JPH05236684A - Brushless cd motor - Google Patents

Brushless cd motor

Info

Publication number
JPH05236684A
JPH05236684A JP4033246A JP3324692A JPH05236684A JP H05236684 A JPH05236684 A JP H05236684A JP 4033246 A JP4033246 A JP 4033246A JP 3324692 A JP3324692 A JP 3324692A JP H05236684 A JPH05236684 A JP H05236684A
Authority
JP
Japan
Prior art keywords
rotor
adhesive
gap
rotor core
brushless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4033246A
Other languages
Japanese (ja)
Inventor
Akio Yamagiwa
昭雄 山際
Kazunobu Oyama
和伸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4033246A priority Critical patent/JPH05236684A/en
Publication of JPH05236684A publication Critical patent/JPH05236684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Brushless Motors (AREA)

Abstract

PURPOSE:To improve the mechanical strength of a rotor by charging an adhesive filler consisting of nonmagnetic material into the gap made in the specified position of a rotor core. CONSTITUTION:An adhesive filler 2d consisting of a nonmagnetic material is charged in the gap 2c for preventing the short circuit of the magnetic flux made in the specified position of a rotor core 2a. Therefore, it gets in such condition that space does not exist over the whole range of the rotor 2, and the stress concentration in the place, where great stress concentration has hitherto occurred, can be reduced. Moreover, one part of this filler 2d charged in the gap 2c penetrates into the lamination structure of gap of the rotor core 2a, too. Hereby, the mechanical strength of the rotor 2 improves.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は電機子鉄心に電機子巻
線を巻回してなる電機子と回転子鉄心に永久磁石を埋込
んでなる回転子とを含むブラシレスDCモータに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a brushless DC motor including an armature having an armature winding wound around an armature core and a rotor having a permanent magnet embedded in the rotor core.

【0002】[0002]

【従来の技術】従来から圧縮機等の駆動源として、電気
的制御が容易であること等の利点に着目してモータが採
用されている。また、モータには種々の種類のものがあ
るが、現状では、三相交流電源を用いて回転磁界を簡単
に得ることができ、整流子を不要にできること、および
堅牢、低価格、取扱いの簡便さ等の利点に着目して三相
誘導電動機が最も一般的に用いられている。しかし、誘
導電動機は、電機子鉄心に電機子巻線を巻回しているだ
けでなく、回転子鉄心にも回転子巻線を巻回しており、
運転時には回転子巻線にも電流が流れるので、機械損が
存在しないと仮定した場合であっても、回転子巻線に電
流が流れることに起因する二次銅損分だけ出力が入力よ
りも減少し、余り効率を高めることができない。
2. Description of the Related Art Conventionally, a motor has been adopted as a drive source for a compressor or the like, paying attention to advantages such as easy electric control. In addition, although there are various types of motors, at present, it is possible to easily obtain a rotating magnetic field by using a three-phase AC power supply, a commutator is not required, and it is robust, low-priced, and easy to handle. The three-phase induction motor is most commonly used because of its advantages. However, in the induction motor, not only is the armature winding wound around the armature core, but the rotor winding is also wound around the rotor core.
Since current also flows through the rotor winding during operation, even if it is assumed that there is no mechanical loss, the output is more than the input due to the secondary copper loss due to the current flowing in the rotor winding. It can be reduced and efficiency cannot be increased so much.

【0003】この点に着目して、回転子鉄心に回転子巻
線を巻回する代わりに、回転子鉄心に永久磁石を装着し
て二次銅損を0にし、高い運転効率を達成できる永久磁
石モータが提案されている。この永久磁石モータは、回
転子鉄心の外周に少なくとも1対の永久磁石を設けた構
成のもの(以下、表面磁石構造と称する)、および回転
子鉄心の内部に少なくとも1対の永久磁石を埋込んだ構
成のもの(以下、埋込磁石構造と称する)に大別され
る。
Focusing on this point, instead of winding the rotor winding around the rotor iron core, a permanent magnet is attached to the rotor iron core to reduce secondary copper loss to zero, and permanent operation can be achieved. Magnet motors have been proposed. This permanent magnet motor has a structure in which at least one pair of permanent magnets is provided on the outer circumference of a rotor core (hereinafter referred to as a surface magnet structure), and at least one pair of permanent magnets is embedded inside the rotor core. It is roughly divided into those having the above structure (hereinafter referred to as an embedded magnet structure).

