JPH0522998A - Synchronous generator - Google Patents

Synchronous generator

Info

Publication number
JPH0522998A
JPH0522998A JP3171474A JP17147491A JPH0522998A JP H0522998 A JPH0522998 A JP H0522998A JP 3171474 A JP3171474 A JP 3171474A JP 17147491 A JP17147491 A JP 17147491A JP H0522998 A JPH0522998 A JP H0522998A
Authority
JP
Japan
Prior art keywords
phase
load
generator
current
synchronous generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3171474A
Other languages
Japanese (ja)
Inventor
Keiichi Tanaka
敬一 田中
Hikari Enami
光 江南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP3171474A priority Critical patent/JPH0522998A/en
Publication of JPH0522998A publication Critical patent/JPH0522998A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To suppress unbalanced currents by branching a reverse phase current, a harmonic current generated according to load side conditions to an induction machine side, and increasing an unbalanced load resistance and a harmonic wave load resistance. CONSTITUTION:A three-phase synchronous generator SG and a squirrel cage three-phase induction motor IM having the same number of poles as that of the generator are disposed at left and right sides through a prime mover PRM, and both rotary shafts (not shown) are coaxially coupled. A main circuit of the generator SG is always connected in parallel with that of the motor IM in a synchronous state. Thus, a reverse phase current, a harmonic current generated according to three-phase load L and single-phase load SL side conditions, are branched to the motor IM side. A circuit element side of the motor IM is operated in a direction for cancelling a reverse phase magnetic field, a harmonic magnetic field, and energy-converts the currents, heat into torque. As seen from a stator side, a damping effect, a filtering effect for the reverse phase, the harmonic wave are increased to increase an unbalanced load resistance, a harmonic wave load resistance. Thus, unbalanced currents can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は不平衡電流を抑制する
ことができるようにした交流同期発電機に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an AC synchronous generator capable of suppressing unbalanced current.

【0002】[0002]

【従来の技術】三相交流同期発電機を用いた自家用発電
設備により、例えば、図11に示すような単相負荷SL
と三相負荷Lからなる三相不平衡負荷に交流同期発電機
SGから電力を供給する場合、現在は次に述べるような
手段を採っている。
2. Description of the Related Art For example, a single-phase load SL as shown in FIG. 11 is provided by a private power generation facility using a three-phase AC synchronous generator.
In the case of supplying electric power from the AC synchronous generator SG to the three-phase unbalanced load consisting of the three-phase load L and the three-phase load L, the following means are currently adopted.

【0003】三相交流同期発電機SGを三相不平衡電流
状態で使用した場合は、不平衡電流中の逆相電流成分が
発電機機能に悪影響を与えるため、例えば電気学会規格
調査規格(JEC114−1979)では不平衡負荷電
流中の逆相電流値を定格電流値の12%以下(突極形の
場合)または10%以下(円筒形の場合)に規制してい
る。このため、図11に示すように三相負荷Lと単相負
荷SLからなる三相不平衡負荷に、標準の三相交流同期
発電機SGを用いて電力を供給する場合、単相負荷SL
と三相負荷Lの給電可能範囲は図12の斜線で示す通り
となる。
When the three-phase AC synchronous generator SG is used in a three-phase unbalanced current state, the negative-phase current component in the unbalanced current adversely affects the generator function, so that, for example, the Institute of Electrical Engineers of Japan investigation standard (JEC114). -1979) regulates the reverse-phase current value in the unbalanced load current to 12% or less (for salient pole type) or 10% or less (for cylindrical type) of the rated current value. Therefore, as shown in FIG. 11, when power is supplied to a three-phase unbalanced load composed of a three-phase load L and a single-phase load SL by using a standard three-phase AC synchronous generator SG, the single-phase load SL
The range in which power can be supplied to the three-phase load L is as shown by the shaded areas in FIG.

【0004】従って、図11に示す単相負荷量が図12
に示す許容値を越える場合は、標準の交流同期発電機に
比べて定格容量(形状)の大きな発電機にて対応する等
の対策を要する。なお、図11において、CBは遮断
器、AVRは自動電圧調整器、Tは励磁用変圧器、FR
は界磁整流回路、EXCは初期励磁回路であり、この回
路EXCは初期励磁用接触器41I、ダイオードD、限
流抵抗R及び直流電源Eから構成される。
Therefore, the single-phase load shown in FIG.
If the allowable value shown in is exceeded, it is necessary to take measures such as using a generator with a larger rated capacity (shape) than the standard AC synchronous generator. In FIG. 11, CB is a circuit breaker, AVR is an automatic voltage regulator, T is an excitation transformer, and FR.
Is a field rectifier circuit, EXC is an initial excitation circuit, and this circuit EXC is composed of an initial excitation contactor 41I, a diode D, a current limiting resistor R, and a DC power source E.

【0005】図13は単相負荷回路側が2回路独立して
設備されている場合のもので、このような設備には図1
3に示すようにスコットトランスSCTを用いて給電す
る。この図13の場合、単相負荷SL1とSL2が同一負
荷容量(力率も同一)の場合に限り、スコットトランス
SCTの1次側は三相平衡電流となる。しかし、単相負
荷容量が異なる場合は、スコットトランスSCTの1次
側も不平衡電流となり、極端な場合、例えば単相負荷S
2がオフした場合、スコットトランスSCTの三相平
衡化作用は消滅し、単相負荷SL1にみあった単相電流
がスコットトランスSCTの1次側に流れてしまう。こ
のようにスコットトランスSCTによる発電機電流の三
相平衡化は独立2回路の単相負荷容量が等しいときに、
はじめて成り立つため、図13のスコットトランスSC
Tを使用する手段も特例を除きオールマイティな平衡化
対策とはいえない。
FIG. 13 shows a case where two single-phase load circuit sides are independently installed.
As shown in 3, power is supplied using a Scott transformer SCT. In the case of FIG. 13, only when the single-phase loads SL 1 and SL 2 have the same load capacity (the power factor is the same), the primary side of the Scott transformer SCT has a three-phase balanced current. However, when the single-phase load capacity is different, the primary side of the Scott transformer SCT also becomes an unbalanced current, and in an extreme case, for example, the single-phase load S
When L 2 is turned off, the three-phase balancing action of the Scott transformer SCT disappears, and the single-phase current matching the single-phase load SL 1 flows to the primary side of the Scott transformer SCT. In this way, three-phase balancing of the generator current by the Scott transformer SCT is performed when the single-phase load capacities of the two independent circuits are equal.
Scott Trans SC in Fig. 13 for the first time
The means of using T cannot be said to be an almighty equilibration measure except for special cases.

