JPH05234754A - Lamination film - Google Patents

Lamination film

Info

Publication number
JPH05234754A
JPH05234754A JP3387792A JP3387792A JPH05234754A JP H05234754 A JPH05234754 A JP H05234754A JP 3387792 A JP3387792 A JP 3387792A JP 3387792 A JP3387792 A JP 3387792A JP H05234754 A JPH05234754 A JP H05234754A
Authority
JP
Japan
Prior art keywords
layer
ferromagnetic
ferromagnetic layer
magnetic field
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3387792A
Other languages
Japanese (ja)
Inventor
Shiho Okuno
志保 奥野
Yoshiaki Saito
好昭 斉藤
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3387792A priority Critical patent/JPH05234754A/en
Publication of JPH05234754A publication Critical patent/JPH05234754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To realize a lamination film having a low saturated magnetic field by laminating a ferromagnetic layer formed by laminating a ferromagnetic single layer of two or more different compositions and a non-ferromagnetic layer alternately. CONSTITUTION:After a chamber is made vacuum, Ar gas is introduced to an ion gas and it is ionized and accelerated. Three targets of Co, Fe0.8Ni0.2 (Permalloy) and Cu are prepared as a target. A Co layer 22 of 3A, an Fe0.8Ni0.2 layer 23 of 9A and a Co layer 22 of 3A are laminated first on the quartz glass substrate 21 to form a ferromagnetic layer 24. Thereafter, a Cu layer 25 of 11A is deposited to form a non-ferromagnetic layer. After the combination is repeated n-times, a protection layer 26 composed of AlN is formed. Thereby, it is possible to lower the saturated magnetic field of a lamination film which shows magnetic resistance effect.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気抵抗効果素子に適し
た磁性積層膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic laminated film suitable for a magnetoresistive effect element.

【0002】[0002]

【従来の技術】数オングストロ−ムから数十オングスト
ロ−ムで膜厚制御された磁性積層膜は特異な性質を示
し、近年、研究が盛んに行われている。中でもFe/C
r系やCo/Cu系、あるいはパ−マロイ/Cu/Co
/Cu系などの積層膜の磁気抵抗効果は、磁気抵抗変化
率が数%である従来のパ−マロイ系に比較して1ケタ以
上も大きいことから注目されている(Phys.Rev.Lett.,
Vol.61, p2472 (1988), J.Mag.Mag.Mat.Vol94,P.L1(199
1), J.Phys.Soc.Jap. Vol.59, p3061 (1990)) 。これら
の膜構造は、一般に、FeやCo,パ−マロイといった
単元素あるいは合金組成からなる強磁性一層とCuやC
rなどの非強磁性層1層とが交互に積層した構造を持
つ。しかしながら、これらの人工格子膜は著しく大きな
磁気抵抗変化を示すが、半面、数kOeと非常に大きな
飽和磁場を有する。このため、磁気抵抗素子などへの応
用を考えた場合、実用領域である小さな磁場下で大きな
感度を得ることが困難であった。
2. Description of the Related Art A magnetic laminated film having a controlled film thickness of several angstroms to several tens of angstroms exhibits unique properties and has been actively studied in recent years. Fe / C
r-based or Co / Cu-based, or permalloy / Cu / Co
The magnetoresistive effect of a laminated film such as a Cu / Cu system is attracting attention because it is larger than the conventional permalloy system having a magnetoresistance change rate of several percent by one digit or more (Phys. Rev. Lett. ,
Vol.61, p2472 (1988), J.Mag.Mag.Mat.Vol94, P.L1 (199
1), J.Phys.Soc.Jap. Vol.59, p3061 (1990)). These film structures are generally composed of a single layer of a single element such as Fe, Co, or permalloy or an alloy composition and Cu or C.
It has a structure in which one non-ferromagnetic layer such as r is alternately laminated. However, although these artificial lattice films show a remarkably large magnetoresistance change, on the other hand, they have a very large saturation magnetic field of several kOe. For this reason, when considering application to a magnetoresistive element or the like, it was difficult to obtain high sensitivity under a small magnetic field which is a practical region.

【0003】[0003]

【発明が解決しようとする課題】この様に、従来の構造
の積層膜では、飽和磁場が高いため、磁気抵抗素子等へ
の応用が難しいという問題があった。本発明はこのよう
な問題を解決するために成されたもので、低い飽和磁場
を有する積層膜を提供することを目的とする。
As described above, the laminated film having the conventional structure has a problem that it is difficult to apply it to a magnetoresistive element or the like because the saturation magnetic field is high. The present invention has been made to solve such a problem, and an object thereof is to provide a laminated film having a low saturation magnetic field.

