JPH0522663B2 - - Google Patents

Info

Publication number
JPH0522663B2
JPH0522663B2 JP60131953A JP13195385A JPH0522663B2 JP H0522663 B2 JPH0522663 B2 JP H0522663B2 JP 60131953 A JP60131953 A JP 60131953A JP 13195385 A JP13195385 A JP 13195385A JP H0522663 B2 JPH0522663 B2 JP H0522663B2
Authority
JP
Japan
Prior art keywords
parts
weight
cement
thermosetting
results
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60131953A
Other languages
Japanese (ja)
Other versions
JPS61291443A (en
Inventor
Hiroshi Isozaki
Eiichi Arimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP60131953A priority Critical patent/JPS61291443A/en
Publication of JPS61291443A publication Critical patent/JPS61291443A/en
Publication of JPH0522663B2 publication Critical patent/JPH0522663B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はセメント製品に用いられる熱硬化性セ
メント組成物に関するものである。 〔従来の技術〕 従来、熱硬化性セメント組成物としてポルトラ
ンドセメント、アルミナセメント、石膏、石灰類
からなるものである(特公昭59−51504号公報)。 〔発明が解決しようとする問題点〕 しかしながら、上記、熱硬化性セメント組成物
を使用しても型枠の脱型時間が長く、作業効率が
悪い、又長期の耐久性も不良であるなど、熱硬化
性は充分ではなかつた。 本発明は、特定の成分を併用することによつ
て、熱硬化性や加熱硬化後の強度が改良され、し
かも、産業副産物の有効利用による経済性の向上
も図れる知見を得て、本発明を完成するに至つ
た。 〔問題点を解決するための手段〕 即ち、本発明は、潜在水硬性物質100重量部、
アルカリ金属炭酸塩3〜20重量部、及び活性シリ
カを主成分とする熱硬化性セメント組成物であ
る。 以下、本発明を詳しく説明する。 本発明に係る潜在水硬性物質とは高炉水砕スラ
グ、転炉スラグ、その他金属を精製する際に副生
するスラグ等及び、例えば火山灰のように、
SiO2,Al2O3,CaOが多量に含有されており、か
つガラス状のもの等であり、特に高炉水砕スラグ
の使用が好ましい。 高炉水砕スラグの粉末度はブレーン比表面積で
2000cm2/g以上、好ましくは4000cm2/g以上であ
る。又ガラス化率は50%以上、好ましくは80%以
上である。さらに塩基度CaO+MgO+Al2O3/SiO2= 1.5以上、好ましくは1.7以上である。 次に、本発明に係るアルカリ金属炭酸塩として
は炭酸ナトリウム、炭酸カリウム、炭酸リチウム
等が挙げられる。経済的にはナトリウム塩が好ま
しい。 又、他のアルカリ又はアルカリ土類金属の塩、
例えば、アルカリ重炭酸塩、アルカリ金属水酸化
物、アルカリ金属硫酸塩、アルカリ金属塩化物、
アルカリ土類炭酸塩、アルカリ土類金属水酸化
物、アルカリ土類金属硫酸塩、アルカリ土類金属
塩化物、アルカリ土類金属酸化物等をアルカリ金
属炭酸塩と同様アルカリ刺激剤として併用しても
良い。 アルカリ金属炭酸塩の潜在水硬性物質に対する
配合割合は、潜在水硬性物質100重量部に対して
3〜20重量部、好ましくは5〜10重量部である。
3重量部未満であると効果はほとんど無く、20重
量部を越えると逆に強度低下するだけでなく耐久
性の面で好ましくない。 これらは粉末状で混合してもよく水に溶解ある
いは分散させて添加することもできる。通常潜在
水硬性物質、例えば高炉水砕スラグにアルカリ金
属炭酸塩、例えば炭酸ナトリウムを所定量加え、
さらに水を混合しスラリーとするが必要な流動性
を得るため市販のセメント減水剤を併用すること
は好ましい。 市販のセメント減水剤(以下減水剤という)と
してはβ−NS系、リグニン系、メラミン系、オ
キシカルボン酸塩系、ポリオール系、糖類系、ポ
リカルボン酸系などの減水剤が挙げられる。減水
剤の添加量は潜在水硬性物質100重量部に対し2
〜3重量部以下が好ましい。 本発明では、さらに、熱硬化性や耐久性を改良
するために活性シリカを添加する。活性シリカの
中でもシリカフラワーなどの超微粉の添加が効果
的である。活性シリカの添加量は潜在水硬性物質
100重量部に対し20重量部以下、好ましくは5〜
10重量部である。 本発明において、砂、砂利等の骨材及びガラス
繊維、有機合成繊維、金属繊維、鉱物繊維等の繊
維、さらに各種有機高分子物質、例えばゴムラテ
ツクス、エマルジヨン等を目的に応じて添加する
ことができる。 本発明の熱硬化性セメント組成物の加熱硬化温
度は60〜120℃であり、60℃未満では硬化速度は
遅い。又、120℃より高温では熱的変形が起き易
くその熱硬化性セメント組成物を使用した製品の
機械的強度が低いものとなる傾向がある。 又、加熱時間は物によつて変化するので限定は
できないが、1時間以内のものが多用される。 〔実施例〕 以下実施例で説明する。 参考例 1 ブレーン比表面積5250cm2/gの高炉水砕スラグ
を用い表−1の配合No.2〜5を用い更にセメン
ト:砂=1:2、水:セメント=0.47:1になる
ように配合し、3分間混練後4×4×16cm型枠に
モルタルを詰め、角柱供試体を作製した。ただち
に80℃で60分間加熱し、圧縮強度、曲げ強度測定
を行つた。結果を表−1に併記する。
[Industrial Application Field] The present invention relates to a thermosetting cement composition used in cement products. [Prior Art] Conventionally, thermosetting cement compositions have been made of Portland cement, alumina cement, gypsum, and lime (Japanese Patent Publication No. 59-51504). [Problems to be Solved by the Invention] However, even if the above-mentioned thermosetting cement composition is used, it takes a long time to demold the formwork, poor work efficiency, and poor long-term durability. Thermosetting properties were not sufficient. The present invention was developed based on the knowledge that thermosetting properties and strength after heat curing can be improved by using specific components in combination, and economical efficiency can also be improved through the effective use of industrial by-products. It was completed. [Means for solving the problem] That is, the present invention provides 100 parts by weight of a latent hydraulic substance,
This is a thermosetting cement composition containing 3 to 20 parts by weight of an alkali metal carbonate and activated silica as main components. The present invention will be explained in detail below. The latent hydraulic substances according to the present invention include granulated blast furnace slag, converter slag, slag produced as a by-product when refining other metals, and, for example, volcanic ash.
