JPH0523351B2 - - Google Patents

Info

Publication number
JPH0523351B2
JPH0523351B2 JP60285246A JP28524685A JPH0523351B2 JP H0523351 B2 JPH0523351 B2 JP H0523351B2 JP 60285246 A JP60285246 A JP 60285246A JP 28524685 A JP28524685 A JP 28524685A JP H0523351 B2 JPH0523351 B2 JP H0523351B2
Authority
JP
Japan
Prior art keywords
helium
refrigeration
pipe
cold box
main compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60285246A
Other languages
Japanese (ja)
Other versions
JPS62142983A (en
Inventor
Masaru Tezuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60285246A priority Critical patent/JPS62142983A/en
Publication of JPS62142983A publication Critical patent/JPS62142983A/en
Publication of JPH0523351B2 publication Critical patent/JPH0523351B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • F25J1/025Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/0271Inter-connecting multiple cold equipments within or downstream of the cold box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/912Liquefaction cycle of a low-boiling (feed) gas in a cryocooler, i.e. in a closed-loop refrigerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、例えば、超電導マグネツトやクライ
オポンプ等の冷却に使用されるヘリウム冷凍装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a helium refrigeration system used for cooling superconducting magnets, cryopumps, etc., for example.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

既に提案されているこの種のヘリウム冷凍装置
は、第2図に示されるように、主圧縮機1でヘリ
ウムを圧縮し、これをコールドボツクス装置(ヘ
リウム液化装置)2で液化し、この液化ヘリウム
を長い断熱管(トランスチユーブ)3で被覆した
各枝管4a,4b,4c,4dを通した各冷凍負
荷体5a,5b,5c及び液体ヘリウム槽6へ供
給し、この各冷凍負荷体5a,5b,5cで熱交
換して冷却し、ここで仕事を了えたヘリウムをヘ
リウム回収精製系7へ移送し、しかる後、ガスヘ
リウムを上記主圧縮機1へ循環供給するように構
成したものである。
As shown in FIG. 2, this type of helium refrigeration system that has already been proposed compresses helium with a main compressor 1, liquefies it in a cold box device (helium liquefaction device) 2, and converts the liquefied helium into is supplied to each refrigeration load body 5a, 5b, 5c and liquid helium tank 6 through each branch pipe 4a, 4b, 4c, 4d covered with a long insulated tube (transtube) 3, and each refrigeration load body 5a, 5b and 5c, the helium is cooled by heat exchange, and the helium that has completed its work is transferred to the helium recovery and purification system 7, after which gas helium is circulated and supplied to the main compressor 1. .

即ち、第2図において、ヘリウム冷凍機にお
ける主圧縮機1のヘリウム供給系7には、コール
ドボツクス装置(ヘリウム液化装置)2を構成す
る第1熱交換器(液体窒素熱交換器)8が接続さ
れており、この第1熱交換器8は、窒素供給管9
からの液体窒素で高圧ガスヘリウムを熱交換して
高圧低温ガス化し、仕事を了えた液体窒素は気化
して還流する。一方、上記第1熱交換器8の下流
側のヘリウム供給系7には、第2熱交換器10及
びジユールトムソン弁11が接続されており、こ
のジユールトムソン弁11の下流側には、液体ヘ
リウム槽6及び各冷凍負荷体5a,5b,5cが
長い断熱管(トランスフアチユーブ)3を被覆し
た各枝管4a,4b,4c,4dを通して接続さ
れている。
That is, in FIG. 2, a first heat exchanger (liquid nitrogen heat exchanger) 8 constituting a cold box device (helium liquefaction device) 2 is connected to a helium supply system 7 of a main compressor 1 in a helium refrigerator. This first heat exchanger 8 is connected to a nitrogen supply pipe 9.
The high-pressure gas helium is heat-exchanged with liquid nitrogen from the reactor, turning it into a high-pressure, low-temperature gas, and the liquid nitrogen that has completed its work is vaporized and refluxed. On the other hand, a second heat exchanger 10 and a Joel-Thomson valve 11 are connected to the helium supply system 7 on the downstream side of the first heat exchanger 8, and on the downstream side of the Joel-Thomson valve 11, The liquid helium tank 6 and each refrigeration load body 5a, 5b, 5c are connected through each branch pipe 4a, 4b, 4c, 4d covered with a long heat insulating pipe (transfer tube) 3.

