JPH05234665A - Ceramic exothermic body - Google Patents

Ceramic exothermic body

Info

Publication number
JPH05234665A
JPH05234665A JP3182492A JP3182492A JPH05234665A JP H05234665 A JPH05234665 A JP H05234665A JP 3182492 A JP3182492 A JP 3182492A JP 3182492 A JP3182492 A JP 3182492A JP H05234665 A JPH05234665 A JP H05234665A
Authority
JP
Japan
Prior art keywords
resistor
silicone
sintered body
content
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3182492A
Other languages
Japanese (ja)
Other versions
JP2735725B2 (en
Inventor
Tetsuya Kimura
哲也 木村
Norio Okuda
憲男 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3182492A priority Critical patent/JP2735725B2/en
Publication of JPH05234665A publication Critical patent/JPH05234665A/en
Application granted granted Critical
Publication of JP2735725B2 publication Critical patent/JP2735725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance durability and reliability in service at high temperatures for a long time by embedding an exothermic resistor which is made of non-organic conductive material, in a silicone nitriding sintered body where the molar ratio of silicone deoxide content to the content of rear earth elements converted to an oxide base lies in a specified range. CONSTITUTION:A ceramic exothermic body 1 is so constituted that an exothermic resistor 2 is embedded in a silicone nitriding sintered body 3 where the molar ratio of silicone dexide (SiO2) content to the content of rear earth elements converted to an oxide base is 1.0 to 2.5. The resistor 2 is composed of non-organic conductive material, such as W, Mo and the like, the negative electrode of the resistor 2 is formed into a fitting 6, and the positive electrode of the resistor is also formed into a terminal bar 13, and they are insulated to form a glow plug. In addition, the exothermic body 1 is so constituted that the resistor 2 is rested on a silicone nitriding compact in a semi-circular shape in cross section, and a separate silicone nitriding compact is piled up over the aforesaid compact thereafter, so that they are pressed so as to be sintered while being integrated. This configuration thereby allows deposition resistant strength in service at high temperatures for a long time to be maintained, and thereby allows durability and reliability to be increased without the occurrence of cracks and the deterioration of textures.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はディーゼルエンジンの始
動促進用グロープラグや、各種燃焼機器の点火用ヒータ
ー及び加熱機器の加熱用ヒーターに用いられる高温用の
セラミック発熱体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature ceramic heating element used for glow plugs for accelerating the starting of diesel engines, ignition heaters for various combustion equipment and heating heaters for heating equipment.

【0002】[0002]

【従来の技術】従来よりディーゼルエンジンの始動促進
に用いられるグロープラグや各種点火用及び加熱用ヒー
ターとして、耐熱金属製のシース内に耐熱絶縁粉末を充
填し、該耐熱絶縁粉末中に、ニッケル(Ni)−クロム
(Cr)等を主体とする高融点金属線から成る発熱抵抗
体を埋設したシーズヒーターや、高電圧の火花放電を利
用する各種点火装置が使用されていた。
2. Description of the Related Art Conventionally, as a glow plug used for accelerating the starting of a diesel engine and various ignition and heating heaters, a heat resistant insulating powder is filled in a sheath made of a heat resistant metal, and nickel ( A sheathed heater in which a heating resistor made of a refractory metal wire mainly composed of Ni) -chromium (Cr) or the like is embedded, and various igniters utilizing high-voltage spark discharge have been used.

【0003】しかしながら、前記シーズヒーターは耐熱
金属製のシース内に充填された耐熱絶縁粉末を介して発
熱抵抗体の熱を伝えるため、短時間の急速昇温が困難で
ありその上、耐摩耗性や耐久性に劣るという問題がある
他、前記火花放電を利用した各種点火装置も、点火時に
雑音等の電波障害を生じたり、確実な点火という観点か
らの信頼性に欠け、未着火の場合の安全性に問題がある
等の欠点があった。
However, since the sheathed heater transfers the heat of the heat-generating resistor through the heat-resistant insulating powder filled in the sheath made of heat-resistant metal, it is difficult to rapidly raise the temperature in a short time and, in addition, it has abrasion resistance. In addition to the problem of poor durability, various ignition devices using the spark discharge also cause radio interference such as noise at the time of ignition, lack of reliability from the viewpoint of reliable ignition, in the case of unignition There were drawbacks such as safety issues.