【0004】[0004]

【課題を解決するための手段及び作用】発明者らは、積
層膜の飽和磁場を低減するために種々検討した結果、そ
の強磁性層の結晶磁気異方性を小さくすることが有効で
あり、良好な磁気抵抗効果を持ちながら、結晶磁気異方
性を低減するためには、膜厚を薄くするだけではなく、
それを積層させたものを一つの強磁性層とすることが効
果的であることを見出した。
As a result of various investigations for reducing the saturation magnetic field of the laminated film, the inventors have found that it is effective to reduce the crystal magnetic anisotropy of the ferromagnetic layer. In order to reduce the magnetocrystalline anisotropy while having a good magnetoresistive effect, not only the film thickness is reduced, but also
It has been found that it is effective to make a stack of them into one ferromagnetic layer.

【0005】即ち、本発明の積層膜は、各々の厚さが2
〜20Aの2種類以上の異る組成の強磁性単層を積層して
形成された強磁性層と、8〜70Aの非強磁性層とが交互
に積層された構造を持つことを特徴とする。
That is, the laminated film of the present invention has a thickness of 2
Characterized by having a structure in which a ferromagnetic layer formed by laminating two or more kinds of ferromagnetic single layers having different compositions of 20 to 20 A and a non-ferromagnetic layer of 8 to 70 A are alternately laminated. ..

【0006】本発明における強磁性単層は、例えばF
e,Co,Niなどの遷移元素やこれらの合金、及びそ
の窒化物等の化合物からなる。ここで、各強磁性単層の
膜厚は、2A未満だと良好な成膜性、強磁性が得にくく
なり、一方20Aを越えると、結晶磁気異方性が大きくな
ってしまう。そしてこの様な強磁性単層の異なる組成の
ものを少なくとも2種類以上積層することにより強磁性
層が形成される。強磁性層の膜厚は薄すぎると磁気抵抗
変化率が小さくなってしまい、厚すぎると結晶磁気異方
性が大きくなってしまうので4〜40A、より好ましくは
10〜30Aが良い。この様な強磁性層と、例えばV,C
r,Cu,Au,Agやこれらの合金、及び化合物等か
ら成る非強磁性層とを交互に積層することにより積層膜
を得る。ここで非強磁性層の膜厚は、8A未満であると
良好な磁気抵抗効果が得られず、70Aを越えると強磁性
層中の磁化が反平行になりにくくなってしまう。より好
ましくは9〜30Aである。
The ferromagnetic monolayer in the present invention is, for example, F
e, Co, Ni and other transition elements, their alloys, and their nitrides and other compounds. Here, if the film thickness of each ferromagnetic monolayer is less than 2 A, it becomes difficult to obtain good film-forming property and ferromagnetism, while if it exceeds 20 A, the crystal magnetic anisotropy becomes large. A ferromagnetic layer is formed by stacking at least two kinds of such ferromagnetic single layers having different compositions. If the film thickness of the ferromagnetic layer is too thin, the rate of change in magnetoresistance will be small, and if it is too thick, the magnetocrystalline anisotropy will be large, so that it is preferably 4 to 40 A, more preferably
10-30A is good. Such a ferromagnetic layer and, for example, V, C
A laminated film is obtained by alternately laminating r, Cu, Au, Ag, an alloy thereof, and a non-ferromagnetic layer made of a compound or the like. Here, if the thickness of the non-ferromagnetic layer is less than 8 A, a good magnetoresistive effect cannot be obtained, and if it exceeds 70 A, the magnetization in the ferromagnetic layer becomes difficult to be antiparallel. More preferably, it is 9 to 30A.

【0007】本発明において、強磁性層中の磁化が、非
強磁性層を介して互いに反平行になった時に電気抵抗は
最大となり、平行にそろった時に電気抵抗は最小とな
る。このとき強磁性層中の磁化を反平行にならしめるも
のは、非強磁性層を介した強磁性層間の反平行結合、あ
るいは磁化過程の途中でおこる反平行状態である。これ
ら強磁性層間の反平行状態は外部磁場によって平行状態
に変化する。
In the present invention, the electric resistance becomes maximum when the magnetizations in the ferromagnetic layer are antiparallel to each other through the non-ferromagnetic layer, and the electric resistance becomes minimum when they are aligned in parallel. At this time, what makes the magnetization in the ferromagnetic layer antiparallel is an antiparallel coupling between the ferromagnetic layers via the non-ferromagnetic layer, or an antiparallel state that occurs during the magnetization process. The anti-parallel state between these ferromagnetic layers is changed to the parallel state by the external magnetic field.