なお、上記液体ヘリウム槽6は、上記各冷凍負
荷体5a,5b,5cにヘリウム供給管12を介
して接続されている。さらに、上記第2熱交換器
10の入口側と出口側との間には、バイパス路1
3aが接続されており、このバイパス路13aに
は、膨脹器13が付設されている。さらに又、上
記各冷凍負荷体5a,5b,5cと上記主圧縮機
1とは、戻り管14で接続されており、この戻り
管14には、ヘリウム回収精製系21が設置され
ている。なお、上記各冷凍負荷体5a,5b,5
cと上記主圧縮機1とは上記第2熱交換器10を
引通した還流管15で接続されている。
The liquid helium tank 6 is connected to each of the refrigeration loads 5a, 5b, and 5c via helium supply pipes 12. Further, a bypass path 1 is provided between the inlet side and the outlet side of the second heat exchanger 10.
3a is connected, and an expander 13 is attached to this bypass path 13a. Furthermore, each of the refrigeration loads 5a, 5b, 5c and the main compressor 1 are connected by a return pipe 14, and a helium recovery and purification system 21 is installed in the return pipe 14. In addition, each of the above-mentioned refrigeration load bodies 5a, 5b, 5
c and the main compressor 1 are connected by a reflux pipe 15 passing through the second heat exchanger 10.

従つて、上述したヘリウム冷凍装置は、主圧縮
機1を駆動することにより、ガスヘリウムを圧縮
し、これをコールドボツクス装置2を構成する第
1熱交換器8及び第2熱交換器10で高圧低温ガ
スヘリウムを生成し、しかる後、これをジユール
トムソン弁11を通すことにより、ガスヘリウム
を膨脹させて極低温の液体ヘリウムを生成する。
しかして、この一部の液体ヘリウムは、液体ヘリ
ウム槽6へ貯蔵されるけれども、大部分の液体ヘ
リウムは、各冷凍負荷体5a,5b,5cへ供給
され、ここで、例えば超電導マグネツトと熱交換
して冷却した後、仕事を了えた一部のガスヘリウ
ムは、戻り管14のヘリウム回収精製系21を通
して主圧縮機1へ移送し、他方、残りのヘリウム
は還流管15を通して主圧縮機1へ再び供給する
ようになつている。
Therefore, the helium refrigeration system described above compresses gas helium by driving the main compressor 1, and converts it to high pressure in the first heat exchanger 8 and second heat exchanger 10 that constitute the cold box device 2. A cryogenic gas helium is produced and then passed through a Joel-Thomson valve 11 to expand the gas helium to produce cryogenic liquid helium.
Although some of this liquid helium is stored in the liquid helium tank 6, most of the liquid helium is supplied to each of the refrigeration loads 5a, 5b, and 5c, where it is used for heat exchange with, for example, a superconducting magnet. After cooling, part of the gas helium that has completed its work is transferred to the main compressor 1 through the helium recovery and purification system 21 in the return pipe 14, while the remaining helium is transferred to the main compressor 1 through the reflux pipe 15. It is starting to be supplied again.

なお、上述したヘリウム冷凍装置は、ヘリウム
回収精製系21を省略して、主圧縮機1にヘリウ
ム精製器を付設したり、液体ヘリウム槽6を省略
するときもある。又、上述したヘリウム冷凍装置
における主圧縮機1及びコールドボツクス装置2
の容量は、各冷凍負荷体5a,5b,5cの入口
側に設けられたジユールトムソン弁(低温バルブ
11及び長い断熱管3の熱損失を勘案して決定さ
れるものである。
In the helium refrigeration system described above, the helium recovery and purification system 21 may be omitted, a helium purifier may be attached to the main compressor 1, or the liquid helium tank 6 may be omitted. Moreover, the main compressor 1 and the cold box device 2 in the helium refrigeration system described above
The capacity is determined by taking into consideration the heat loss of the Joel-Thompson valve (low-temperature valve 11 and long insulated pipe 3) provided on the inlet side of each refrigeration load body 5a, 5b, 5c.