【0004】そこで、短時間の急速昇温が可能で、電波
障害が発生せず、しかも確実に点火して安全性を確保
し、雰囲気を問わず長時間の使用が可能であり、耐摩耗
性と耐久性に優れた信頼性の高い発熱体として、無機導
電材から成る発熱抵抗体をセラミック焼結体中に埋設し
たセラミック発熱体が、広く利用されるようになってき
た。
Therefore, the temperature can be rapidly raised in a short time, no radio wave interference occurs, and the ignition is surely performed to ensure safety, and it can be used for a long time regardless of the atmosphere, and is wear-resistant. As a highly reliable and highly reliable heating element, a ceramic heating element in which a heating resistor made of an inorganic conductive material is embedded in a ceramic sintered body has been widely used.

【0005】なかでも、耐熱衝撃性及び高温強度が他の
セラミックスよりも著しく優れた窒化珪素質焼結体をヒ
ーターの基体として使用し、一般にタングステン(W)
やモリブデン(Mo)等の高融点金属もしくはこれらの
化合物より成る発熱抵抗体を基体中に埋設したり、前記
高融点金属もしくはこれらの化合物を主体とする発熱抵
抗体ペーストを前記基体上にパターン印刷して焼成一体
化してなるものが、広く利用されている。
Above all, a silicon nitride sintered body having a heat shock resistance and a high temperature strength remarkably superior to those of other ceramics is used as a substrate of a heater, and in general, tungsten (W) is used.
A heating resistor made of a high melting point metal such as molybdenum or molybdenum (Mo) or a compound thereof is embedded in a substrate, or a heating resistor paste mainly containing the high melting point metal or a compound thereof is pattern-printed on the substrate. Those that are integrated by firing are widely used.

【0006】しかしながら、前記窒化珪素質焼結体をヒ
ーターの基体とするセラミック発熱体は、前記焼結体の
粒界相が一般に低融点のガラス質を形成していることか
ら、通電加熱によりセラミック発熱体が1000℃を越
えると、粒界相の軟化による窒化珪素質焼結体の強度劣
化や、印加電圧による粒界相のイオン移動から組織劣化
を引き起こし、発熱抵抗体と窒化珪素質焼結体の熱膨張
差により、発熱抵抗体近傍の窒化珪素質焼結体にクラッ
クを生じたり、耐酸化性に劣る等の欠点があった。
However, since the grain boundary phase of the sintered body generally forms a glass material having a low melting point, the ceramic heating element using the silicon nitride sintered body as the base material of the heater is heated by electric heating. When the heating element exceeds 1000 ° C., the strength of the silicon nitride sintered body is deteriorated due to the softening of the grain boundary phase and the structure is deteriorated due to the ion migration of the grain boundary phase due to the applied voltage. Due to the difference in thermal expansion between the bodies, there are drawbacks such as cracks in the silicon nitride sintered body near the heating resistor and poor oxidation resistance.

【0007】そこで前記窒化珪素質焼結体の粒界相を結
晶化することにより、高温での粒界相の軟化によるセラ
ミック焼結体の強度劣化を防止し、かつ印加電圧による
粒界相のイオン移動を阻止して、発熱抵抗体近傍の窒化
珪素質焼結体がクラックを発生したり、窒化珪素質焼結
体自体が組織劣化を引き起こしたりすることを防止せん
としたセラミック発熱体が提案されている(特開平1−
313362号公報参照)。
Therefore, by crystallizing the grain boundary phase of the silicon nitride sintered body, the strength deterioration of the ceramic sintered body due to the softening of the grain boundary phase at high temperature is prevented, and the grain boundary phase of the sintered body is reduced by the applied voltage. Proposed ceramic heating element that prevents ion migration and prevents the silicon nitride sintered body near the heating resistor from cracking and the silicon nitride sintered body itself from causing structural deterioration. (JP-A-1-
See Japanese Patent No. 3133362).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記窒
化珪素質焼結体を基体とするセラミック発熱体は、耐酸
化性に劣るSi3 4 ・Y2 3 等に代表されるメリラ
イト相や4Y2 3 ・SiO2 ・Si3 4 等に代表さ
れるYAM相の結晶相を生成したり、それ以外に、必ず
少量と言えども低融点のガラス質を結晶粒界に残留して
しまう。
However, the ceramic heating element based on the above-mentioned silicon nitride sintered body is a melilite phase represented by Si 3 N 4 .Y 2 O 3 having poor oxidation resistance and 4Y. Besides, a crystal phase of a YAM phase typified by 2 O 3 , SiO 2 , Si 3 N 4 and the like is generated, and besides, a glass material having a low melting point remains at the crystal grain boundaries even if it is a small amount.