【0004】そして、表面磁石構造のものは回転子鉄心
の表面に単に永久磁石を装着しているだけであるから、
回転子を高速回転させると永久磁石が剥離する可能性が
高く、余り高速回転させることができない。したがっ
て、図6に示すようにメタルフィッティング63および
ボルト64を用いて永久磁石62と回転子鉄心61とを
強固に一体化する補強方法、図7に示すように非磁性体
からなるバインドワイヤー73を用いて永久磁石72と
回転子鉄心71とを強固に一体化する補強方法、図8に
示すように非磁性体からなる金属管83を用いて永久磁
石82と回転子鉄心81とを強固に一体化する補強方法
が施されることになる。
In the surface magnet structure, a permanent magnet is simply attached to the surface of the rotor core,
When the rotor is rotated at a high speed, the permanent magnet is likely to peel off, and the rotor cannot be rotated at a high speed. Therefore, as shown in FIG. 6, a reinforcing method for firmly integrating the permanent magnet 62 and the rotor iron core 61 by using the metal fitting 63 and the bolt 64, and the bind wire 73 made of a non-magnetic material as shown in FIG. A reinforcing method of firmly integrating the permanent magnet 72 and the rotor iron core 71 by using the metal tube 83 made of a non-magnetic material as shown in FIG. 8 to firmly integrate the permanent magnet 82 and the rotor iron core 81. Will be applied to the reinforcement method.

【0005】これに対して埋込磁石構造のものは回転子
鉄心の内部に永久磁石を埋込んでいるので永久磁石の剥
離を阻止でき、表面磁石構造のものよりも高速回転に対
処できる。したがって、高速回転を行なわせる必要があ
る用途には埋込磁石構造の永久磁石モータを採用するこ
とになる。上記埋込磁石構造のものにおいては、回転子
鉄心の内部に永久磁石を埋込むとともに、回転子鉄心内
部における磁束の短絡を防止するために磁束短絡防止用
の空隙を形成する必要があるので、回転子の構造が複雑
化するのみならず、回転子鉄心の機械的強度が必然的に
低下してしまう。したがって、図9に示すようにピンま
たはボルト93を用いて積層構造の回転子鉄心91を強
固に一体化する補強方法が施される。尚、図7および図
8に示す補強方法を施すことも可能である。
On the other hand, in the case of the embedded magnet structure, since the permanent magnet is embedded inside the rotor core, peeling of the permanent magnet can be prevented, and it is possible to cope with higher speed rotation than that of the surface magnet structure. Therefore, a permanent magnet motor having an embedded magnet structure is adopted for applications requiring high-speed rotation. In the above-mentioned embedded magnet structure, since it is necessary to embed a permanent magnet inside the rotor core, it is necessary to form a void for magnetic flux short circuit prevention in order to prevent short circuit of magnetic flux inside the rotor core. Not only does the structure of the rotor become complicated, but the mechanical strength of the rotor core inevitably decreases. Therefore, as shown in FIG. 9, a reinforcing method of firmly integrating the laminated rotor core 91 with the pin or bolt 93 is applied. The reinforcing method shown in FIGS. 7 and 8 can also be applied.

【0006】[0006]

【発明が解決しようとする課題】図9に示す補強方法が
施された埋込磁石構造のものを用いて高速回転を行なわ
せると、回転子表面の磁束短絡部94、埋込まれた永久
磁石92の端部における遠心力に起因する応力が他の部
分と比較して著しく大きくなり、破損が発生しやすいの
で、上記のような補強方法を施しても余り高速回転には
対処できないという不都合がある。また、ピンまたはボ
ルト93を挿通するための穴を余分に形成しなければな
らないので回転子の製造作業が繁雑化するとともに、穴
を形成してピンまたはボルト93を挿通することに起因
して回転子鉄心内部の磁束の流れが乱れてしまい、性能
が低下してしまうという不都合もある。
When high-speed rotation is performed using the embedded magnet structure having the reinforcing method shown in FIG. 9, the magnetic flux short circuit portion 94 on the surface of the rotor and the embedded permanent magnet. Since the stress due to the centrifugal force at the end of 92 becomes significantly larger than that of other portions and damage is likely to occur, there is a disadvantage that even if the above reinforcing method is applied, it is not possible to cope with high speed rotation. is there. In addition, an additional hole for inserting the pin or bolt 93 must be formed, which complicates the manufacturing process of the rotor, and causes the rotation of the rotor due to the hole being formed and the pin or bolt 93 being inserted. There is also the inconvenience that the flow of the magnetic flux inside the child core is disturbed and the performance deteriorates.