しかしながら、上述したヘリウム冷凍装置は、
複数の冷凍負荷体5a,5b,5cにコールドボ
ツクス装置2をヘリウム供給管7で接続し、これ
を高価なトランスフアチユーブによる断熱管3を
被覆するようになつている関係上、数10m〜数
100m程度の長さにおよび断熱管3を被覆すれば、
ヘリウム供給管7内のヘリウムの熱損失も増大す
るばかりでなく、熱の交換効率が低下すると共
に、上記断熱管3の配管が長くなつて経済的に高
価なものとなる。
However, the helium refrigeration device described above,
Since the cold box device 2 is connected to the plurality of refrigeration loads 5a, 5b, and 5c by the helium supply pipe 7, and the insulated pipe 3 is covered with an expensive transfer tube, the length of the cold box device 2 is several tens of meters to several
If the insulated pipe 3 is covered with a length of about 100m,
Not only does the heat loss of the helium in the helium supply pipe 7 increase, but also the heat exchange efficiency decreases, and the piping of the heat insulating pipe 3 becomes long, making it economically expensive.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した事情に鑑みてなされたもの
であつて、複数に冷凍負荷体に各コールドボツク
ス装置をそれぞれ直接的に接続して液体ヘリウム
の移送距離を短縮し、熱損失を低減して熱の交換
効率の向上を図り、併せて、断熱管の長さを短く
して経済的に配管し得るようにしたことを目的と
するヘリウム冷凍装置を提供するものである。
The present invention has been made in view of the above-mentioned circumstances, and involves connecting each cold box device directly to a plurality of refrigerating loads to shorten the transfer distance of liquid helium and reduce heat loss. The present invention provides a helium refrigeration system that aims to improve the heat exchange efficiency and also shortens the length of the insulated pipes so that the piping can be installed economically.

〔発明の概要〕[Summary of the invention]

本発明は、主圧縮機にヘリウム供給系を接続
し、このヘリウム供給系から分岐した各冷凍ライ
ンに各コールドボツクス装置を接続し、この各コ
ールドボツクス装置と各冷凍負荷体とを断熱管を
被覆した各接続管で接続し、この各冷凍負荷体と
上記主圧縮機とを各連管を介して戻り管で繋ぎ、
この戻り管にヘリウム回収精製系を設けて構成し
たものである。
The present invention connects a helium supply system to the main compressor, connects each cold box device to each refrigeration line branched from this helium supply system, and covers each cold box device and each refrigeration load with an insulated pipe. each refrigeration load body and the main compressor are connected via each connecting pipe with a return pipe,
This return pipe is equipped with a helium recovery and purification system.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図示の一実施例について説明す
る。
Hereinafter, the present invention will be described with reference to an illustrated embodiment.

なお、本発明は、上述した具体例と同一構成部
材には同じ符号を付して説明する。 第1図にお
いて、符号1は、ヘリウム冷凍機における主圧
縮機であつて、この主圧縮機1の吐出がわのヘリ
ウム供給系7には、各冷媒ライン7a,7b,7
cが分岐して設けられており、この各冷媒ライン
7a,7b,7cには各コールドボツクス装置
(ヘリウム液化装置)16a,16b,16cが
接続されている。又、この各コールドボツクス装
置16a,16b,16cと各冷凍負荷体5a,
5b,5cとは短い断熱管18を被覆した各接続
管17a,17b,17cおよび19a,19
b,19cで接続されており、上記各冷凍負荷体
5a,5b,5cと上記主圧縮機1とは、各連管
20a,20b,20cを介して戻り管14で繋
がれており、この戻り管14にはヘリウム回収精
製系21が設置されている。
It should be noted that the present invention will be described with the same reference numerals attached to the same constituent members as in the above-described specific example. In FIG. 1, reference numeral 1 denotes a main compressor in a helium refrigerator, and a helium supply system 7 on the discharge side of the main compressor 1 includes refrigerant lines 7a, 7b, 7.
The refrigerant lines 7a, 7b, 7c are connected to cold box devices (helium liquefaction devices) 16a, 16b, 16c. Moreover, each cold box device 16a, 16b, 16c and each refrigeration load body 5a,
5b, 5c are connecting pipes 17a, 17b, 17c and 19a, 19 that cover the short heat insulating pipe 18.
The refrigeration loads 5a, 5b, 5c and the main compressor 1 are connected by a return pipe 14 via each connecting pipe 20a, 20b, 20c. A helium recovery and purification system 21 is installed in the pipe 14 .

なお、上記各コールドボツクス装置(ヘリウム
液化装置)16a,16b,16cは、第2図に
示されるように、窒素供給管9からの液体窒素で
高圧ガスヘリウムを熱交換して高圧低温ガス化す
る第1熱交換器8、第2熱交換器10、膨脹器1
3及び極低温の液体ヘリウムを生成するジユール
トムソン弁11とで構成されている。
Each of the cold box devices (helium liquefaction devices) 16a, 16b, and 16c exchanges heat with liquid nitrogen from the nitrogen supply pipe 9 to convert high-pressure gas helium into high-pressure low-temperature gas, as shown in FIG. First heat exchanger 8, second heat exchanger 10, expander 1
3 and a Joel-Thomson valve 11 that generates cryogenic liquid helium.