【0009】しかも、前記グロープラグや各種点火用及
び加熱用ヒーターとしてのセラミック発熱体は、一般に
点火時には1000〜1300℃もの高温となり、中に
は点火した火炎に曝されて1350℃を越えるものもあ
る。
Moreover, the glow plugs and ceramic heating elements as various ignition and heating heaters generally have a high temperature of 1000 to 1300 ° C. when ignited, and some of them are exposed to an ignited flame and exceed 1350 ° C. is there.

【0010】このような状況で長時間の連続通電を行っ
た場合、前記低融点のガラス質のイオン移動を阻止する
ことができず、更に、前記粒界相の結晶も酸化されてイ
オン移動を起こし、パイプ状金具近傍の露出した窒化珪
素質焼結体の側面にクラックを生じたり、組織劣化を起
こし、セラミック発熱体の寿命が急激に短くなってその
機能を失い、耐久性と信頼性に欠けるという課題があっ
た。
When continuous energization is carried out for a long time in such a situation, it is impossible to prevent the migration of the low melting glassy ions, and the crystals of the grain boundary phase are also oxidized to cause the ion migration. It causes a crack on the side surface of the exposed silicon nitride sintered body near the pipe-shaped metal fittings or causes deterioration of the structure, which shortens the life of the ceramic heating element rapidly and loses its function. There was a problem of lacking.

【0011】[0011]

【発明の目的】本発明は前記欠点に鑑み開発されたもの
で、その目的は高温で長時間の連続使用が可能である耐
酸化性及び耐久性に優れたセラミック発熱体を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been developed in view of the above-mentioned drawbacks, and an object thereof is to provide a ceramic heating element excellent in oxidation resistance and durability which can be continuously used at a high temperature for a long time. ..

【0012】[0012]

【課題を解決するための手段】本発明のセラミック発熱
体は、無機導電材から成る発熱抵抗体を希土類元素及び
酸化珪素を含有して成る窒化珪素質焼結体中に埋設した
セラミック発熱体において、前記窒化珪素質焼結体は希
土類元素を酸化物換算した含有量に対する酸化珪素(S
iO2 )の含有量のモル比が1.0〜2.5であること
を特徴とするものである。
The ceramic heating element of the present invention is a ceramic heating element in which a heating resistor made of an inorganic conductive material is embedded in a silicon nitride sintered body containing a rare earth element and silicon oxide. The silicon nitride-based sintered body contains silicon oxide (S
The molar ratio of the content of iO 2 ) is 1.0 to 2.5.

【0013】本発明のセラミック発熱体において、窒化
珪素質焼結体中の希土類元素を酸化物換算した含有量に
対する酸化珪素(SiO2 )の含有量のモル比、即ち、
SiO2 の含有量(モル%)/希土類元素を酸化物換算
した含有量(モル%)の値が1.0未満では、前記メリ
ライト相やYAM相が生成され、該結晶相は耐酸化性が
悪く酸化されやすいことから、高温度で長時間、例えば
数千サイクル以下の通電でイオン移動を起こして粒界相
が酸化されて体積膨張し、パイプ状金具近傍の露出した
窒化珪素質焼結体の側面で、かつ埋設した発熱抵抗体の
陽極側の側面にクラックが発生し、とりわけ埋設した発
熱抵抗体が酸化されやすくなって断線してしまう。
In the ceramic heating element of the present invention, the molar ratio of the content of silicon oxide (SiO 2 ) to the content of the rare earth element in the silicon nitride sintered body converted to oxide, that is,
When the value of the content of SiO 2 (mol%) / the content of the rare earth element converted to oxide (mol%) is less than 1.0, the melilite phase or the YAM phase is generated, and the crystal phase has an oxidation resistance. Since it is easily oxidized badly, the grain boundary phase is oxidized and volume-expanded due to ion migration caused by energization at high temperature for a long time, for example, several thousand cycles or less, and the exposed silicon nitride sintered body near the pipe-shaped metal fittings. On the anode side of the embedded heating resistor, the embedded heating resistor is apt to be oxidized, resulting in disconnection.