【0007】以上はピンまたはボルト93を用いる補強
方法を採用した場合についてのみ説明したが、バインド
ワイヤー、金属管を用いる補強方法を採用した場合であ
っても局部的な応力集中に起因して破損が発生しやすい
という不都合がある。
Although only the case where the reinforcing method using the pin or the bolt 93 is adopted has been described above, even when the reinforcing method using the bind wire or the metal tube is adopted, damage is caused due to local stress concentration. Has the inconvenience of being likely to occur.

【0008】[0008]

【発明の目的】この発明は上記の問題点に鑑みてなされ
たものであり、局部的な応力集中を大幅に低減でき、し
かも回転子の製造作業の複雑化を大幅に抑制できる埋込
磁石構造のブラシレスDCモータを提供することを目的
としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is possible to significantly reduce local stress concentration, and further, to significantly suppress complication of rotor manufacturing work. The purpose of the present invention is to provide a brushless DC motor.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの、請求項1のブラシレスDCモータは、回転子鉄心
の所定位置に磁束の短絡を防止する空隙が形成されてあ
るとともに、空隙に非磁性体からなる接着性の充填材が
充填されてあるものである。請求項2のブラシレスDC
モータは、接着性の充填材として、接着剤と非磁性体か
らなる固形物とからなるものを用いている。
In order to achieve the above object, a brushless DC motor according to claim 1 has a gap formed in a predetermined position of a rotor core to prevent short circuit of magnetic flux, and the gap is formed in the gap. It is filled with an adhesive filler made of a non-magnetic material. Brushless DC according to claim 2
The motor uses an adhesive filler made of an adhesive and a solid material made of a non-magnetic material.

【0010】[0010]

【作用】請求項1のブラシレスDCモータであれば、回
転子鉄心の所定位置に形成された磁束の短絡を防止する
空隙に非磁性体からなる接着性の充填材が充填されてあ
るので、回転子の全範囲にわたって空間が存在しない状
態になり、従来は著しく大きな応力集中が発生していた
箇所における応力集中を大幅に低減でき、回転子全体と
しての機械的強度を大幅に向上できる。また、空隙に充
填された接着性の充填材の一部が回転子鉄心の積層構造
の隙間に侵入するので、この面からも回転子の機械的強
度の向上を達成できる。さらに、製造作業についても、
余分な穴あけ等の作業が不要であり、既存の空隙に接着
性の充填材を充填するだけでよいから、作業の繁雑化を
大幅に抑制できる。
According to the brushless DC motor of the present invention, since the gap for preventing the short circuit of the magnetic flux formed at a predetermined position of the rotor core is filled with the adhesive filler made of a non-magnetic material, Since there is no space over the entire range of the child, the stress concentration at a location where a remarkably large stress concentration has been generated in the past can be significantly reduced, and the mechanical strength of the rotor as a whole can be significantly improved. Further, since a part of the adhesive filler filled in the voids penetrates into the gap of the laminated structure of the rotor core, the mechanical strength of the rotor can be improved also from this aspect. Furthermore, regarding manufacturing work,
No extra work such as drilling is required, and it is sufficient to fill the existing voids with an adhesive filler, so that complicated work can be greatly suppressed.

【0011】請求項2のブラシレスDCモータであれ
ば、接着性の充填材が、接着剤と非磁性体からなる固形
物とからなるものであるから、空隙が大きい場合であっ
ても、空隙に注入した充填材が固化するまで確実に空隙
の内部で保持され、充填材を空隙内部に保持するための
特別の作業が不要になるので作業の繁雑化を大幅に抑制
できる。また、接着剤はかなり狭い空間に簡単に侵入で
きるのであるから、回転子鉄心の積層構造の隙間に十分
な量の接着剤が侵入し、回転子の機械的強度を一層向上
できる。
In the brushless DC motor according to the second aspect, since the adhesive filler is composed of the adhesive and the solid substance made of the non-magnetic material, the void is filled even if the void is large. The injected filler is securely held inside the void until it is solidified, and no special work for holding the filler inside the void is required, so that the complexity of the work can be greatly suppressed. Further, since the adhesive can easily penetrate into a considerably narrow space, a sufficient amount of the adhesive can penetrate into the gap of the laminated structure of the rotor core, further improving the mechanical strength of the rotor.