【0006】[0006]

【発明が解決しようとする課題】図11は発電機巻線に
流れる三相不平衡電流に着目すると、発電機SG出力の
2線間に単相負荷SLが接続されているところに、三相
負荷Lが重畳されて接続されているとみなせる。この場
合、発電機各相電流は、等価的に正相電流成分と逆相電
流成分が流れたことになり、発電機SGはその逆相電流
成分による逆相回転磁界や、2次的に派生する高調波回
転磁界により逆相電流の値如何によっては次のような弊
害が発生し、実用上支障を生じる恐れがある。
FIG. 11 focuses on the three-phase unbalanced current flowing in the generator winding, and when the single-phase load SL is connected between the two wires of the generator SG output, the three-phase load SL is connected. It can be considered that the load L is superposed and connected. In this case, the generator phase currents equivalently flow the positive-phase current component and the negative-phase current component, and the generator SG generates a negative-phase rotating magnetic field due to the negative-phase current component or a secondary derivative. Depending on the value of the anti-phase current due to the rotating harmonic magnetic field, the following adverse effects may occur, which may cause problems in practical use.

【0007】(a)発電機回転子の制動巻線や界磁磁極
表面等に異常加熱を生じる。
(A) Abnormal heating occurs on the braking winding of the generator rotor, the surface of the magnetic field pole, and the like.

【0008】(b)発電機誘起電圧は基本波分に高調波
分が重畳され、出力電圧波形歪を生じる。
(B) In the generator-induced voltage, the harmonic component is superimposed on the fundamental component, and the output voltage waveform distortion occurs.

【0009】(c)高調波トルクにより、回転系に脈動
を生じることがある。
(C) Harmonic torque may cause pulsation in the rotating system.

【0010】(d)発電機内部誘起電圧に逆相分電圧が
生じるため、発電機出力電圧が三相不平衡を生じ、自動
電圧調整器では各線間電圧の平均を一定にすることはで
きるが、各線間の不平衡電圧分を是正することはできな
い。
(D) Since a reverse-phase voltage is generated in the generator internal induced voltage, the generator output voltage causes a three-phase imbalance, and the automatic voltage regulator can keep the average of each line voltage constant. , Unbalanced voltage between lines cannot be corrected.

【0011】また、発電機SGの各相不平衡電流のた
め、発電機出力電圧に三相不平衡が生じた場合は、接続
された負荷にも不平衡電圧が印加されるため、その値如
何によっては負荷側機器の障害も生じる可能性がある。
従って、図11のような負荷回路において、図12の単
相入力容量の限度を越えて単相負荷SLを使用する場合
は次のようにしなければならない。
Further, when a three-phase unbalance occurs in the generator output voltage due to the unbalanced currents in each phase of the generator SG, the unbalanced voltage is also applied to the connected load. Depending on the situation, a failure of the load side device may occur.
Therefore, in the load circuit as shown in FIG. 11, when the single-phase load SL is used beyond the limit of the single-phase input capacitance shown in FIG. 12, the following must be done.

【0012】(1)三相交流同期発電機を標準適用のも
のより大きな定格容量のもの(発電機形状を大形化す
る)を適用する。
(1) A three-phase AC synchronous generator having a rated capacity larger than that of a standard application (enlarged generator shape) is applied.

【0013】(2)単相負荷をいくつかの設備構成に分
割することが可能な場合は、単相負荷を三相各線間に均
等に振り分ける。この場合、三相各線間に振り分けた同
一容量(同一力率)の単相負荷は発電機から見ると、三
相平衡負荷とみなすことができる。ただし、この場合、
単相負荷が均等に3分割できることと、負荷側配線が同
じく三相各線間に振り分けることができるようになって
いることが必要である。このため、発電機側電流三相平
衡化のためには、前述の単相負荷が3回路とも同時に使
用することが条件となり、スコットトランスの場合と同
様に特例を除きオールマイティな平衡化対策とは言えな
い問題がある。
(2) If the single-phase load can be divided into several equipment configurations, the single-phase load is evenly distributed among the three-phase lines. In this case, a single-phase load of the same capacity (same power factor) distributed among the three-phase lines can be regarded as a three-phase balanced load when viewed from the generator. However, in this case,
It is necessary that the single-phase load can be equally divided into three parts, and that the load-side wiring can also be distributed among the three-phase lines. Therefore, in order to balance the three-phase currents on the generator side, it is necessary to use the three single-phase loads at the same time for all of the above-mentioned single-phase loads. There is a problem that I cannot say.

【0014】この発明は上記の事情に鑑みてなされたも
ので、不平衡電流を抑制するようにした交流同期発電機
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an AC synchronous generator in which an unbalanced current is suppressed.