【0014】一方、前記モル比が2.5を越えると、結
晶中の粒界相にSiO2 ガラスに代表される低融点ガラ
スを発生し、前記のような使用条件下では、1000サ
イクル程度で低融点ガラスのイオン移動により、強度劣
化を起こして発熱抵抗体と窒化珪素質焼結体との熱膨張
差から、パイプ状金具近傍の露出した窒化珪素質焼結体
の側面で、かつ埋設した発熱抵抗体の陰極側の側面にク
ラックを発生する。
On the other hand, when the molar ratio exceeds 2.5, a low melting point glass represented by SiO 2 glass is generated in the grain boundary phase in the crystal, and under the above-mentioned conditions of use, it takes about 1000 cycles. Due to the ion migration of the low melting point glass, the strength was deteriorated, and due to the difference in thermal expansion between the heating resistor and the silicon nitride sintered body, it was embedded on the exposed side surface of the silicon nitride sintered body near the pipe-shaped metal fitting. A crack is generated on the cathode side surface of the heating resistor.

【0015】よって窒化珪素質焼結体中の希土類元素を
酸化物換算した含有量に対する酸化珪素(SiO2 )の
含有量のモル比は、1.0〜2.5、望ましくは1.3
〜1.9の範囲に特定される。
Therefore, the molar ratio of the content of silicon oxide (SiO 2 ) to the content of the rare earth element in the silicon nitride sintered body converted to oxide is 1.0 to 2.5, preferably 1.3.
Is specified in the range of ˜1.9.

【0016】[0016]

【実施例】以下、本発明のセラミック発熱体を図面に基
づき詳細に説明する。図1は、本発明の一実施例に係る
ディーゼルエンジンの始動促進用に使用されるグロープ
ラグに適用したセラミック発熱体を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The ceramic heating element of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a ceramic heating element applied to a glow plug used to accelerate starting of a diesel engine according to an embodiment of the present invention.

【0017】図1において、1は窒化珪素質焼結体3中
に発熱抵抗体2を埋設したセラミック発熱体であり、セ
ラミック発熱体1には段差部8を有するパイプ状金具4
を外嵌めして発熱抵抗体2のリード部5に接続するよう
にろう付けして一方の電極端子として導出し、更に、パ
イプ状金具4と取付金具6とが重なる部分で少なくとも
取付金具6の先端内側に設けた段座7より取付金具6の
先端側に間隙を有するようにして、前記パイプ状金具4
の段差部8を取付金具6の先端内側に設けた段座7に導
電性ガスケット9を介して当接することにより電気的に
接続固着させている。
In FIG. 1, reference numeral 1 is a ceramic heating element in which a heating resistor 2 is embedded in a silicon nitride sintered body 3, and the ceramic heating element 1 has a pipe-shaped metal fitting 4 having a step portion 8.
Is externally fitted and brazed so as to be connected to the lead portion 5 of the heat generating resistor 2 and led out as one electrode terminal. Further, at least a portion of the mounting metal fitting 6 at which the pipe-shaped metal fitting 4 and the mounting metal fitting 6 overlap each other. The pipe-shaped metal fitting 4 is provided so that there is a gap on the front end side of the mounting bracket 6 from the step seat 7 provided inside the front end.
The stepped portion 8 is electrically contacted and fixed to the stepped seat 7 provided inside the front end of the mounting member 6 through the conductive gasket 9.

【0018】一方、セラミック発熱体1の後端部には、
パイプ状金具4と同時にろう接した他方の発熱抵抗体2
のリード部10と接続する電極取出部11の端面に、絶
縁体12に挿通したフランジを有する端子棒13が当接
され、取付金具6の後端周縁を絶縁体12の端面で加締
めて固着し、パイプ状金具4と取付金具6をろう接せず
に加圧接合して負電極とするとともに、セラミック発熱
体1の後端部にろう接した電極取出部11と端子棒13
も同様に加圧接合して正電極とし、端子棒13にベーク
ライト等の絶縁性ワッシャー14をナット15で固定す
ることにより取付金具6の負電極と、端子棒13の正電
極とが絶縁されてグロープラグが構成されている。
On the other hand, at the rear end of the ceramic heating element 1,
The other heating resistor 2 brazed at the same time as the pipe-shaped metal fitting 4
The terminal rod 13 having a flange inserted in the insulator 12 is brought into contact with the end surface of the electrode lead-out portion 11 connected to the lead portion 10, and the rear end peripheral edge of the mounting bracket 6 is caulked and fixed by the end surface of the insulator 12. Then, the pipe-shaped metal fitting 4 and the mounting metal fitting 6 are pressure-bonded without brazing to form a negative electrode, and the electrode lead-out portion 11 and the terminal rod 13 which are brazed to the rear end portion of the ceramic heating element 1 are formed.
Similarly, pressure bonding is performed to form a positive electrode, and by fixing an insulating washer 14 such as Bakelite to the terminal rod 13 with a nut 15, the negative electrode of the mounting bracket 6 and the positive electrode of the terminal rod 13 are insulated. A glow plug is constructed.