【0012】[0012]

【実施例】以下、実施例を示す添付図面によって詳細に
説明する。図3はこの発明のブラシレスDCモータの一
実施例を示す縦断面図、図2は回転子の構成を示す斜視
図、図1は回転子の構成を示す縦断面図である。ブラシ
レスDCモータは図3に示すように、ほぼ円筒状の電機
子鉄心の内面に形成した複数のスリットに電機子巻線を
巻回してなる電機子1と、電機子1の内径よりもやや小
さい外径の回転子鉄心2aの内部に少なくとも1対(図
示した実施例においては2対)の永久磁石2bを埋設し
てなる回転子2とを有している。図1,図2に示す回転
子2は、回転子2の半径方向と直角な方向に永久磁石2
bを埋設してあり、隣合う永久磁石2bにより発生され
る磁束の短絡を防止するために、永久磁石2bの端部か
ら回転子鉄心2a外端近傍まで半径方向に延びる磁束短
絡防止用の空隙2cを形成してある。そして、空隙2c
の内部に非磁性体からなる接着性の充填材2dを充填し
てある。尚、空隙2cの外方に残存する部分が磁束短絡
部2eである。
Embodiments will now be described in detail with reference to the accompanying drawings showing embodiments. 3 is a vertical sectional view showing an embodiment of the brushless DC motor of the present invention, FIG. 2 is a perspective view showing the structure of the rotor, and FIG. 1 is a vertical sectional view showing the structure of the rotor. As shown in FIG. 3, the brushless DC motor has an armature 1 formed by winding an armature winding around a plurality of slits formed on the inner surface of a substantially cylindrical armature core, and slightly smaller than the inner diameter of the armature 1. The rotor 2 having at least one pair (two pairs in the illustrated embodiment) of permanent magnets 2b is embedded inside a rotor core 2a having an outer diameter. The rotor 2 shown in FIGS. 1 and 2 has a permanent magnet 2 in a direction perpendicular to the radial direction of the rotor 2.
In order to prevent a short circuit of the magnetic flux generated by the permanent magnets 2b adjacent to each other, the air gap for extending from the end of the permanent magnet 2b to the vicinity of the outer end of the rotor iron core 2a in the radial direction for magnetic flux short circuit prevention. 2c is formed. And the void 2c
The inside is filled with an adhesive filler 2d made of a non-magnetic material. The portion remaining outside the void 2c is the magnetic flux short circuit portion 2e.

【0013】尚、接着性の充填材としては、エポキシ系
接着剤、アクリル系接着剤に代表される接着剤のみを用
いることが可能であるほか、この接着剤に対して、接着
強度を低下させることなく固化させることができる固形
物を混入してなるものを用いることが可能である。そし
て、上記空隙2cが比較的狭幅の場合には接着剤のみを
用いることが好ましく、空隙2cが比較的広幅の場合に
は接着剤に固形物を混入してなるものを用いて固化所要
時間の大幅な増加を防止することが好ましい。さらに、
空隙2cが比較的広幅の場合には、空隙2cに挿入可能
な形状の非磁性、かつ非電導性の固形物(例えばセラミ
ックが例示でき、回転子鉄心とほぼ等しい比重のものが
好ましい)を挿入し、隙間に接着剤を注入、固化させる
ことも可能である。さらにまた、回転子鉄心2aを、非
磁性の筒体(たとえば、SUS管)に挿入してもよい。
また、上記永久磁石2bとしてはフェライト磁石を用い
ることが可能であるが、希土類磁石を用いることが好ま
しい。
As the adhesive filler, only an adhesive represented by an epoxy adhesive or an acrylic adhesive can be used, and the adhesive strength with respect to this adhesive is lowered. It is possible to use a material in which a solid substance that can be solidified without being mixed is mixed. When the void 2c has a relatively narrow width, it is preferable to use only the adhesive, and when the void 2c has a relatively wide width, a solid mixture is used in the adhesive to complete the solidification time. It is preferable to prevent a large increase in further,
If the gap 2c is relatively wide, insert a non-magnetic and non-conducting solid substance having a shape that can be inserted into the gap 2c (for example, ceramic can be exemplified, and one having a specific gravity approximately equal to that of the rotor core is preferable). However, it is also possible to inject an adhesive into the gap and solidify it. Furthermore, the rotor core 2a may be inserted into a non-magnetic cylindrical body (for example, SUS tube).
A ferrite magnet can be used as the permanent magnet 2b, but a rare earth magnet is preferably used.

【0014】上記の構成のブラシレスDCモータであれ
ば、磁束の短絡を防止するための空隙2cに接着性の充
填材2dを充填しているので、回転子鉄心2aの磁束短
絡部2e、永久磁石2bの端部における応力集中を大幅
に低減でき、何ら他の補強方法を採用しなくても高速回
転を達成でき、高速回転時における回転子2の破損を確
実に防止できる。
In the case of the brushless DC motor having the above structure, the gap 2c for preventing the short circuit of the magnetic flux is filled with the adhesive filler 2d, so that the magnetic flux short circuit portion 2e of the rotor core 2a and the permanent magnet. The stress concentration at the end of 2b can be significantly reduced, high speed rotation can be achieved without employing any other reinforcing method, and the rotor 2 can be reliably prevented from being damaged during high speed rotation.

【0015】図4は回転速度に対応して磁束短絡部2e
に生じる引張り応力を示す図であり、実線が空隙2cに
エポキシ系接着剤を充填した場合を、破線が空隙2cに
何も充填していない場合をそれぞれ示している。図4か
ら明らかなように、回転速度の増加に伴なって引張り応
力も増加しているが、空隙2cにエポキシ系接着剤を充
填するだけで引張り応力を大幅に低減できていることが
分る。定量的には、約1/3に低減できている。
FIG. 4 shows the magnetic flux short circuit portion 2e corresponding to the rotation speed.
FIG. 3 is a diagram showing the tensile stress that occurs in FIG. 3, in which the solid line shows the case where the void 2c is filled with an epoxy adhesive, and the broken line shows the case where nothing is filled in the void 2c. As is clear from FIG. 4, the tensile stress also increases with the increase of the rotation speed, but it can be seen that the tensile stress can be significantly reduced only by filling the void 2c with the epoxy adhesive. .. Quantitatively, it can be reduced to about 1/3.

【0016】次いで、上記の構成の回転子2の製造作業
について説明する。例えば、ケイ素鋼板を永久磁石に対
してすきま嵌め寸法に打抜き、またはワイヤーカット加
工を行なって単位ケイ素鋼板を得る(図5参照)。以上
のようにして得られた複数枚の単位ケイ素鋼板を積層し
て回転子2の軸に圧入する。そして、積層されたケイ素
鋼板の磁石挿入部に対してエポキシ系接着剤を介在させ
た状態で永久磁石2bを挿入し、接着剤により固定す
る。最後に積層されたケイ素鋼板の空隙2cにエポキシ
系接着剤2dを充填し、エポキシ系接着剤2dを固化さ
せることにより、必要な補強が施された回転子2を得
る。尚、空隙2cに充填されたエポキシ系接着剤2dの
一部は積層された単位ケイ素鋼板の隙間に侵入して固化
するので、この面からも回転子2の機械的強度を高める
ことができる。また、上記エポキシ系接着剤としては、
外径が60mm程度の回転子の場合に、接着力が1〜2Kg
/mm2 以上のものを用いることが好ましい。
Next, a manufacturing operation of the rotor 2 having the above structure will be described. For example, a silicon steel plate is punched into a clearance fitting dimension with respect to a permanent magnet, or wire cutting is performed to obtain a unit silicon steel plate (see FIG. 5). A plurality of unit silicon steel plates obtained as described above are laminated and pressed into the shaft of the rotor 2. Then, the permanent magnet 2b is inserted into the magnet insertion portion of the laminated silicon steel plates with the epoxy adhesive interposed, and fixed by the adhesive. Finally, the voids 2c of the laminated silicon steel plates are filled with the epoxy adhesive 2d and the epoxy adhesive 2d is solidified to obtain the rotor 2 with necessary reinforcement. Since a part of the epoxy adhesive 2d filled in the void 2c enters into the gap between the laminated unit silicon steel plates and is solidified, the mechanical strength of the rotor 2 can be increased also from this surface. Further, as the epoxy adhesive,
If the outer diameter is about 60mm, the adhesive force is 1-2Kg.
/ Mm 2 or more is preferably used.