【0015】[0015]

【課題を解決するための手段】この発明の第1発明は上
記の目的を達成するために、不平衡負荷や高調波負荷に
使用する三相交流同期発電機において、駆動源に対し直
結された同期発電機と同軸に同一極数のかご形三相誘導
電動機を直結し、同期発電機と誘導電動機の両主回路を
常に同期状態で並列接続し、負荷側条件により生じた逆
相電流や高調波電流を誘導電動機側に分流させ、不平衡
負荷耐量や高調波負荷耐量を増大するようにしたもので
ある。
In order to achieve the above object, the first invention of the present invention is directly connected to a drive source in a three-phase AC synchronous generator used for an unbalanced load or a harmonic load. A squirrel-cage three-phase induction motor with the same number of poles is directly connected coaxially with the synchronous generator, and both main circuits of the synchronous generator and the induction motor are always connected in parallel in parallel. The wave current is shunted to the induction motor side to increase the unbalanced load withstand capability and the harmonic load withstand capability.

【0016】また、この発明の第2発明は三相交流同期
発電機と同一極数のかご形三相誘導電動機を同一軸にし
て同一フレーム内に組込み、発電機と誘導電動機の両主
回路を並列接続したものである。
According to a second aspect of the present invention, a squirrel-cage three-phase induction motor having the same number of poles as the three-phase AC synchronous generator is installed in the same frame with the same axis, and both main circuits of the generator and the induction motor are installed. They are connected in parallel.

【0017】[0017]

【作用】負荷側条件により生じた逆相電流や高調波電流
を誘導電動機に分流させる。誘導電動機は固定子側に印
加する電源条件により、逆相磁界や高調波磁界が固定子
側に存在すると、容易かつ受動的に回転子側に逆相電流
や高調波電流と流す。このため、誘導電動機の回転子側
は逆相磁界や高調磁界を打ち消す方向に作用するととも
にこれらの電流は熱やトルクにエネルギー変換されるた
め、固定子側から見ると、逆相分や高調波分に対する制
動効果やフィルタ効果が大きくなる。このような作用を
利用して不平衡負荷耐量や高調波負荷耐量を増大するこ
とができる。
[Function] The antiphase current and the harmonic current generated by the load side condition are shunted to the induction motor. When an anti-phase magnetic field or a harmonic magnetic field exists on the stator side of the induction motor depending on the power supply conditions applied to the stator side, the induction motor easily and passively supplies the anti-phase current or the harmonic current to the rotor side. For this reason, the rotor side of the induction motor acts in the direction of canceling the anti-phase magnetic field and the harmonic magnetic field, and these currents are converted into heat and torque, so when viewed from the stator side, the anti-phase component and the harmonic The braking effect and the filter effect for the minute increase. By utilizing such an action, the unbalanced load withstanding capability and the harmonic load withstanding capability can be increased.

【0018】[0018]

【実施例】以下この発明の一実施例を図面に基づいて説
明するに、図11と同一部分は同一符号を付して示す。
図1において、IMはかご形三相誘導電動機で、この誘
導電動機IMと三相交流同期発電機SGは図2に示すよ
うに原動機PRMを挾んで配置され、回転軸は同軸上で
連結される。誘導電動機IMと三相交流同期発電機SG
の主回路は並列接続され、誘導電動機IMの主回路には
常時オンの遮断器CBONが介挿される。84は電圧継電
器である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. The same parts as those in FIG. 11 are designated by the same reference numerals.
In FIG. 1, IM is a squirrel-cage three-phase induction motor, and the induction motor IM and the three-phase AC synchronous generator SG are arranged so as to sandwich the prime mover PRM, as shown in FIG. . Induction motor IM and three-phase AC synchronous generator SG
Is connected in parallel, and the normally-on breaker CB ON is inserted in the main circuit of the induction motor IM. 84 is a voltage relay.

【0019】次に上記実施例の動作を述べる。遮断器C
Bが開放状態のとき、原動機PRMにより三相交流同期
発電機SGを定格回転数まで加速する。このとき、初期
励磁回路EXCは始動開始とともに直流電源Eより接触
器41Iを通して励磁され、回転数上昇に伴い、80%
程度まで電圧が確立(継電器84により検知)した時点
で41Iを開放にする。以降は初期励磁回路EXCか
ら、励磁電流が供給されなくても、発電機SGのAVR
作用により発電機SGの主回路から界磁回路FRを通し
て励磁電流が供給され、一定電圧制御が行われる。
Next, the operation of the above embodiment will be described. Circuit breaker C
When B is open, the prime mover PRM accelerates the three-phase AC synchronous generator SG to the rated speed. At this time, the initial excitation circuit EXC is excited from the DC power source E through the contactor 41I at the start of the starting operation, and the initial excitation circuit EXC becomes 80% as the rotational speed increases.
When the voltage is established to some extent (detected by the relay 84), 41I is opened. After that, even if the exciting current is not supplied from the initial exciting circuit EXC, the AVR of the generator SG is performed.
Due to the action, an exciting current is supplied from the main circuit of the generator SG through the field circuit FR, and constant voltage control is performed.

【0020】交流同期発電機SGと誘導電動機IMは三
相主回路同士が並列接続されているため、回転数立上り
とともに電圧も零から立上がってくるため、三相誘導電
動機IM側も徐々に励磁される。このため、特に突入電
流がIMに流れることはない。また、誘導電動機IMは
常に三相交流発電機SGの発電電圧と同期状態で励磁さ
れることからも急に突入電流が流れるようなことはな
い。
Since the AC synchronous generator SG and the induction motor IM have the three-phase main circuits connected in parallel, the voltage rises from zero as the rotation speed rises, so that the three-phase induction motor IM side is gradually excited. To be done. Therefore, no inrush current flows into IM. Further, since the induction motor IM is always excited in synchronization with the power generation voltage of the three-phase AC generator SG, no sudden inrush current flows.