【0019】また、セラミック発熱体1は、図2に示す
ような断面が半円形の棒状に成形した窒化珪素質成形体
16上に発熱抵抗体2を載置した後、その上面に別の窒
化珪素質成形体17を重ねて加圧焼成して一体化したも
のである。
Further, in the ceramic heating element 1, after the heating resistor 2 is placed on the silicon nitride molding 16 formed into a rod shape having a semicircular cross section as shown in FIG. 2, another nitriding is performed on the upper surface thereof. The silicon-based compact 17 is overlaid, pressure-fired and integrated.

【0020】尚、本発明のセラミック発熱体において、
無機導電材から成る発熱抵抗体としてはタングステン
(W)、モリブデン(Mo)、レニウム(Re)等の高
融点金属の他、例えばタングステンカーバイド(W
C)、窒化チタン(TiN)、モリブデンシリサイド
(MoSi2 )や硼化ジルコニウム(ZrB2 )等の第
4a族、第5a族、第6a族の炭化物または窒化物等か
ら成る線材、あるいは薄層状に形成したものが好適に用
いられる。
In the ceramic heating element of the present invention,
Examples of the heating resistor made of an inorganic conductive material include high melting point metals such as tungsten (W), molybdenum (Mo), and rhenium (Re), as well as tungsten carbide (W).
C), titanium nitride (TiN), molybdenum silicide (MoSi 2 ), zirconium boride (ZrB 2 ), etc. 4a, 5a, 6a carbide or nitride wire or thin layer What was formed is used suitably.

【0021】本発明のセラミック発熱体を評価するにあ
たり、先ず、比表面積が12m2 /g、含有する不可避
不純物としての酸素量、即ち酸化珪素(SiO2 )が3
重量%以下で、結晶のα化率が97%である窒化珪素
(Si3 4 )粉末に、焼結助材としての希土類元素の
酸化物およびアルミナ(Al2 3 )と、窒化珪素質焼
結体中の酸素量調整用としての酸化珪素(SiO2 )の
配合量を種々設定した原料粉末を24時間、ボールミル
にて湿式混合する。
In evaluating the ceramic heating element of the present invention, first, the specific surface area is 12 m 2 / g and the amount of oxygen contained as inevitable impurities, that is, silicon oxide (SiO 2 ) is 3.
A silicon nitride (Si 3 N 4 ) powder having a crystallinity ratio of 97% by weight or less, a rare earth element oxide and alumina (Al 2 O 3 ) as a sintering aid, and a silicon nitride material. Raw material powders having various amounts of silicon oxide (SiO 2 ) for adjusting the amount of oxygen in the sintered body are wet mixed in a ball mill for 24 hours.

【0022】かくして得られた混合物の泥漿を噴霧乾燥
して造粒し、プレス成形法により断面が半円形の棒状の
窒化珪素質成形体16、17を作製する。
The slurry thus obtained is spray-dried and granulated, and rod-shaped silicon nitride compacts 16 and 17 each having a semicircular cross section are produced by a press molding method.

【0023】次に、該成形体16の平面上に、略U字形
状のコイル状タングステン線と該コイル状タングステン
線に接続したリード部5、10を構成するタングステン
線とから成る発熱抵抗体2を載置し、該発熱抵抗体2を
挟むように前記同形状の別の窒化珪素質成形体17を重
ねて加圧焼成した。
Next, on the plane of the molded body 16, a heating resistor 2 comprising a substantially U-shaped coiled tungsten wire and a tungsten wire forming the lead portions 5 and 10 connected to the coiled tungsten wire. Was placed, and another silicon nitride compact 17 having the same shape was stacked so as to sandwich the heat generating resistor 2 and was fired under pressure.