It contains a large amount of SiO 2 , Al 2 O 3 , and CaO and is glass-like, and it is particularly preferable to use granulated blast furnace slag. The fineness of granulated blast furnace slag is determined by the Blaine specific surface area.
It is 2000 cm 2 /g or more, preferably 4000 cm 2 /g or more. Further, the vitrification rate is 50% or more, preferably 80% or more. Furthermore, the basicity CaO+MgO+ Al2O3 / SiO2 =1.5 or more, preferably 1.7 or more. Next, examples of the alkali metal carbonate according to the present invention include sodium carbonate, potassium carbonate, lithium carbonate, and the like. Economically, sodium salt is preferred. Also, other alkali or alkaline earth metal salts,
For example, alkali bicarbonates, alkali metal hydroxides, alkali metal sulfates, alkali metal chlorides,
Even if alkaline earth carbonates, alkaline earth metal hydroxides, alkaline earth metal sulfates, alkaline earth metal chlorides, alkaline earth metal oxides, etc. are used in combination as alkaline stimulants like alkali metal carbonates, good. The blending ratio of the alkali metal carbonate to the latent hydraulic substance is 3 to 20 parts by weight, preferably 5 to 10 parts by weight, based on 100 parts by weight of the latent hydraulic substance.
If it is less than 3 parts by weight, there will be almost no effect, and if it exceeds 20 parts by weight, it will not only reduce the strength but also be unfavorable in terms of durability. These may be mixed in powder form or dissolved or dispersed in water and added. Normally, a predetermined amount of an alkali metal carbonate, such as sodium carbonate, is added to a latent hydraulic substance, such as granulated blast furnace slag, and
Further, water is mixed to form a slurry, and it is preferable to use a commercially available cement water reducing agent in order to obtain the necessary fluidity. Commercially available cement water reducing agents (hereinafter referred to as water reducing agents) include β-NS-based, lignin-based, melamine-based, oxycarboxylate-based, polyol-based, saccharide-based, and polycarboxylic acid-based water reducing agents. The amount of water reducing agent added is 2 parts per 100 parts by weight of the latent hydraulic substance.
It is preferably 3 parts by weight or less. In the present invention, activated silica is further added to improve thermosetting properties and durability. Among active silica, it is effective to add ultrafine powder such as silica flour. The amount of activated silica added is a potential hydraulic substance.
20 parts by weight or less, preferably 5 to 100 parts by weight
It is 10 parts by weight. In the present invention, aggregates such as sand and gravel, fibers such as glass fibers, organic synthetic fibers, metal fibers, mineral fibers, and various organic polymer substances such as rubber latex and emulsion may be added depending on the purpose. . The heat curing temperature of the thermosetting cement composition of the present invention is 60 to 120°C, and the curing speed is slow below 60°C. Furthermore, at temperatures higher than 120°C, thermal deformation tends to occur, and products using the thermosetting cement composition tend to have low mechanical strength. Further, the heating time varies depending on the product and cannot be limited, but a heating time of one hour or less is often used. [Example] Examples will be described below. Reference example 1 Using granulated blast furnace slag with a Blaine specific surface area of 5250 cm 2 /g, mix Nos. 2 to 5 in Table 1 so that cement: sand = 1:2 and water: cement = 0.47:1. After kneading for 3 minutes, mortar was packed into a 4 x 4 x 16 cm mold to produce a prismatic specimen. It was immediately heated at 80°C for 60 minutes, and compressive strength and bending strength were measured. The results are also listed in Table-1.