【0008】ここで、強磁性層は、膜厚20A以下の複数
の強磁性単層を積層して形成されているため、単一の強
磁性材料からなる強磁性層に比べ、膜厚に応じて増大す
る単位体積当たりの結晶磁気異方性を小さく押さえるこ
とができることから優れたソフト性をもたせることがで
きる。この結果、層間の反平行状態から平行状態への変
化は弱磁場で可能となるので、飽和磁場は低減され、ま
たヒステリシスも低くおさえることができる。
Here, since the ferromagnetic layer is formed by laminating a plurality of ferromagnetic single layers having a film thickness of 20 A or less, the ferromagnetic layer is formed according to the film thickness as compared with a ferromagnetic layer made of a single ferromagnetic material. Since the crystal magnetic anisotropy per unit volume that increases due to the increase can be suppressed, excellent softness can be provided. As a result, the change from the antiparallel state to the parallel state between the layers is possible with a weak magnetic field, so that the saturation magnetic field can be reduced and the hysteresis can be suppressed low.

【0009】この様にして得られた積層膜の構成におい
て、例えば非強磁性層にCu、これに接する強磁性層に
Coを用いると、その界面状態が良好になるので、磁気
抵抗変化率を増大させることができる。さらに、Coで
ソフト磁性材料であるパ−マロイを挟むようにして強磁
性層を形成すると、よりソフト性を向上することができ
る。
In the structure of the laminated film thus obtained, for example, if Cu is used for the non-ferromagnetic layer and Co is used for the ferromagnetic layer in contact with the non-ferromagnetic layer, the interfacial state is improved, so that the magnetoresistive change rate is improved. Can be increased. Furthermore, if the ferromagnetic layer is formed by sandwiching Permalloy, which is a soft magnetic material, with Co, the softness can be further improved.

【0010】[0010]

【実施例】以下に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0011】図1に、本発明において用いられたイオン
ビ−ムスパッタ装置を示す。チャンバ−1の排気口2は
図示しない真空ポンプに接続され、チャンバ−1内の圧
力は圧力ゲ−ジ3により測定される。チャンバ−1内に
は基板ホルダ4が設置され、この基板ホルダ4には基板
5が保持される。基板ホルダ4内にはヒ−タ6が設けら
れ、基板ホルダ4付近には冷却水7が流されており、基
板ホルダ4及び基板5の温度を調節できる。基板ホルダ
4の温度は熱電対8により測定される。基板5の前面に
はシャッタ−9が設けられている。基板5に対向する位
置にはタ−ゲットホルダ10が回転可能に設けられ、そ
の表面に複数のタ−ゲット11が取り付けられる。タ−
ゲットホルダ10は冷却水12により冷却される。タ−
ゲット11に対向する位置にはイオンガン13が設けら
れ、イオンガン13にはArガス14が供給される。
FIG. 1 shows an ion beam sputtering apparatus used in the present invention. The exhaust port 2 of the chamber-1 is connected to a vacuum pump (not shown), and the pressure inside the chamber-1 is measured by a pressure gauge 3. A substrate holder 4 is installed in the chamber-1, and a substrate 5 is held in the substrate holder 4. A heater 6 is provided in the substrate holder 4, and cooling water 7 is caused to flow near the substrate holder 4, so that the temperatures of the substrate holder 4 and the substrate 5 can be adjusted. The temperature of the substrate holder 4 is measured by the thermocouple 8. A shutter 9 is provided on the front surface of the substrate 5. A target holder 10 is rotatably provided at a position facing the substrate 5, and a plurality of targets 11 are attached to the surface of the target holder 10. Target
The get holder 10 is cooled by the cooling water 12. Target
An ion gun 13 is provided at a position facing the get 11, and Ar gas 14 is supplied to the ion gun 13.

【0012】図1に示すイオンビ−ムスパッタ装置を用
いて、強磁性層が2種の強磁性単層Co層とFe0.8
0.2 (パ−マロイ)層、非磁性層がCu層の積層膜を
作製した。
Using the ion beam sputtering apparatus shown in FIG. 1, two ferromagnetic layers, a ferromagnetic single layer Co layer and a Fe 0.8 N layer are used.
A laminated film having an i 0.2 (permalloy) layer and a Cu layer as the nonmagnetic layer was prepared.