【0024】かくして得られた焼結体の側面を研磨して
前記リード部5の一部を露出させ、少なくとも該露出部
にメタライズ法やメッキ法等によりニッケル(Ni)等
の金属被膜を形成した後、パイプ状金具4に内挿し還元
ガス雰囲気中で銀ろうにて接合する。
The side surface of the thus obtained sintered body is polished to expose a part of the lead portion 5, and a metal coating film of nickel (Ni) or the like is formed on at least the exposed portion by a metallizing method or a plating method. After that, it is inserted into the pipe-shaped metal fitting 4 and joined with silver brazing in a reducing gas atmosphere.

【0025】一方、前記焼結体の端部に露出したリード
部10に、線材より成る電極取出部11を同様に銀ろう
にて接合した後、取付金具6の先端部に内挿し、該取付
金具6と前記パイプ状金具4、及びセラミック発熱体1
の後端部にろう接した電極取出部11と端子棒13を加
圧接合してそれぞれ正負の電極とし、評価用のグロープ
ラグを作製した。
On the other hand, the lead-out portion 10 exposed at the end of the sintered body is similarly joined with an electrode lead-out portion 11 made of a wire by silver brazing, and then inserted inside the tip of the mounting metal fitting 6 to attach the same. Metal fitting 6, the pipe-shaped metal fitting 4, and ceramic heating element 1
A glow plug for evaluation was produced by pressure-bonding the electrode lead-out portion 11 and the terminal rod 13 brazed to the rear end portion thereof to form positive and negative electrodes.

【0026】また、同時に前記窒化珪素質成形体のみを
同一条件で加圧焼成した窒化珪素質焼結体を酸素量分析
用及び抗折強度評価用試料とし、酸素・窒素分析装置に
より窒化珪素質焼結体の全酸素量を測定し、窒化珪素
(Si3 4 )粉末中に含有する不可避不純物としての
酸素量と、焼結助剤として添加した希土類元素の酸化物
およびアルミナ(Al2 3 )量から算出した酸素量を
差引きし、残余の酸素量がシリコン(Si)と反応して
シリカ(SiO2 )を形成するとしてその量を算出し
た。
At the same time, a silicon nitride sintered body obtained by pressure-calcining only the silicon nitride molded body under the same conditions was used as a sample for oxygen content analysis and bending strength evaluation, and a silicon nitride material was analyzed by an oxygen / nitrogen analyzer. The total amount of oxygen in the sintered body was measured, and the amount of oxygen as an unavoidable impurity contained in the silicon nitride (Si 3 N 4 ) powder and the oxide of a rare earth element added as a sintering aid and alumina (Al 2 O 4 3 ) The amount of oxygen calculated from the amount was subtracted, and the amount of residual oxygen was calculated as reacting with silicon (Si) to form silica (SiO 2 ).

【0027】一方、波長分散型X線マイクロアナライザ
ーにより希土類元素を定量し、希土類元素の酸化物換算
の含有量を算出した。
On the other hand, the rare earth element was quantified by a wavelength dispersive X-ray microanalyzer, and the content of the rare earth element in terms of oxide was calculated.

【0028】更に、前記評価用試料を使用して、常温と
1400℃での抗折強度をJIS3点曲げ強度試験法に
基づき測定した。また、前記評価用試料を使用して、X
線回折装置によりYAM相の結晶相を有無とともにピー
ク強度の大小を同定した。
Further, the bending strength at room temperature and 1400 ° C. was measured using the above-mentioned evaluation sample based on the JIS three-point bending strength test method. In addition, using the evaluation sample, X
The magnitude of the peak intensity was identified by the presence or absence of the crystal phase of the YAM phase by a line diffractometer.

【0029】一方、直流電源より評価用のグロープラグ
に通電して、1400℃の温度に急速加熱した後、通電
停止して圧搾空気を吹きつけて強制冷却するのを1サイ
クルとする耐久試験を10000サイクル実施し、該耐
久試験前後の抵抗値を測定して発熱抵抗体の抵抗変化率
を算出した。
On the other hand, an endurance test in which one cycle consists of energizing a glow plug for evaluation from a DC power source to rapidly heat it to a temperature of 1400 ° C., then stopping energization and blowing compressed air to forcibly cool it is one cycle. After carrying out 10,000 cycles, the resistance value before and after the durability test was measured to calculate the resistance change rate of the heating resistor.