【0021】次に遮断器CBを投入すると、単相負荷S
Lと三相負荷Lに発電機電圧が印加され、負荷電流が供
給される。いま仮に、かご形誘導電動機IMが接続され
ていない状態(仮に遮断器CBONがオフしていると仮定
する)をみると、同期発電機SGには三相不平衡電流が
流れるため、標準適用の同期発電機ではそれに含まれる
逆相電流成分が定格電流値の10〜12%以下になるよ
うに単相負荷量を制限する必要がある。
Next, when the circuit breaker CB is turned on, the single-phase load S
A generator voltage is applied to L and the three-phase load L, and a load current is supplied. Now, assuming that the squirrel-cage induction motor IM is not connected (assuming that the circuit breaker CB ON is off), a three-phase unbalanced current flows through the synchronous generator SG, and thus the standard application In the synchronous generator of No. 1, it is necessary to limit the amount of single-phase load so that the reverse-phase current component contained therein is 10 to 12% or less of the rated current value.

【0022】一方、遮断器CBONをオンしたままの場合
の電源部としての機能をみてみる。遮断器CBをオフし
た状態(負荷側回路オフした状態)では発電機SGと電
動機IMは主回路同士が並列接続されているため、電動
機IMにはすべり零の同期状態で励磁電流が流れてい
る。
On the other hand, let's look at the function as a power source when the circuit breaker CB ON is kept on. In the state where the circuit breaker CB is turned off (the state where the load side circuit is turned off), the main circuits of the generator SG and the electric motor IM are connected in parallel, so that the exciting current flows in the electric motor IM in a synchronous state of zero slip. .

【0023】また、電動機IMは発電機SGと同一軸で
駆動されるため、常に電源は同期状態(すべり零)で、
電動機PRMが駆動源となるから、電動機IM側は回転
系脈動時の制動トルクを除いて定常的にはトルクは発生
しない。従って、電動機IM側は電気的なパワーの授受
は生じないため、例えば電動機IMを加速するための始
動電流や励磁するための突入電流は考えなくてもよい。
Further, since the electric motor IM is driven by the same axis as the generator SG, the power sources are always in the synchronous state (slip zero),
Since the electric motor PRM serves as a drive source, no torque is steadily generated on the electric motor IM side except for the braking torque at the time of pulsation of the rotary system. Therefore, since electric power is not exchanged on the electric motor IM side, it is not necessary to consider, for example, a starting current for accelerating the electric motor IM or a rush current for exciting.

【0024】次に遮断器CBをオンすると図1の実施例
の場合、三相負荷Lと単相負荷SLが接続されるため、
図3に示すように電源部PWに対しては三相不平衡負荷
ULが接続されたことになり、各相に流れる不平衡負荷
電流ILa,ILb,ILcは正相分電流I1と逆相分電流I2
を合成したものと考えることができる。この実施例のよ
うに三相負荷Lと単相負荷SLからなるような負荷回路
の場合、電源側中性点を共通帰路とする零相回路は存在
しないため、不平衡負荷電流中に零相分I0は相しな
い。
Next, when the circuit breaker CB is turned on, in the case of the embodiment of FIG. 1, the three-phase load L and the single-phase load SL are connected,
As shown in FIG. 3, the three-phase unbalanced load UL is connected to the power supply unit PW, and the unbalanced load currents I La , I Lb , and I Lc flowing in each phase are the positive-phase current I 1. And the reverse phase current I 2
Can be thought of as a composite. In the case of a load circuit composed of a three-phase load L and a single-phase load SL as in this embodiment, there is no zero-phase circuit having a neutral point on the power supply side as a common return path. Minutes I 0 do not match.

【0025】従って、図1の実施例の三相分正相等価回
路は図4のようになり、その一相分の正相等価回路は図
5のようになる。同様に三相分逆相等価回路は図6のよ
うになり、その一相分の逆相等価回路は図7のようにな
る。まず、正相分は図5に示すように、発電機SGの正
相誘起電圧V1により、発電機SGの正相インピーダン
スを介して、発電機IMの励磁電流Im1と負荷電流の正
相分I1を供給する。一方、発電機SGは図1の実施例
で示すようにAVRにより電源部PW出力電圧が一定電
圧になるように界磁電流制御を行うから、負荷側から電
源部PWをみた場合、一定の正相電圧源であり、電動機
IMの有無に無関係になる。
Therefore, the three-phase positive phase equivalent circuit of the embodiment of FIG. 1 is as shown in FIG. 4, and the one-phase positive phase equivalent circuit is as shown in FIG. Similarly, the three-phase anti-phase equivalent circuit is as shown in FIG. 6, and the one-phase anti-phase equivalent circuit is as shown in FIG. First, as shown in FIG. 5, the positive phase component is the positive phase induced voltage V 1 of the generator SG, the positive phase impedance of the generator SG, the positive phase of the exciting current I m1 of the generator IM, and the positive phase of the load current. Supply minute I 1 . On the other hand, the generator SG performs field current control by the AVR so that the output voltage of the power source unit PW becomes a constant voltage as shown in the embodiment of FIG. It is a phase voltage source and becomes independent of the presence or absence of the electric motor IM.

【0026】ただし、発電機SG自体には負荷に供給す
る正相電流I1と、電動機IMの励磁電流Im1のベクト
ル合成値が流れる。なお、この発電機SGに流れる正相
電流のうち、Im1の影響を低減するためには、電動機I
Mの励磁電流Im1を打ち消すための三相進相コンデンサ
を電動機IMに並列に接続してもよい。
However, a vector composite value of the positive phase current I 1 supplied to the load and the exciting current I m1 of the electric motor IM flows through the generator SG itself. In order to reduce the influence of I m1 of the positive phase current flowing through the generator SG, the electric motor I
A three-phase advance capacitor for canceling the exciting current I m1 of M may be connected in parallel to the motor IM.