【0013】先ずチェンバ−を真空度2×10-7Tor
rまで排気した後、イオンガンにArガスを分圧が3×
10-4Torrになるまで導入し、これをイオン化して
500eVに加速してタ−ゲットのスパッタをおこなっ
た。タ−ゲットにはCo、Fe0.8 Ni0.2 (パ−マロ
イ)、Cuの3つのタ−ゲットを用意し、まず石英ガラ
ス基板21上に3AのCo層22と9AのFe0.8 Ni
0.2 層23、そして3AのCo層22を積層させ強磁性
層24を形成した後、11AのCuを堆積させ、この組
み合わせをn回繰り返した後、AlNから成る保護層2
6を形成して図2に示すような膜構造に成膜した。以
後、この膜構造を[(3Co/9Fe0.8 Ni0.2 /3
Co)/11Cu]n と表示することにする。この膜の
磁気抵抗効果を、電流を磁場に対して直角にかけて4端
子法で測定したところ、磁場330 Oeで磁気抵抗変化の
飽和が見られた。
First, the chamber is evacuated to a degree of vacuum of 2 × 10 -7 Tor.
After exhausting up to r, the partial pressure of Ar gas to the ion gun is 3 ×
It is introduced to 10 -4 Torr and ionized.
The target was sputtered by accelerating to 500 eV. As targets, three targets of Co, Fe 0.8 Ni 0.2 (permalloy) and Cu were prepared. First, a Co layer 22 of 3 A and Fe 0.8 Ni of 9 A were formed on a quartz glass substrate 21.
After the 0.2 layer 23 and the 3A Co layer 22 are laminated to form the ferromagnetic layer 24, 11A Cu is deposited and this combination is repeated n times, and then the protective layer 2 made of AlN is formed.
6 was formed to form a film structure as shown in FIG. After that, this film structure was changed to [(3Co / 9Fe 0.8 Ni 0.2 / 3
Co) / 11Cu] n . When the magnetoresistive effect of this film was measured by a four-terminal method by applying a current at right angles to the magnetic field, saturation of the magnetoresistive change was observed at a magnetic field of 330 Oe.

【0014】同様にして、実施例2〜5として表1に示
す膜構造を持つ積層膜を作製した。実施例1と同様に磁
気抵抗効果を測定した結果を表1に示す。いずれも磁気
抵抗変化の飽和は数100 Oe以下で見られた。
In the same manner, laminated films having the film structure shown in Table 1 were prepared as Examples 2 to 5. The results of measuring the magnetoresistive effect in the same manner as in Example 1 are shown in Table 1. In both cases, the saturation of the change in magnetic resistance was observed at several 100 Oe or less.

【0015】比較例として強磁性層を単層とした積層膜
を実施例と同様に作製し、同様に磁気抵抗効果を測定し
たものを示す。いずれも磁気抵抗変化の飽和は、1kO
eを大きく上回るものであった。
As a comparative example, a laminated film having a single ferromagnetic layer was prepared in the same manner as in the example, and the magnetoresistive effect was similarly measured. In both cases, the magnetic resistance change saturation is 1 kO.
It was much higher than e.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】以上のように、本発明の膜構成により、
磁気抵抗効果を示す積層膜の飽和磁場を低減することが
できる。
As described above, according to the film constitution of the present invention,
The saturation magnetic field of the laminated film exhibiting the magnetoresistive effect can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のイオンスパッタ装置を示す図。FIG. 1 is a diagram showing an ion sputtering apparatus of an embodiment.

【図2】実施例1の膜構造を示す図。FIG. 2 is a diagram showing a film structure of Example 1.

【符号の説明】 1…チャンバ−、2…排気口、3…圧力ゲ−ジ、4…基
板ホルダ、6…ヒ−タ、7…冷却水、8…熱電対、9…
シャッタ−、10…タ−ゲットホルダ、11…タ−ゲッ
ト、12…冷却水、13…イオンガン、14…Arガ
ス、21…石英ガラス基板、22…Co層、23…Fe
0.8 Ni0.2 層、24…強磁性層、25…Cu層、26
…保護層
[Explanation of reference numerals] 1 ... Chamber-, 2 ... Exhaust port, 3 ... Pressure gauge, 4 ... Substrate holder, 6 ... Heater, 7 ... Cooling water, 8 ... Thermocouple, 9 ...
Shutter, 10 ... Target holder, 11 ... Target, 12 ... Cooling water, 13 ... Ion gun, 14 ... Ar gas, 21 ... Quartz glass substrate, 22 ... Co layer, 23 ... Fe
0.8 Ni 0.2 layer, 24 ... Ferromagnetic layer, 25 ... Cu layer, 26
… Protective layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 各々の厚さが2〜20Aの2種類以上の異
る組成の強磁性単層を積層して形成された強磁性層と、
8〜70Aの非強磁性層とが交互に積層された構造を持つ
ことを特徴とする積層膜。
1. A ferromagnetic layer formed by laminating two or more kinds of ferromagnetic single layers having different compositions, each having a thickness of 2 to 20 A,
A laminated film having a structure in which non-ferromagnetic layers of 8 to 70 A are alternately laminated.
JP3387792A 1992-02-21 1992-02-21 Lamination film Pending JPH05234754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3387792A JPH05234754A (en) 1992-02-21 1992-02-21 Lamination film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3387792A JPH05234754A (en) 1992-02-21 1992-02-21 Lamination film