【0030】更に、セラミック発熱体部のクラックの有
無を蛍光探傷法により検査するとともに、セラミック発
熱体の表面状態を顕微鏡にて観察した。以上の結果を表
1及び表2に示す。
Further, the presence or absence of cracks in the ceramic heating element was inspected by a fluorescent flaw detection method, and the surface condition of the ceramic heating element was observed with a microscope. The above results are shown in Tables 1 and 2.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表1及び表2から明らかなように、SiO
2 (モル%)/希土類元素酸化物(モル%)のモル比が
1.0未満の試料番号1、10、17、24は、パイプ
状金具近傍の露出した窒化珪素質焼結体の側面で、かつ
埋設した発熱抵抗体の陽極側の側面にクラックが発生
し、発熱抵抗体自体が断線している。
As is clear from Tables 1 and 2, SiO
Sample Nos. 1, 10, 17, and 24 having a molar ratio of 2 (mol%) / rare earth element oxide (mol%) of less than 1.0 are the exposed side surfaces of the silicon nitride sintered body near the pipe-shaped metal fittings. A crack is generated on the side surface of the embedded heating resistor on the side of the anode, and the heating resistor itself is disconnected.

【0034】また、SiO2 (モル%)/希土類元素酸
化物(モル%)のモル比がともに2.5を越える試料番
号9、16、23、30は、窒化珪素質焼結体の高温で
の抗折強度が低く、かつパイプ状金具近傍の露出した窒
化珪素質焼結体の側面で、かつ埋設した発熱抵抗体の陰
極側の側面にクラックを生じている。
Further, sample numbers 9, 16, 23 and 30 in which both the SiO 2 (mol%) / rare earth element oxide (mol%) molar ratio exceeded 2.5 were measured at a high temperature of the silicon nitride sintered body. Has a low bending strength, and cracks are formed on the exposed side surface of the silicon nitride sintered body near the pipe-shaped metal fitting and on the side surface on the cathode side of the embedded heating resistor.

【0035】それらに対して、本発明のセラミック発熱
体の窒化珪素質焼結体はいずれも高い抗折強度を保持
し、通電耐久試験においても何ら変化が認められなかっ
た。
On the other hand, all of the silicon nitride sintered bodies of the ceramic heating element of the present invention maintained a high bending strength, and no change was observed in the electrical durability test.

【0036】[0036]

【発明の効果】叙上の如く、本発明のセラミック発熱体
は、希土類元素を酸化物換算した含有量に対する酸化珪
素(SiO2 )の含有量のモル比が1.0〜2.5であ
る窒化珪素質焼結体中に無機導電材から成る発熱抵抗体
を埋設したことから、高温でも高い抗折強度を保持しな
がら、発熱抵抗体の正負いずれの電極側の窒化珪素質焼
結体にもクラックの発生は勿論、組織の劣化もなく、か
つ耐酸化性に優れ、とりわけ高温での長時間の繰り返し
使用が可能である耐久性と信頼性に優れたセラミック発
熱体を提供することができる。
As described above, in the ceramic heating element of the present invention, the molar ratio of the content of silicon oxide (SiO 2 ) to the content of the rare earth element converted to oxide is 1.0 to 2.5. Since the heating resistor made of an inorganic conductive material is embedded in the silicon nitride sintered body, the silicon nitride sintered body on either the positive or negative electrode side of the heating resistor can be maintained while maintaining high bending strength even at high temperatures. Also, it is possible to provide a ceramic heating element which is free from cracks and deterioration of the structure, has excellent oxidation resistance, and can be repeatedly used especially at high temperature for a long time and which has excellent durability and reliability. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るセラミック発熱体をディーゼルエ
ンジンの始動促進用に使用されるグロープラグに適用し
た一実施例を示す一部破断面図である。
FIG. 1 is a partially broken cross-sectional view showing an embodiment in which a ceramic heating element according to the present invention is applied to a glow plug used to accelerate starting of a diesel engine.

【図2】本発明に係るセラミック発熱体の製造工程を説
明するための斜視図である。
FIG. 2 is a perspective view for explaining a manufacturing process of the ceramic heating element according to the present invention.