従つて、主圧縮機1を駆動することにより、ガ
スヘリウムを圧縮し、これをヘリウム供給系7及
び各冷媒ライン7a,7b,7cを通して各コー
ルドボツクス装置16a,16b,16cで極低
温の液体ヘリウムを生成する。しかして、この液
体ヘリウムを各接続管17a,17b,17cを
通して各冷凍負荷体5a,5b,5cへ供給し、
ここで仕事をし、仕事を了えたガスヘリウムは、
各連管20a,20b,20c及び戻り管14の
ヘリウム回収精製系21を通して主圧縮機1へ移
送される。
Therefore, by driving the main compressor 1, gas helium is compressed, and it is passed through the helium supply system 7 and each refrigerant line 7a, 7b, 7c to each cold box device 16a, 16b, 16c to convert it into cryogenic liquid helium. generate. Then, this liquid helium is supplied to each refrigeration load body 5a, 5b, 5c through each connecting pipe 17a, 17b, 17c,
The gas helium that worked here and finished its work,
The helium is transferred to the main compressor 1 through the helium recovery and purification system 21 of each of the connecting pipes 20a, 20b, 20c and the return pipe 14.

なお、上記各冷凍負荷体5a,5b,5cの一
部のヘリウムは、各接続管19a,19b,19
c及び還流管15を通して主圧縮機1へ再び供給
するようになつている。
In addition, some helium of each of the above-mentioned refrigeration loads 5a, 5b, 5c is supplied to each connecting pipe 19a, 19b, 19.
The main compressor 1 is supplied again through the reflux pipe 15 and the reflux pipe 15.

このように、上記各コールドボツクス装置16
a,16b,16cと各冷凍負荷体5a,5b,
5cとは、短縮した各接続管17a,17b,1
7c,19a,19b,19cで接続されている
ので、断熱管18a,18b,18cは短くな
り、液体ヘリウムの移送距離を短縮することによ
つて熱損失を低減し、熱の交換効率の向上を図つ
ている。
In this way, each of the cold box devices 16
a, 16b, 16c and each refrigeration load body 5a, 5b,
5c means each shortened connecting pipe 17a, 17b, 1
7c, 19a, 19b, and 19c, the heat insulating pipes 18a, 18b, and 18c are shortened, reducing heat loss by shortening the transfer distance of liquid helium, and improving heat exchange efficiency. It is planned.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、主圧縮機1
にヘリウム供給系7を接続し、このヘリウム供給
系7から分岐した各冷媒ライン7a,7b,7c
に各コールドボツクス装置16a,16b,16
cを接続し、この各コールドボツクス装置16
a,16b,16cと各冷凍負荷体5a,5b,
5cとを断熱管18を被覆した各接続管17a,
17b,17cで接続し、この各冷凍負荷体5
a,5b,5cと上記主圧縮機1とを各連管20
a,20b,20cを介して戻り管14で繋ぎ、
この戻り管14にヘリウム回収精製系21を設け
てあるので、液体ヘリウムの移送距離を短縮して
熱損失を低減できるばかりでなく、熱の交換効率
の向上を図ることができるし、さらに、断熱管の
長さを短くして経済的な配管ができる。
As described above, according to the present invention, the main compressor 1
A helium supply system 7 is connected to the helium supply system 7, and each refrigerant line 7a, 7b, 7c branched from this helium supply system 7.
Each cold box device 16a, 16b, 16
c, and each cold box device 16
a, 16b, 16c and each refrigeration load body 5a, 5b,
5c and each connecting pipe 17a covered with the heat insulating pipe 18,
17b and 17c, each refrigerating load body 5
a, 5b, 5c and the main compressor 1 are connected to each connecting pipe 20.
connected by a return pipe 14 via a, 20b, 20c,
Since this return pipe 14 is provided with a helium recovery and purification system 21, it is possible not only to shorten the transfer distance of liquid helium and reduce heat loss, but also to improve heat exchange efficiency. Economical piping can be achieved by shortening the length of the pipe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のヘリウム冷凍装置の系統
図、第2図は、既に提案されているヘリウム冷凍
装置の系統図である。 1……主圧縮機、5a,5b,5c……冷凍負
荷体、7……ヘリウム供給系、7a,7b,7c
……冷媒ライン、14……戻り管、16a,16
b,16c……コールドボツクス装置、17a,
17b,17c……接続管、18……断熱管、2
1……ヘリウム回収精製系。
FIG. 1 is a system diagram of a helium refrigeration system according to the present invention, and FIG. 2 is a system diagram of a helium refrigeration system that has already been proposed. 1... Main compressor, 5a, 5b, 5c... Refrigeration load body, 7... Helium supply system, 7a, 7b, 7c
... Refrigerant line, 14 ... Return pipe, 16a, 16
b, 16c...cold box device, 17a,
17b, 17c... Connection pipe, 18... Heat insulation pipe, 2
1... Helium recovery and purification system.

Claims (1)

【特許請求の範囲】 1 主圧縮機にヘリウム供給系を接続し、このヘ
リウム供給系から分岐した各冷凍ラインに各コー
ルドボツクス装置を接続し、この各コールドボツ
クス装置と各冷凍負荷体とを断熱管を被覆した各
接続管で接続し、この各冷凍負荷体と上記主圧縮
機とを各連管を介して戻り管で繋ぎ、この戻り管
にヘリウム回収精製系を設けたことを特徴とする
ヘリウム冷凍装置。 2 コールドボツクス装置は、ヘリウム供給系に
第1熱交換器、第2熱交換器及びジユールトムソ
ン弁を接続し、この第2熱交換器の上流側と下流
側とに膨脹器を備えたバイパス路を付設したこと
を特徴とする特許請求の範囲第1項記載のヘリウ
ム冷凍装置。
[Claims] 1. A helium supply system is connected to the main compressor, each cold box device is connected to each refrigeration line branched from this helium supply system, and each cold box device and each refrigeration load are insulated. The pipes are connected by covered connecting pipes, each of the refrigeration loads and the main compressor are connected via each connecting pipe with a return pipe, and a helium recovery and purification system is provided in the return pipe. Helium refrigeration equipment. 2. The cold box device is a bypass system in which a first heat exchanger, a second heat exchanger, and a Joel-Thomson valve are connected to a helium supply system, and expanders are provided on the upstream and downstream sides of the second heat exchanger. The helium refrigeration system according to claim 1, further comprising a passage.
JP60285246A 1985-12-18 1985-12-18 Helium refrigerator Granted JPS62142983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60285246A JPS62142983A (en) 1985-12-18 1985-12-18 Helium refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60285246A JPS62142983A (en) 1985-12-18 1985-12-18 Helium refrigerator

Publications (2)

Publication Number Publication Date
JPS62142983A JPS62142983A (en) 1987-06-26
JPH0523351B2 true JPH0523351B2 (en) 1993-04-02

Family

ID=17689004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60285246A Granted JPS62142983A (en) 1985-12-18 1985-12-18 Helium refrigerator

Country Status (1)

Country Link
JP (1) JPS62142983A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2375390B1 (en) * 2009-10-26 2013-02-11 Consejo Superior De Investigaciones Científicas (Csic) HELIO RECOVERY PLANT.

Also Published As

Publication number Publication date
JPS62142983A (en) 1987-06-26

Similar Documents

Publication Publication Date Title
CN115451647B (en) Hydrogen liquefaction system integrated with liquefied air energy storage system
CN102538391A (en) Multi-level single-component refrigeration natural gas liquefaction system and multi-level single-component refrigeration natural gas liquefaction method
JP3453594B2 (en) Oxygen and nitrogen separation and liquefaction equipment from air
CN102620460B (en) Hybrid refrigeration cycle system and method with propylene pre-cooling
US6170290B1 (en) Refrigeration process and plant using a thermal cycle of a fluid having a low boiling point
JPH0523351B2 (en)
RU2137067C1 (en) Natural gas liquefaction plant
CN117168087A (en) Modular hydrogen liquefaction system
JPH02171579A (en) Method of liquefying hydrogen
CN202630581U (en) Ternary-cycle cascaded refrigeration natural gas liquefaction system
CN217330409U (en) Hydrogen liquefaction device
CN202547274U (en) Multi-stage single-component refrigerated natural gas liquefaction system
JPH0221497B2 (en)
JPS59222906A (en) Current lead for superconductive coil
Satoh et al. Construction and commissioning tests of a 10 kW class helium refrigerator for the large helical device
JPH09170834A (en) Helium refrigerating system
SU1537980A1 (en) Method and cryogenic unit for producing cold
CN116951902A (en) Air and hydrogen liquefaction precooling combined system comprehensively utilizing LNG cold energy
SU1395911A1 (en) Method and cryogenic installation for producing cold
JPS61110851A (en) Joule-thomson refrigerator
JPH0250381B2 (en)
JPS6012158U (en) helium refrigeration equipment
JPH01127860A (en) Method of controlling auxiliary cold source of cryogenic liquefying refrigerator
JPS60207860A (en) Multistage continuous cooling device
JPH0339234B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term