Publications (1)

Publication Number Publication Date
JPH05234754A true JPH05234754A (en) 1993-09-10

Family

ID=12398750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3387792A Pending JPH05234754A (en) 1992-02-21 1992-02-21 Lamination film

Country Status (1)

Country Link
JP (1) JPH05234754A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316549A (en) * 1994-05-02 1996-11-29 Matsushita Electric Ind Co Ltd Magnetoresistive effect element, magnetoresistive effect head, memory device, and amplifying element equipped therewith
WO1998044521A1 (en) * 1997-03-28 1998-10-08 Migaku Takahashi Method for manufacturing magnetoresistance element
US5850318A (en) * 1995-06-06 1998-12-15 Seagate Technology, Inc. Slotless spindle motor for disc drive
US6256222B1 (en) 1994-05-02 2001-07-03 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same
US6535362B2 (en) 1996-11-28 2003-03-18 Matsushita Electric Industrial Co., Ltd. Magnetoresistive device having a highly smooth metal reflective layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316549A (en) * 1994-05-02 1996-11-29 Matsushita Electric Ind Co Ltd Magnetoresistive effect element, magnetoresistive effect head, memory device, and amplifying element equipped therewith
US6111782A (en) * 1994-05-02 2000-08-29 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, and magnetoresistance effect type head, memory device, and amplifying device using the same
US6256222B1 (en) 1994-05-02 2001-07-03 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same
US5850318A (en) * 1995-06-06 1998-12-15 Seagate Technology, Inc. Slotless spindle motor for disc drive
US6535362B2 (en) 1996-11-28 2003-03-18 Matsushita Electric Industrial Co., Ltd. Magnetoresistive device having a highly smooth metal reflective layer
WO1998044521A1 (en) * 1997-03-28 1998-10-08 Migaku Takahashi Method for manufacturing magnetoresistance element
US6482329B1 (en) 1997-03-28 2002-11-19 Migaku Takahashi Method for manufacturing magnetoresistance element

Similar Documents

Publication Publication Date Title
US8456781B2 (en) TMR device with novel free layer structure
US5616370A (en) Artificial multilayer and method of manufacturing the same
US6998150B2 (en) Method of adjusting CoFe free layer magnetostriction
US5585196A (en) Magnetoresistance effect element
US5578385A (en) Magnetoresistance effect element
WO2002093661A1 (en) Magnetoresistive element
JP3629057B2 (en) Method for manufacturing Heusler alloy thin film, laminated film provided with magnetic film, magnetoresistive effect element and solid-state magnetic recording element using the same
JPH05234754A (en) Lamination film
JPH07147437A (en) Magnetoresistance effect element
JP3684005B2 (en) Magnetoresistive element, magnetoresistive head, and magnetoresistive magnetic field sensor
JP2610376B2 (en) Magnetoresistance effect element
JP3532607B2 (en) Magnetoresistance effect element
Mao et al. Ion beam sputtered spin-valve films with improved giant magnetoresistance response
JP3322916B2 (en) Magnetoresistive element and magnetoresistive head and sensor
JP2871990B2 (en) Magnetoresistive element thin film
JP3274449B2 (en) Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element
JP4051729B2 (en) Magnetoresistive material and manufacturing method thereof
JPH0690038A (en) Magnetoresistance effect device
JP3274440B2 (en) Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element
JP3481270B2 (en) Magnetic film for magnetoresistive effect and method of manufacturing the same
JP3255901B2 (en) Method for producing exchange coupling membrane
JP3237885B2 (en) Magnetoresistance effect element
JPH0878758A (en) Magnetoresistance effect element
JPS60200935A (en) Magneto-resistance effect alloy film and its production
JPH0697533A (en) Magnetoresistance effect element