【符号の説明】[Explanation of symbols]

1 セラミック発熱体 2 発熱抵抗体 3 窒化珪素質焼結体 1 Ceramic heating element 2 Heating resistor 3 Silicon nitride sintered body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】無機導電材から成る発熱抵抗体を希土類元
素及び酸化珪素を含有して成る窒化珪素質焼結体中に埋
設したセラミック発熱体において、前記窒化珪素質焼結
体は希土類元素を酸化物換算した含有量に対する酸化珪
素(SiO2 )の含有量のモル比が1.0〜2.5であ
ることを特徴とするセラミック発熱体。
1. A ceramic heating element in which a heating resistor made of an inorganic conductive material is embedded in a silicon nitride sintered body containing a rare earth element and silicon oxide, wherein the silicon nitride sintered body contains a rare earth element. A ceramic heating element, characterized in that the molar ratio of the content of silicon oxide (SiO 2 ) to the content converted into oxide is 1.0 to 2.5.
JP3182492A 1992-02-19 1992-02-19 Ceramic heating element Expired - Fee Related JP2735725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3182492A JP2735725B2 (en) 1992-02-19 1992-02-19 Ceramic heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3182492A JP2735725B2 (en) 1992-02-19 1992-02-19 Ceramic heating element

Publications (2)

Publication Number Publication Date
JPH05234665A true JPH05234665A (en) 1993-09-10
JP2735725B2 JP2735725B2 (en) 1998-04-02

Family

ID=12341834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3182492A Expired - Fee Related JP2735725B2 (en) 1992-02-19 1992-02-19 Ceramic heating element

Country Status (1)

Country Link
JP (1) JP2735725B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0874197A2 (en) 1997-04-22 1998-10-28 NGK Spark Plug Co. Ltd. Ceramic heater, ceramic glow plug, and method of manufacturing the ceramic heater
US6274853B1 (en) 1999-05-21 2001-08-14 Ngk Spark Plug Co., Ltd. Heating resistor, heating resistor for use in ceramic heater, and ceramic heater using the same
JP2022523471A (en) * 2019-01-25 2022-04-25 ウェーバー‐スティーブン プロダクツ エルエルシー Pellet grill

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997998A (en) * 1998-03-31 1999-12-07 Tdk Corporation Resistance element
WO2007135773A1 (en) 2006-05-18 2007-11-29 Ngk Spark Plug Co., Ltd. Ceramic heater and glow plug

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0874197A2 (en) 1997-04-22 1998-10-28 NGK Spark Plug Co. Ltd. Ceramic heater, ceramic glow plug, and method of manufacturing the ceramic heater
US5883360A (en) * 1997-04-22 1999-03-16 Ngk Spark Plug Co., Ltd. Ceramic heater ceramic glow plug and method of manufacturing the ceramic heater
US6274853B1 (en) 1999-05-21 2001-08-14 Ngk Spark Plug Co., Ltd. Heating resistor, heating resistor for use in ceramic heater, and ceramic heater using the same
JP2022523471A (en) * 2019-01-25 2022-04-25 ウェーバー‐スティーブン プロダクツ エルエルシー Pellet grill

Also Published As

Publication number Publication date
JP2735725B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
JP2804393B2 (en) Ceramic heater
JP3550093B2 (en) New ceramic igniter with improved oxidation resistance and method of use thereof
JP2003229236A (en) Production method of ceramic heater and production method of glow plug
JP2735725B2 (en) Ceramic heating element
JP3078418B2 (en) Ceramic heating element
JP2735729B2 (en) Ceramic heating element
JP4018998B2 (en) Ceramic heater and glow plug
JPH1025162A (en) Ceramic sintered material
JP2735721B2 (en) Ceramic heating element
JP2948963B2 (en) Ceramic exothermic element
JP3811440B2 (en) Ceramic heater
JP3004141B2 (en) Ceramic heating element
JPH07167435A (en) Ceramic heat-generating member
JPH0845648A (en) Ceramic heater
JPH1022064A (en) Ceramic heating element
JP3466399B2 (en) Ceramic heating element
JP3588227B2 (en) Ceramic heater
JP2735725C (en)
JP2534847B2 (en) Ceramic Heater
JP3886684B2 (en) Ceramic heater
JPH07151332A (en) Ceramic glow plug
JP3004168B2 (en) Ceramic heating element
JPH0864346A (en) Ceramic heater
JP4025641B2 (en) Ceramic heater
JP3004134B2 (en) Ceramic heating element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees