firing). The first fired AlN substrate was placed in a carbon container and fired at 1800 ° C. for 6 hours in a nitrogen atmosphere (second firing). Through the above steps, the thickness of 300 μm, 90
A 90 mm AlN substrate was obtained.

【0013】〔比較例1〕実施例1と同様な手順でAl
N基板を作製した。但し比較のため、焼成は2段階に分
けず、初めからカーボン容器中で行った。
[Comparative Example 1] Al in the same procedure as in Example 1
An N substrate was produced. However, for comparison, firing was performed in a carbon container from the beginning without being divided into two stages.

【0014】〔比較例2〕実施例1と同様な手順でAl
N基板を作製した。但し比較のため、第2焼成において
も非カーボン雰囲気を用いた。
[Comparative Example 2] Al was manufactured in the same procedure as in Example 1.
An N substrate was produced. However, for comparison, a non-carbon atmosphere was used also in the second firing.

【0015】〔比較例3〕実施例1と同様な手順でAl
N基板を作製した。但し比較のため、第1焼成を150
0℃で行い、第1焼成による焼結密度を90%より低く
した。実施例1および比較例1〜3で作製したAlN基
板について、密度と熱伝導率を測定した。その結果を表
1にまとめて示す。
[Comparative Example 3] Al was manufactured in the same procedure as in Example 1.
An N substrate was produced. However, for comparison, the first firing is 150
The sintering was performed at 0 ° C. and the sintering density by the first firing was made lower than 90%. The density and thermal conductivity of the AlN substrates produced in Example 1 and Comparative Examples 1 to 3 were measured. The results are summarized in Table 1.

【0016】 〔表1〕 ───────────────────────────────── 第1焼成後 第2焼成後 ───────────────────────────────── 実施例1 密度(g/cm2) 3.205 3.252 熱伝導率(W/m・K) 170 228 ───────────────────────────────── 比較例1 密度(g/cm2) ──── 1.905 熱伝導率(W/m・K) ──── 17 ───────────────────────────────── 比較例2 密度(g/cm2) 3.164 3.190 熱伝導率(W/m・K) 164 180 ───────────────────────────────── 比較例3 密度(g/cm2) 2.908 2.915 熱伝導率(W/m・K) 45 50 ─────────────────────────────────[Table 1] ───────────────────────────────── After the first firing After the second firing ── ─────────────────────────────── Example 1 Density (g / cm 2 ) 3.205 3.252 Thermal conductivity (W / mK) 170 228 ───────────────────────────────── Comparative Example 1 Density (g / cm 2 ) ──── 1.905 Thermal conductivity (W / mK) ──── 17 ─────────────────────────── Comparative Example 2 Density (g / cm 2 ) 3.164 3.190 Thermal conductivity (W / mK) 164 180 ─────────────── ────────────────── Comparative Example 3 Density (g / cm 2 ) 2.908 2.9 15 Thermal conductivity (W / mK) 45 50 ──────────────────────────────────

【0017】〔実施例2〕含有酸素量1%のAlN粉末
に、CaCO3 粉末を3.5wt%添加し、溶剤(ME
K)、バインダー(PMMA)を加えてボールミルで混
練した。得られたスラリーからドクターブレード法によ
り厚さ300μm、90×90mmのグリーンシートを
作製した。これを8層に積層し、600℃で脱脂した
後、BN容器に収容し、1800℃で6時間窒素ガス雰
囲気中で焼成した(第1焼成)。第1焼成したAlN基
板をカーボン容器に収容し、窒素雰囲気中1〜8kg/
cm2の圧力で1800℃で6時間焼成した(第2焼
成)。 以上の工程により厚さ300μm、90×90
mmのAlN基板が得られた。
Example 2 3.5% by weight of CaCO 3 powder was added to AlN powder having an oxygen content of 1% and the solvent (ME
K) and a binder (PMMA) were added and kneaded with a ball mill. A green sheet having a thickness of 300 μm and a size of 90 × 90 mm was prepared from the obtained slurry by the doctor blade method. This was laminated in 8 layers, degreased at 600 ° C., housed in a BN container, and fired at 1800 ° C. for 6 hours in a nitrogen gas atmosphere (first firing). The first calcined AlN substrate was placed in a carbon container, and 1 to 8 kg / in a nitrogen atmosphere.
It was fired at a pressure of cm 2 at 1800 ° C. for 6 hours (second firing). Through the above steps, the thickness is 300 μm, 90 × 90
A mm AlN substrate was obtained.

【0018】〔比較例4〕実施例2と同様な手順でAl
N基板を作製した。但し比較のため、焼成は2段階に分
けず、初めからカーボン容器中で行った。
[Comparative Example 4] Al was manufactured in the same procedure as in Example 2.
An N substrate was produced. However, for comparison, firing was performed in a carbon container from the beginning without being divided into two stages.

【0019】〔比較例5〕実施例2と同様な手順でAl
N基板を作製した。但し比較のため、第2焼成において
も非カーボン雰囲気を用いた。
[Comparative Example 5] Al was manufactured in the same procedure as in Example 2.
An N substrate was produced. However, for comparison, a non-carbon atmosphere was used also in the second firing.

【0020】〔比較例6〕実施例2と同様な手順でAl
N基板を作製した。但し比較のため、第1焼成を150
0℃で行い、第1焼成による焼結密度を90%より低く
した。実施例2および比較例4〜6で作製したAlN基
板について、密度と熱伝導率を測定した。その結果を表
2にまとめて示す。
[Comparative Example 6] Al was manufactured in the same procedure as in Example 2.
An N substrate was produced. However, for comparison, the first firing is 150
The sintering was performed at 0 ° C. and the sintering density by the first firing was made lower than 90%. The density and thermal conductivity of the AlN substrates produced in Example 2 and Comparative Examples 4 to 6 were measured. The results are summarized in Table 2.

【0021】 〔表2〕 ───────────────────────────────── 第1焼成後 第2焼成後 ───────────────────────────────── 実施例2 密度(g/cm2) 3.197 3.212 熱伝導率(W/m・K) 176 250 ───────────────────────────────── 比較例4 密度(g/cm2) ──── 2.056 熱伝導率(W/m・K) ──── 52 ───────────────────────────────── 比較例5 密度(g/cm2) 3.157 3.175 熱伝導率(W/m・K) 174 180 ───────────────────────────────── 比較例6 密度(g/cm2) 2.908 2.915 熱伝導率(W/m・K) 78 80 ─────────────────────────────────[Table 2] ───────────────────────────────── After the first firing After the second firing ── ─────────────────────────────── Example 2 Density (g / cm 2 ) 3.197 3.212 Thermal conductivity (W / mK) 176 250 ───────────────────────────────── Comparative Example 4 Density (g / cm 2 ) ──── 2.056 Thermal conductivity (W / mK) ──── 52 ─────────────────────────── Comparative Example 5 Density (g / cm 2 ) 3.157 3.175 Thermal conductivity (W / m · K) 174 180 ──────────────── ────────────────── Comparative Example 6 Density (g / cm 2 ) 2.908 2.9 15 Thermal conductivity (W / mK) 78 80 ──────────────────────────────────

【0022】図1に、本発明において焼成を2段階に分
けて行うことによる熱伝導率の向上効果を示す。図2
に、実施例2における第2焼成時の雰囲気圧力と熱伝導
率との関係を示す。第2焼成時の圧力を高くすると熱伝
導率が高まることが分かる。
FIG. 1 shows the effect of improving the thermal conductivity by performing firing in two steps in the present invention. Figure 2
The relationship between the atmospheric pressure and the thermal conductivity during the second firing in Example 2 is shown in FIG. It can be seen that increasing the pressure during the second firing increases the thermal conductivity.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
高い熱伝導率を有するAlN基板を、煩雑な操作を要さ
ずに工業的に量産することができる。
As described above, according to the present invention,
An AlN substrate having high thermal conductivity can be industrially mass-produced without requiring complicated operations.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明において焼成を2段階に分けて
行うことによる熱伝導率の向上効果を示すグラフであ
る。
FIG. 1 is a graph showing the effect of improving the thermal conductivity by performing firing in two steps in the present invention.

【図2】図2に、第2焼成時の雰囲気圧力と熱伝導率と
の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between atmospheric pressure and thermal conductivity during the second firing.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】焼結助剤としてアルカリ土類または希土類
の化合物を用い、被焼成体とカーボンとの接触を実質的
に排除した非カーボン雰囲気中で第1段階の焼成を行っ
た後、被焼成体とカーボンとの接触を充分に確保したカ
ーボン雰囲気中で第2段階の焼成を行うことを特徴とす
る窒化アルミニウム基板の製造方法。
1. A first-stage firing is carried out in a non-carbon atmosphere in which a contact between a body to be fired and carbon is substantially excluded, using a compound of alkaline earth or rare earth as a sintering aid, A method for manufacturing an aluminum nitride substrate, comprising performing the second-step firing in a carbon atmosphere in which the contact between the fired body and carbon is sufficiently ensured.
【請求項2】前記第1段階の焼成を、窒化硼素、窒化ア
ルミニウム、または焼成温度で安定な高融点金属の焼成
容器および雰囲気内保持具を用いて行う請求項1記載の
方法。
2. The method according to claim 1, wherein the firing in the first step is performed by using a firing container and a holder in an atmosphere of boron nitride, aluminum nitride, or a refractory metal stable at a firing temperature.
【請求項3】前記第1段階の焼成による焼成密度を90
%以上とすることを特徴とする請求項1または2記載の
方法。
3. The firing density of the firing in the first step is 90.
% Or more, The method according to claim 1 or 2.
【請求項4】前記焼結助剤としてアルカリ土類化合物を
用いる場合、前記第2段階の焼成を常圧よりも高い圧力
下で行うことを特徴とする請求項1から3までのいずれ
か1項記載の方法。
4. The method according to claim 1, wherein, when an alkaline earth compound is used as the sintering aid, the firing in the second step is performed under a pressure higher than atmospheric pressure. Method described in section.
JP4039592A 1992-02-26 1992-02-26 Production of aluminum nitride substrate Withdrawn JPH05238833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4039592A JPH05238833A (en) 1992-02-26 1992-02-26 Production of aluminum nitride substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4039592A JPH05238833A (en) 1992-02-26 1992-02-26 Production of aluminum nitride substrate

Publications (1)

Publication Number Publication Date
JPH05238833A true JPH05238833A (en) 1993-09-17

Family

ID=12557379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4039592A Withdrawn JPH05238833A (en) 1992-02-26 1992-02-26 Production of aluminum nitride substrate

Country Status (1)

Country Link
JP (1) JPH05238833A (en)

Similar Documents

Publication Publication Date Title
JPH01203270A (en) Sintered aluminum nitride body having high thermal conductivity and its production
JP3214890B2 (en) Aluminum nitride sintered body, method for producing the same, and firing jig using the same
JP2547767B2 (en) High thermal conductivity aluminum nitride sintered body
JPH05238830A (en) Sintered aluminum nitride and its production
JPH0336782B2 (en)
JP4593062B2 (en) Aluminum nitride sintered body and method for producing the same
JPH0582347B2 (en)
JPH05238833A (en) Production of aluminum nitride substrate
JPH06329474A (en) Sintered aluminum nitride and its production
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JPH01252584A (en) Sintered composite ceramic compact and production thereof
JP2001354479A (en) Aluminum nitride sintered compact and its manufacturing method
JPH0442861A (en) Preparation of highly strong aluminum nitride sintered product
JPH0312363A (en) Aluminum nitride-containing sintered body and its manufacture
JPH04144967A (en) Aluminum nitride sintered compact and production thereof
JP3106186B2 (en) Manufacturing method of aluminum nitride sintered body
JPH08508458A (en) Heat treatment of nitrogen ceramics
JP3272791B2 (en) Manufacturing method of aluminum nitride sintered body
JP2876521B2 (en) Manufacturing method of aluminum nitride sintered body
JPS62235262A (en) Manufacture of aluminum nitride sintered body
JPH02107569A (en) Production of aluminum nitride sintered body
JPH02307871A (en) Production of ceramic sintered compact
JPH01188472A (en) Production of aluminum nitride sintered body
JPH01239067A (en) Production of aluminum nitride base
JPH0627032B2 (en) Method for manufacturing aluminum nitride sintered body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518