【0027】次に逆相分は、図7に示すように不平衡負
荷量が与えられれば、その不平衡電流中の逆相分電流I
2を定電流源とする等価回路を考えることができ、I2
電源部内部で発電機SG側と電動機IM側にそれぞれの
逆相インピーダンスの逆比に応じて分流する。従って、
m2<Zg2になるような電動機IMを選定すれば、電動
機IM側に分流する逆相電流分が増え、発電機SG側に
分流する逆相分と抑制することができる。
Next, the reverse phase component current I in the unbalanced current is given if an unbalanced load amount is given as shown in FIG.
An equivalent circuit in which 2 is a constant current source can be considered, and I 2 is shunted inside the power supply unit to the generator SG side and the electric motor IM side according to the inverse ratio of the respective antiphase impedances. Therefore,
If the electric motor IM is selected such that Z m2 <Z g2 , the amount of the anti-phase current that is shunted to the electric motor IM side is increased, and the amount of the anti-phase current that is shunted to the generator SG side can be suppressed.

【0028】逆相等価回路において、電源部の合成逆相
インピーダンスは、Zg2とZm2の並列合成インピーダン
スになるため、次式のようにZg2より小さくなる。
In the anti-phase equivalent circuit, the combined anti-phase impedance of the power supply section becomes the parallel combined impedance of Z g2 and Z m2 , and is smaller than Z g2 as in the following equation.

【0029】 (Zg2×Zm2)/(Zg2+Zm2)<Zg2 従って、負荷側よりI2が電源部PWに流れ込むことに
より、電源の逆相インピーダンスとの積によってきまる
逆相電圧も発電機SG単独の場合より小さくなり、結果
として電源の電圧不平衡も小さくなる。
(Z g2 × Z m2 ) / (Z g2 + Z m2 ) <Z g2 Therefore, when I 2 flows from the load side into the power supply unit PW, the reverse phase voltage determined by the product of the reverse phase impedance of the power supply is also generated. It is smaller than that of the generator SG alone, and as a result, the voltage imbalance of the power source is also smaller.

【0030】次に上記実施例のように三相誘導電動機I
Mを同期発電機SGと同期状態で並列接続した場合の電
動機IMの正相インピーダンスは励磁インピーダンスと
なり、相対的に大きいのに対し、逆相インピーダンスは
相対的に小さくなるこを述べる。
Next, as in the above embodiment, the three-phase induction motor I
It is described that the positive phase impedance of the electric motor IM when M is connected in parallel with the synchronous generator SG in parallel is the excitation impedance and is relatively large, whereas the negative phase impedance is relatively small.

【0031】まず、正相分を考えると、正相電圧V1
対して電動機IM一相分の正相等価回路は一般的には図
8(a)のように示される。しかし、この実施例の場合
は電源の発電機SGと電動機IMは常に同期状態を保っ
ていることが特徴であるから、すべりS=0とおくと、
図8(b)のように励磁回路丈となり、正相インピーダ
ンスは励磁インピーダンス分となる。
First, considering the positive phase component, a positive phase equivalent circuit for one phase of the motor IM with respect to the positive phase voltage V 1 is generally shown as shown in FIG. 8 (a). However, this embodiment is characterized in that the generator SG of the power source and the electric motor IM are always kept in synchronization with each other. Therefore, if slip S = 0 is set,
As shown in FIG. 8B, the excitation circuit length is obtained, and the positive phase impedance is the excitation impedance.

【0032】一方、逆相分を考えると、上記の説明で不
平衡負荷電流中の逆相電流分と電源部PWの逆相インピ
ーダンスとの積が逆相電圧V2として発生するが、この
逆相電圧V2に対する電動機IM一相分の逆相等価回路
は一般的に図9(a)のように示され、前述のように発
電機SGと電動機IMの回転子側が同一軸で回転する場
合は、逆相電圧により電動機IMの固定子巻線に生ずる
回転磁界と、かご形回転子の回転方向は逆方向となり、
相対速度2となるため、わずかの逆相電圧に対しても、
電動機IMの2次側かご形巻線には相対的に大きな2次
電流(1次側からみると逆相電流)が流れるため結果と
して電動機IMの逆相インピーダンスは相対的に小さい
ことになる。なお、この場合、実用範囲において、逆相
電圧V2は逆相電圧V1に比べ小さく、かつ2次側の等価
逆相インピーダンスが小さいため、図9(b)のように
励磁インピーダンスは省略して考えることができる。
On the other hand, considering the anti-phase component, the product of the anti-phase current component in the unbalanced load current and the anti-phase impedance of the power source section PW is generated as the anti-phase voltage V 2 in the above description. An anti-phase equivalent circuit for one phase of the electric motor IM with respect to the phase voltage V 2 is generally shown in FIG. 9A, and when the rotor side of the generator SG and the rotor side of the electric motor IM rotate on the same axis as described above. Means that the rotating magnetic field generated in the stator winding of the electric motor IM due to the negative phase voltage and the rotating direction of the squirrel cage rotor are opposite to each other,
Since the relative speed is 2, even for a slight reverse phase voltage,
Since a relatively large secondary current (negative-phase current when viewed from the primary side) flows in the secondary-side cage winding of the electric motor IM, the negative-phase impedance of the electric motor IM is relatively small as a result. In this case, since the anti-phase voltage V 2 is smaller than the anti-phase voltage V 1 and the equivalent anti-phase impedance on the secondary side is small in the practical range, the excitation impedance is omitted as shown in FIG. 9B. You can think about it.

【0033】上記実施例のように電動機PRMにより同
期発電機SGと同一極数の誘導電動機IMを同一軸で駆
動すると、次のような利点がある。
When the induction motor IM having the same number of poles as the synchronous generator SG is driven by the same axis by the electric motor PRM as in the above embodiment, the following advantages are obtained.

【0034】(イ)誘導電動機の加速トルクは全て電動
機が受けもつため、誘導電動機には始動突入電流が流れ
ない。
(A) Since all the acceleration torque of the induction motor is taken up by the motor, the starting rush current does not flow in the induction motor.

【0035】(ロ)電源部(同期発電機と誘導電動機を
機械的に同軸とし、電気的に並列接続したもの)からみ
て、無負荷又は三相平衡負荷時は負荷側の正相電流は同
期発電機に流れ、誘導電動機には負荷の大小、如何にか
かわらず定常時一定の励磁電流(電源部の端子電圧はA
VRにより定常時は一定電圧に保持される)が流れる。
つまり、負荷に流れる正相電流は同期発電機が分担する
ことになる。
(B) From the viewpoint of the power supply section (the synchronous generator and the induction motor are mechanically coaxial and electrically connected in parallel), the positive side current on the load side is synchronous when there is no load or three-phase balanced load. Exciting current that flows to the generator and is constant in the steady state regardless of the size of the load on the induction motor (the terminal voltage of the power supply is A
VR maintains a constant voltage in a steady state).
That is, the positive generator current flowing through the load is shared by the synchronous generator.

【0036】(ハ)電源部からみて、不平衡負荷が接続
された場合は、不平衡負荷電流中の正相分は前述の通
り、同期発電機が分担するが、逆相分は同期発電機と誘
導電動機に分流し、同期発電機側の逆相インピーダンス
より誘導発電機側の逆相インピーダンスを小さくなるよ
うな適用をすれば、その分、逆相電流は誘導電動機側が
主体となって分担するため、同期発電機側に及ぼす悪影
響を軽減することができる。一方、誘導電動機側に流れ
た逆相電流は2次側回転子が短絡環付のかご形状巻線の
ため、十分な逆相電流耐量があり、これによって生じる
逆相トルクは駆動機によって補償される。
(C) When an unbalanced load is connected from the viewpoint of the power supply, the synchronous generator shares the positive phase component in the unbalanced load current as described above, but the negative phase component is the synchronous generator. If the application is made so that the anti-phase impedance on the induction generator side becomes smaller than the anti-phase impedance on the synchronous generator side, the anti-phase current is mainly shared by the induction motor side. Therefore, the adverse effect on the synchronous generator side can be reduced. On the other hand, the anti-phase current flowing to the induction motor side has sufficient anti-phase current withstand because the secondary rotor has a squirrel cage winding with a short-circuit ring, and the anti-phase torque generated by this is compensated by the drive machine. It

【0037】図10は同一回転軸11に同期発電機SG
の回転子12とかご形誘導電動機IMの回転子13を設
け、これらを同一フレーム14内に収納し、フレーム1
4内に上記回転子12,13に対応してそれぞれ固定子
15,16を設けた実施例であり、図中17,18はブ
ラケット、19,20は固定子巻線である。このよう
に、同期発電機SGと誘導電動機IMとを同一フレーム
14内に収納し、両主回路を電気的に並列接続した構成
にすれば、図2に示すものに比較して小形化及び軽量化
を図ることができ、しかも前記実施例と同様に不平衡電
流を抑制することができる。
FIG. 10 shows a synchronous generator SG on the same rotary shaft 11.
The rotor 12 of FIG. 1 and the rotor 13 of the squirrel cage induction motor IM are provided, and these are housed in the same frame 14.
4 is an embodiment in which stators 15 and 16 are provided corresponding to the rotors 12 and 13, respectively, in the figure, 17 and 18 are brackets, and 19 and 20 are stator windings. In this way, if the synchronous generator SG and the induction motor IM are housed in the same frame 14 and both main circuits are electrically connected in parallel, the size and weight are smaller than those shown in FIG. The unbalanced current can be suppressed as in the above-described embodiment.

【0038】[0038]

【発明の効果】以上述べたように、この発明によれば、
次のような効果がある。
As described above, according to the present invention,
It has the following effects.

【0039】(A)不平衡負荷を接続した場合、不平衡
負荷電流中に含まれる正相分電流は同期発電機側で分担
し、逆相分電流は主として誘導電動機側が分担するよう
にすると、結果として同期発電機からみて不平衡負荷を
接続したにも拘らず、不平衡抑制装置を設けたことと等
価になる。すなわち、不平衡負荷中の正相電流は同期発
電機から供給し、逆相電流は主に誘導電動機側から供給
するため、逆相電流が同期発電機に及ぼす悪影響を軽減
することができる。
(A) When an unbalanced load is connected, the positive-phase component current contained in the unbalanced load current is shared by the synchronous generator side, and the negative-phase component current is mainly distributed by the induction motor side. As a result, it is equivalent to providing an unbalance suppression device, even though the unbalanced load is connected to the synchronous generator. That is, since the positive-phase current in the unbalanced load is supplied from the synchronous generator and the negative-phase current is mainly supplied from the induction motor side, the adverse effect of the negative-phase current on the synchronous generator can be reduced.

【0040】(B)誘導電動機に逆相電流が流れた場
合、かご形回転子に誘導電流が流れるが、これによって
生じる逆相トルクは電動機による駆動トルクにて補償さ
れる。また、かご形回転子は同期発電機の回転子に比
べ、銅棒が全周に均一に高密度に設けられているため、
制動効果も大きく、固定子側に各種の高調波電流が流れ
ても、かご形回転子に変流器と同じようにアンペアター
ン打ち消しの作用に基づく高調波電流を積極的に流す。
これにより、固定子,回転子間に高調波磁界を積極的に
低減するような作用を行うため、不平衡負荷や高調波負
荷時も電圧波形歪を抑制する効果が大きい。
(B) When an antiphase current flows through the induction motor, an induction current flows through the squirrel cage rotor, but the antiphase torque generated by this current is compensated by the drive torque of the motor. In addition, the cage rotor has copper rods uniformly and densely around the entire circumference, compared to the rotor of the synchronous generator.
The braking effect is large, and even if various harmonic currents flow to the stator side, harmonic currents based on the ampere-turn canceling action are positively flowed to the squirrel cage rotor, as in the current transformer.
As a result, the harmonic magnetic field is positively reduced between the stator and the rotor, so that the effect of suppressing the voltage waveform distortion is large even when the unbalanced load or the harmonic load is applied.

【0041】(C)同期発電機と誘導発電機の並列逆相
インピーダンスが同期発電機単独のときより、大幅に低
減可能であるから、不平衡負荷による逆相電流成分が電
源側に流入しても、逆相インピーダンスとの積できまる
逆相電圧を小さくおさえることができる。従って、不平
衡負荷時の電源側電圧不平衡も小さくおさえることがで
きる。
(C) Since the parallel anti-phase impedance of the synchronous generator and the induction generator can be greatly reduced compared to when the synchronous generator is used alone, the anti-phase current component due to the unbalanced load flows into the power source side. Also, the reverse-phase voltage that can be accumulated with the reverse-phase impedance can be suppressed to a small value. Therefore, the unbalanced voltage on the power supply side can be suppressed to a small value.

【0042】(D)誘導電動機にはかご形巻線により強
力な制動効果があるから、例え制動巻線を有しない構造
の同期発電機と組み合わせても誘導電動機の制動効果
で、電源としては強力な制動効果が付加され、他の三相
交流電源との並列運転時の安定性が大きくなる等の特性
向上を図ることができる。
(D) Since the induction motor has a strong braking effect due to the squirrel cage winding, even if it is combined with a synchronous generator having a structure having no braking winding, the braking effect of the induction motor causes a strong power supply. It is possible to improve the characteristics such as the increase in stability during parallel operation with another three-phase AC power source by adding various braking effects.

【0043】(E)誘導電動機を同期発電機と常に同期
状態で同一駆動源により駆動することにより、誘導電動
機のもつ逆相電流や高調波電流に対する制動効果やフィ
ルタ効果を最大限に利用し、機械的な駆動力は直接駆動
機側が負担し、交流同期発電機の電気的出力には極力負
担をかけないようにすることにより、相対的に大きな不
平衡負荷に対して良質な電源が供給できるようにしたも
のである。また、三相不平衡負荷対策のみならず、高調
波負荷対策用といても適用できる。
(E) The induction motor is driven by the same drive source in a synchronous state with the synchronous generator at all times, so that the braking effect and the filter effect for the anti-phase current and the harmonic current of the induction motor are utilized to the maximum extent. The mechanical driving force is directly borne by the driving machine side, and the electric output of the AC synchronous generator is prevented from being loaded as much as possible, so that a high-quality power source can be supplied to a relatively large unbalanced load. It was done like this. Further, it can be applied not only as a three-phase unbalanced load countermeasure but also as a harmonic load countermeasure.

【0044】(F)三相不平衡負荷や高調波負荷時、同
期状態で回転している誘導電動機側の逆相電流や高調波
電流の吸収作用や、制動作用により、電圧波形歪や各相
電圧不平衡を抑制する効果が大きいため、負荷側条件に
より生じた逆相電流や高調電流を電源側電圧波形歪や各
相電圧不平衡により助長することを抑制することができ
る。
(F) When a three-phase unbalanced load or a harmonic load is applied, the voltage waveform distortion or each phase is absorbed by the absorbing action or the braking action of the reverse phase current or the harmonic current on the side of the induction motor rotating in a synchronous state. Since the effect of suppressing the voltage imbalance is large, it is possible to prevent the reverse phase current and the harmonic current generated by the load side condition from being promoted by the voltage waveform distortion on the power supply side and the voltage imbalance of each phase.

【0045】(G)発電機負荷は三相不平衡負荷や高調
波負荷のみならず、完全な単相負荷の場合も、逆相電流
が同期発電機に与える影響は全く同様であるから、電源
部の構成としては前述の三相交流同期発電機と、かご形
三相誘導発電機の組合わせとし、単相負荷丈を接続した
使用方法にすれば、単相負荷に対しても電圧波形歪の少
ない良質の電源を供給することができる。
(G) The generator load is not limited to a three-phase unbalanced load or a harmonic load, but even in the case of a complete single-phase load, the influence of the reverse-phase current on the synchronous generator is exactly the same. The configuration of the part is a combination of the above-mentioned three-phase AC synchronous generator and a squirrel-cage three-phase induction generator, and if it is used with a single-phase load length connected, voltage waveform distortion will occur even for a single-phase load. It is possible to supply a high-quality power source with less power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す概略的な結線図、FIG. 1 is a schematic connection diagram showing an embodiment of the present invention,

【図2】誘導電動機直結形三相交流同期発電機の構成説
明図、
FIG. 2 is a configuration explanatory view of a three-phase AC synchronous generator directly coupled to an induction motor,

【図3】三相不平衡負荷の各相電流を示す説明図、FIG. 3 is an explanatory diagram showing each phase current of a three-phase unbalanced load,

【図4】図1の実施例における三相分正相等価回路図、FIG. 4 is a positive phase equivalent circuit diagram for three phases in the embodiment of FIG.

【図5】図1の実施例における一相分正相等価回路図、FIG. 5 is a positive-phase equivalent circuit diagram for one phase in the embodiment of FIG.

【図6】図1の実施例における三相分逆相等価回路図、FIG. 6 is an equivalent circuit diagram of a three-phase reverse phase in the embodiment of FIG.

【図7】図1の実施例における一相分逆相等価回路図、FIG. 7 is a one-phase anti-phase equivalent circuit diagram in the embodiment of FIG.

【図8】(a)は三相誘導電動機の一相分正相等価回路
図、(b)はS=0のときの回路図、
8A is a positive-phase equivalent circuit diagram for one phase of a three-phase induction motor, FIG. 8B is a circuit diagram when S = 0,

【図9】(a)は三相誘導電動機の一相逆相等価回路
図、(b)はS=0のときの回路図、
9A is a one-phase anti-phase equivalent circuit diagram of a three-phase induction motor, FIG. 9B is a circuit diagram when S = 0,

【図10】誘導電動機組込形三相交流同期発電機の構成
図、
FIG. 10 is a configuration diagram of an induction motor built-in type three-phase AC synchronous generator,

【図11】従来例を示す概略的な結線図、FIG. 11 is a schematic connection diagram showing a conventional example,

【図12】標準突極形三相交流同期発電機の概略許容不
平衡負荷特性図、
FIG. 12 is a schematic allowable unbalanced load characteristic diagram of a standard salient-pole three-phase AC synchronous generator,

【図13】三相交流同期発電機とスコットトランスの組
合わせで三相不平衡負荷に給電する従来例を示す結線
図。
FIG. 13 is a connection diagram showing a conventional example in which a three-phase AC synchronous generator and a Scott transformer are combined to supply power to a three-phase unbalanced load.

【符号の説明】[Explanation of symbols]

SG…三相交流同期発電機、IM…かご形三相誘導電動
機、L…三相負荷、SL…単相負荷、UL…三相不平衡
負荷。
SG ... three-phase AC synchronous generator, IM ... squirrel-cage three-phase induction motor, L ... three-phase load, SL ... single-phase load, UL ... three-phase unbalanced load.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 不平衡負荷や高調波負荷に使用する三相
交流同期発電機において、 駆動源に対し直結された同期発電機と同軸に同一極数の
かご形三相誘導電動機を直結し、同期発電機と誘導電動
機の両主回路を常に同期状態で並列接続し、負荷側条件
により生じた逆相電流や高調波電流を誘導電動機側に分
流させ、不平衡負荷耐量や高調波負荷耐量を増大するこ
とを特徴とする交流同期発電機。
1. In a three-phase AC synchronous generator used for an unbalanced load or a harmonic load, a squirrel-cage three-phase induction motor having the same number of poles is directly connected to a synchronous generator directly connected to a drive source, The main circuits of both the synchronous generator and the induction motor are always connected in parallel in a synchronous state, and the reverse-phase current and harmonic current generated by the load side condition are shunted to the induction motor side to improve the unbalanced load withstand capability and harmonic load withstand capability. AC synchronous generator characterized by increasing.
【請求項2】 三相交流同期発電機と同一極数のかご形
三相誘導電動機を同一軸にして同一フレーム内に組込
み、発電機と誘導電動機の両主回路を並列接続したこと
を特徴とする請求項1に記載の交流同期発電機。
2. A squirrel-cage three-phase induction motor having the same number of poles as that of the three-phase AC synchronous generator is installed in the same frame with the same axis, and both main circuits of the generator and the induction motor are connected in parallel. The AC synchronous generator according to claim 1.
JP3171474A 1991-07-12 1991-07-12 Synchronous generator Pending JPH0522998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3171474A JPH0522998A (en) 1991-07-12 1991-07-12 Synchronous generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3171474A JPH0522998A (en) 1991-07-12 1991-07-12 Synchronous generator

Publications (1)

Publication Number Publication Date
JPH0522998A true JPH0522998A (en) 1993-01-29

Family

ID=15923778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3171474A Pending JPH0522998A (en) 1991-07-12 1991-07-12 Synchronous generator

Country Status (1)

Country Link
JP (1) JPH0522998A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070624A (en) * 2013-09-26 2015-04-13 東京電力株式会社 Generator output estimation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070624A (en) * 2013-09-26 2015-04-13 東京電力株式会社 Generator output estimation device

Similar Documents

Publication Publication Date Title
Mitcham et al. Favourable slot and pole number combinations for fault-tolerant PM machines
JPS62501188A (en) variable speed constant frequency
CN107889545B (en) Systems and methods relating to exciter-less synchronous machines
CA1163665A (en) Polyphase electric machine having controlled magnetic flux density
EP1564875A1 (en) Filter
US11444609B2 (en) Mobile hybrid electric power system
US20150008777A1 (en) Synchronous electric machine
JPH02228279A (en) Variable speed constant frequency starter/generator system and method of operating the system
JPS5837799B2 (en) electric motor device
JPH03504195A (en) Devices with polyphase loads, static converters and inductance coils
JP4131861B2 (en) Unbalance compensation apparatus and method, power supply circuit
US4656410A (en) Construction of single-phase electric rotating machine
JPH0662597A (en) Ac variable-speed driver
JPH0522998A (en) Synchronous generator
Fuchs et al. Analysis of critical-speed increase of induction machines via winding reconfiguration with solid-state switches
US3421062A (en) Electrical polyphase machine having stator and rotor windings connected in series to polyphase supply
JPH03245755A (en) Brushless self-excitation synchronous electric motor
RU2112307C1 (en) Compensated-winding induction machine
RU2673566C1 (en) Asynchronous welding generator
US1376423A (en) Phase distributing system
Oldenkamp Capacitive Regenerative Braking in Single-Phase Motors
JPH09322501A (en) Power generator
JPH05336716A (en) Brushless single-phase half speed synchronous motor
JPH1155912A (en) Cylindrical synchronous generator
Jethose et al. Utilization of Auxiliary Winding Power to Improve the Performance of a Single Phase Induction Motor—A Unique Approach