【0017】以上の説明から明らかなように、ケイ素鋼
板に形成すべき開口としては永久磁石を挿入する部分お
よび空隙2cのみでよいから、ボルト締め用の開口を形
成する場合と比較してケイ素鋼板に対する加工を簡素化
でき、実際の補強作業においても空隙2cにエポキシ系
接着剤2dを注入するだけでよいから、ボルトを挿通し
てナット締めを行なう場合と比較して補強作業を簡素化
できる。そして、簡素化された上記作業を遂行するだけ
で、従来の回転子よりも局部的な応力集中を大幅に低減
でき、回転子2の機械的強度を大幅に向上できる。
As is clear from the above description, the openings to be formed in the silicon steel sheet are only the portions into which the permanent magnets are inserted and the voids 2c. Therefore, compared with the case where the openings for bolting are formed, the silicon steel sheet. Can be simplified, and even in the actual reinforcing work, it is sufficient to inject the epoxy adhesive 2d into the void 2c, so that the reinforcing work can be simplified as compared with the case of inserting the bolt and tightening the nut. Then, only by performing the simplified work, the local stress concentration can be significantly reduced as compared with the conventional rotor, and the mechanical strength of the rotor 2 can be significantly improved.

【0018】尚、この発明は上記の実施例に限定される
ものではなく、例えば、バインドワイヤー、金属管によ
る補強と併用することが可能であるほか、隣合う永久磁
石毎に形成されている空隙を一体化してスキュー角度を
大きく設定することが可能であり、その他、この発明の
要旨を変更しない範囲内において種々の設計変更を施す
ことが可能である。
The present invention is not limited to the above-mentioned embodiment, and for example, it can be used together with the reinforcement by the bind wire and the metal tube, and the void formed for each adjacent permanent magnet. Can be integrated to set a large skew angle, and various design changes can be made within a range not changing the gist of the present invention.

【0019】[0019]

【発明の効果】以上のように請求項1の発明は、従来の
回転子において著しく大きな応力集中が発生していた箇
所における応力集中を大幅に低減でき、回転子の機械的
強度の大幅な向上を達成できるとともに、製造作業につ
いても、余分な穴あけ等の作業が不要であり、既存の空
隙に接着性の充填材を充填するだけでよいから、作業の
繁雑化を大幅に抑制できるという特有の効果を奏する。
As described above, according to the first aspect of the present invention, the stress concentration in a portion where a remarkably large stress concentration occurs in the conventional rotor can be significantly reduced, and the mechanical strength of the rotor can be greatly improved. In addition to achieving the above, the manufacturing work does not require extra work such as drilling, and since it is only necessary to fill the existing voids with an adhesive filler, it is possible to significantly reduce the complexity of the work. Produce an effect.

【0020】請求項2の発明は、請求項1の効果に加
え、空隙が大きい場合であっても、空隙に注入した充填
材が固化するまで確実に空隙の内部で保持され、充填材
を空隙内部に保持するための特別の作業が不要になるの
で作業の繁雑化を大幅に抑制できるという特有の効果を
奏する。
According to the invention of claim 2, in addition to the effect of claim 1, even when the voids are large, the filler injected into the voids is surely retained inside the voids until it solidifies, and the filler is voided. Since a special work for holding the work inside is unnecessary, it is possible to significantly suppress the complication of work, which is a unique effect.

【図面の簡単な説明】[Brief description of drawings]

【0021】[0021]

【図1】この発明のブラシレスDCモータの一実施例に
おける回転子の構成を示す縦断面図である。
FIG. 1 is a vertical sectional view showing the structure of a rotor in an embodiment of a brushless DC motor of the present invention.

【0022】[0022]

【図2】この発明のブラシレスDCモータの一実施例に
おける回転子を示す斜視図である。
FIG. 2 is a perspective view showing a rotor in one embodiment of the brushless DC motor of the present invention.

【0023】[0023]

【図3】この発明のブラシレスDCモータの一実施例を
概略的に示す縦断面図である。
FIG. 3 is a vertical sectional view schematically showing an embodiment of the brushless DC motor of the present invention.

【0024】[0024]

【図4】回転速度に対応して磁束短絡部に生じる引張り
応力を示す図である。
FIG. 4 is a diagram showing a tensile stress generated in a magnetic flux short circuit portion in accordance with a rotation speed.

【0025】[0025]

【図5】単位ケイ素鋼板を示す平面図である。FIG. 5 is a plan view showing a unit silicon steel sheet.

【0026】[0026]

【図6】表面磁石構造の回転子に対する補強方法の一例
を示す概略図である。
FIG. 6 is a schematic view showing an example of a reinforcing method for a rotor having a surface magnet structure.

【0027】[0027]

【図7】表面磁石構造の回転子に対する補強方法の他の
例を示す概略図である。
FIG. 7 is a schematic view showing another example of a reinforcing method for a rotor having a surface magnet structure.

【0028】[0028]

【図8】表面磁石構造の回転子に対する補強方法のさら
に他の例を示す概略図である。
FIG. 8 is a schematic view showing still another example of the reinforcing method for the rotor having the surface magnet structure.

【0029】[0029]

【図9】埋込磁石構造の回転子に対する補強方法の一例
を示す概略図である。
FIG. 9 is a schematic view showing an example of a reinforcing method for a rotor having an embedded magnet structure.

【0030】[0030]

【符号の説明】[Explanation of symbols]

1 電機子 2 回転子 2a 回転子鉄心 2
b 永久磁石 2c 空隙 2d 接着性の充填材(エポキシ系接着
剤)
1 armature 2 rotor 2a rotor core 2
b Permanent magnet 2c Void 2d Adhesive filler (epoxy adhesive)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電機子鉄心に電機子巻線を巻回してなる
電機子(1)と回転子鉄心(2a)に永久磁石(2b)
を埋込んでなる回転子(2)とを含むブラシレスDCモ
ータであって、回転子鉄心(2a)の所定位置に磁束の
短絡を防止する空隙(2c)が形成されてあるととも
に、空隙(2c)に非磁性体からなる接着性の充填材
(2d)が充填されてあることを特徴とするブラシレス
DCモータ。
1. An armature (1) formed by winding an armature winding around an armature core, and a permanent magnet (2b) around a rotor core (2a).
A brushless DC motor including a rotor (2) in which a magnetic flux is short-circuited is formed at a predetermined position of a rotor core (2a), and a gap (2c) is formed. ) Is filled with an adhesive filler (2d) made of a non-magnetic material.
【請求項2】 接着性の充填材(2d)が、接着剤と非
磁性体からなる固形物とからなるものである請求項1に
記載のブラシレスDCモータ。
2. The brushless DC motor according to claim 1, wherein the adhesive filler (2d) is made of an adhesive and a solid material made of a non-magnetic material.
JP4033246A 1992-02-20 1992-02-20 Brushless cd motor Pending JPH05236684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4033246A JPH05236684A (en) 1992-02-20 1992-02-20 Brushless cd motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4033246A JPH05236684A (en) 1992-02-20 1992-02-20 Brushless cd motor

Publications (1)

Publication Number Publication Date
JPH05236684A true JPH05236684A (en) 1993-09-10

Family

ID=12381126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4033246A Pending JPH05236684A (en) 1992-02-20 1992-02-20 Brushless cd motor

Country Status (1)

Country Link
JP (1) JPH05236684A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003793A1 (en) * 1994-07-25 1996-02-08 Daikin Industries, Ltd. Brushless dc motor
EP0909003A2 (en) * 1997-10-13 1999-04-14 Matsushita Electric Industrial Co., Ltd A motor using a rotor including interior permanent magnets
EP0926801A2 (en) * 1997-12-26 1999-06-30 Isuzu Ceramics Research Institute Co., Ltd. Motor generator using permanent magnet
US6008559A (en) * 1997-07-22 1999-12-28 Matsushita Electric Industrial Co., Ltd. Motor using a rotor including an interior permanent magnet
US6445100B2 (en) 1996-03-21 2002-09-03 Hitachi, Ltd. Permanent magnet dynamo electric machine
US7042127B2 (en) 2003-04-02 2006-05-09 Nidec Sankyo Corporation Permanent magnet embedded motor
US7230359B2 (en) 2002-03-22 2007-06-12 Ebm-Papst St. Georgen Gmbh & Co. Kg Electric motor with poles shaped to minimize cogging torque
EP1801955A1 (en) * 2005-12-22 2007-06-27 Fanuc Ltd Electric motor rotor and method of manufacturing the same
US7843101B2 (en) 2005-12-01 2010-11-30 Aichi Elec Co. Interior permanent magnet electric motor including a rotor having circumferential surface portions with defined curve profiles
JP2012057499A (en) * 2010-09-06 2012-03-22 Toyota Industries Corp Electric compressor
DE102013109625A1 (en) 2012-09-06 2014-03-06 Fanuc Corp. Runner with embedded magnet for electric motor
JP2014075892A (en) * 2012-10-03 2014-04-24 Toyota Motor Corp Rotor of rotary electric machine
US11283314B2 (en) 2016-04-25 2022-03-22 Masayuki Nashiki Motor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818139A (en) * 1994-07-25 1998-10-06 Daikin Industries, Ltd. Brushless DC motor
WO1996003793A1 (en) * 1994-07-25 1996-02-08 Daikin Industries, Ltd. Brushless dc motor
US6445100B2 (en) 1996-03-21 2002-09-03 Hitachi, Ltd. Permanent magnet dynamo electric machine
US6008559A (en) * 1997-07-22 1999-12-28 Matsushita Electric Industrial Co., Ltd. Motor using a rotor including an interior permanent magnet
EP1641103A2 (en) * 1997-10-13 2006-03-29 Matsushita Electric Industrial Co., Ltd. A motor using a rotor including interior permanent magnets
EP0909003A2 (en) * 1997-10-13 1999-04-14 Matsushita Electric Industrial Co., Ltd A motor using a rotor including interior permanent magnets
EP1641103A3 (en) * 1997-10-13 2006-04-05 Matsushita Electric Industrial Co., Ltd. A motor using a rotor including interior permanent magnets
EP0909003A3 (en) * 1997-10-13 2000-09-13 Matsushita Electric Industrial Co., Ltd A motor using a rotor including interior permanent magnets
US6353275B1 (en) 1997-10-13 2002-03-05 Noriyoshi Nishiyama Rotor with adhesive filled grooves fastening interior permanent magnets
EP0926801A3 (en) * 1997-12-26 2000-07-26 Isuzu Ceramics Research Institute Co., Ltd. Motor generator using permanent magnet
EP0926801A2 (en) * 1997-12-26 1999-06-30 Isuzu Ceramics Research Institute Co., Ltd. Motor generator using permanent magnet
US7230359B2 (en) 2002-03-22 2007-06-12 Ebm-Papst St. Georgen Gmbh & Co. Kg Electric motor with poles shaped to minimize cogging torque
US7042127B2 (en) 2003-04-02 2006-05-09 Nidec Sankyo Corporation Permanent magnet embedded motor
US7843101B2 (en) 2005-12-01 2010-11-30 Aichi Elec Co. Interior permanent magnet electric motor including a rotor having circumferential surface portions with defined curve profiles
EP1801955A1 (en) * 2005-12-22 2007-06-27 Fanuc Ltd Electric motor rotor and method of manufacturing the same
US7646125B2 (en) 2005-12-22 2010-01-12 Fanuc Ltd Electric motor rotor and method of manufacturing the same
JP2012057499A (en) * 2010-09-06 2012-03-22 Toyota Industries Corp Electric compressor
DE102013109625A1 (en) 2012-09-06 2014-03-06 Fanuc Corp. Runner with embedded magnet for electric motor
JP2014075892A (en) * 2012-10-03 2014-04-24 Toyota Motor Corp Rotor of rotary electric machine
US11283314B2 (en) 2016-04-25 2022-03-22 Masayuki Nashiki Motor

Similar Documents

Publication Publication Date Title
EP1014542B1 (en) Motor having a rotor with interior split-permanent-magnet
JP3308828B2 (en) Permanent magnet rotating electric machine and electric vehicle using the same
US20050275302A1 (en) Rotor magnet placement in interior permanent magnet machines
JP2008136298A (en) Rotator of rotary electric machine, and rotary electric machine
JPH05236684A (en) Brushless cd motor
JP2006314152A (en) Permanent-magnet motor
JP2004328992A (en) Rotor body for motor and motor
JP3028669B2 (en) Brushless DC motor
EP0237935B1 (en) Permanent magnet field dc machine
JP2006174554A (en) Rotor structure for axial gap type dynamo-electric machine
JP6630690B2 (en) Rotating electric machine rotor
EP1744437B1 (en) Self magnetizing motor and stator thereof
JP2000245085A (en) Motor
JP2005110485A (en) Rotor body for motor and motor
EP1298773A1 (en) Permanent magnet synchronous motor
JP2912277B2 (en) Synchronous electric machine with permanent magnets and operated at constant power over a wide speed range
JP2003309953A (en) Permanent magnet rotor for inner rotor type rotary electric machine
JP2007215357A (en) Rotor, manufacturing method therefor, and electric vehicle
JPH05236686A (en) Brushless cd motor
JPH05236685A (en) Brushless dc motor
JPWO2017073275A1 (en) Magnet rotor, rotating electric machine including magnet rotor, and electric vehicle including rotating electric machine
JPH05219666A (en) Stator for rotating electric machine
JPH05122877A (en) Rotor for permanent magnet type synchronous motor
JP4066219B2 (en) Synchronous machine with stationary field coil magnet
JP3790765B2 (en) Permanent magnet rotating electric machine and electric vehicle using permanent magnet rotating electric machine