【表】 <使用材料> 高炉水砕スラグ:川崎製鉄(株)水島工場製 炭酸ナトリウム:旭硝子(株)製、工業用 砂:5号珪砂 普通ポルトランドセメント:電気化学工業(株)製 早強ポルトランドセメント:電気化学工業(株)製 アルミナセメント:電気化学工業(株)製商品名
「電化アルミナ1号」 焼石膏:試薬2級 消石灰:試薬2級 クエン酸ナトリウム:試薬2級 比較例 1 表−1の配合No.1及び6を用いたこと以外は参
考例1と同様に行つた。結果を表−1に併記す
る。 比較例 2 表−1の配合No.7及び8のように普通ポルトラ
ンドセメント及び早強ポルトランドセメント、ア
ルミナセメント、焼石膏、石灰、クエン酸ナトリ
ウムを表−1のよに使用したこと以外は、参考例
1と同様に行つた。結果を表−1に併記する。表
−1からわかるように、普通ポルトランドセメン
トを使用した配合No.7は、角柱供試体の作製後、
ただちに80℃で60分加熱しても硬化せず、脱型が
不能であつた。 参考例 2 表−1の配合No.2〜5を用いて、それぞれ20℃
気乾養生と100℃加熱養生を行つたこと以外は参
考例1と同様に行い圧縮強度変化を測定した。 結果を表−2に示す。
[Table] <Materials used> Granulated blast furnace slag: Kawasaki Steel Co., Ltd., Mizushima Plant Sodium carbonate: Asahi Glass Co., Ltd. Industrial sand: No. 5 silica sand Ordinary Portland cement: Denki Kagaku Kogyo Co., Ltd., early strength Portland cement Alumina cement manufactured by Denki Kagaku Kogyo Co., Ltd.: Product name “Denka Alumina No. 1” manufactured by Denki Kagaku Kogyo Co., Ltd. Calcined gypsum: Reagent 2nd grade Slaked lime: Reagent 2nd grade Sodium citrate: Reagent 2nd grade Comparative example 1 Table - Example 1 was carried out in the same manner as in Reference Example 1, except that formulations No. 1 and 6 were used. The results are also listed in Table-1. Comparative Example 2 Except that ordinary Portland cement, early-strength Portland cement, alumina cement, calcined gypsum, lime, and sodium citrate were used as shown in Table 1, as shown in Table 1, formulations No. 7 and 8 were used for reference. The same procedure as in Example 1 was carried out. The results are also listed in Table-1. As can be seen from Table 1, for formulation No. 7 using ordinary Portland cement, after the preparation of the prismatic specimen,
Even when heated immediately at 80°C for 60 minutes, it did not harden and demolding was impossible. Reference example 2 Using formulation Nos. 2 to 5 in Table-1, each at 20℃
The changes in compressive strength were measured in the same manner as in Reference Example 1, except that air-drying and heating at 100°C were performed. The results are shown in Table-2.

【表】 表−1の配合No.1及び6〜8を用いたこと以外
は、比較例2と同様に行つた。結果を表−2に併
記する。 表−2からわかるように、炭酸ナトリウムの添
加量が20重量部を越えると強度発現性が悪化す
る。本発明に係る熱硬化性セメント組成物は比較
例と比べ優れていることが示された。 参考例 3 表−1の配合No.3について、減水剤としてリグ
ニンスルホン酸ナトリウムを添加したもののを参
考例1と同様にモルタル供試体を作製し同様の加
熱を行なつた。 結果を表−3に示す。
[Table] The same procedure as Comparative Example 2 was conducted except that Blend No. 1 and 6 to 8 in Table 1 were used. The results are also listed in Table-2. As can be seen from Table 2, when the amount of sodium carbonate added exceeds 20 parts by weight, strength development deteriorates. It was shown that the thermosetting cement composition according to the present invention is superior to the comparative example. Reference Example 3 A mortar specimen was prepared in the same manner as in Reference Example 1 using Formulation No. 3 in Table 1 to which sodium ligninsulfonate was added as a water reducing agent, and heated in the same manner. The results are shown in Table-3.

【表】 リグニンスルホン酸ナトリウムを添加するとハ
ンドリングタイムは伸びるが、添加量が多過ぎる
と熱硬化性が低下する。 実施例 1 表−1の配合No.3について、シリカフラワーを
添加したものを参考例1と同様にモルタル供試体
を作製し、加熱後圧縮強度を測定した。スラグ
100重量部に対し表−4のようにシリカフラワー
を2〜20重量部添加した。 結果を表−4に併記する。
[Table] Adding sodium ligninsulfonate increases handling time, but adding too much will reduce thermosetting properties. Example 1 A mortar specimen was prepared in the same manner as in Reference Example 1 using Formulation No. 3 in Table 1 to which silica flour was added, and the compressive strength was measured after heating. slag
2 to 20 parts by weight of silica flour was added to 100 parts by weight as shown in Table 4. The results are also listed in Table-4.

【表】 活性シリカを添加することにより熱硬化性を向
上させることが示された。 実施例 2 シリカフラワー7重量部を併用したこと以外は
参考例1と同様に行つた。結果を表−5に併記す
る。
[Table] It was shown that thermosetting properties were improved by adding activated silica. Example 2 The same procedure as in Reference Example 1 was carried out except that 7 parts by weight of silica flour was used in combination. The results are also listed in Table-5.

【表】 表−5からわかるように、普通ポルトランドセ
メントを使用した配合No.27は、角柱供試体の作製
後、ただちに80℃で60分加熱しても硬化せず、脱
型が不能であつた。 実施例 3 表−5の配合No.21〜26を用いて、100℃加熱養
生を行つたこと以外は、実施例2と同様に行つ
た。結果を表−6に示す。
[Table] As can be seen from Table 5, formulation No. 27 using ordinary Portland cement did not harden even if heated at 80°C for 60 minutes immediately after the preparation of the prismatic specimen, and demolding was impossible. Ta. Example 3 The same procedure as in Example 2 was conducted except that formulation Nos. 21 to 26 in Table 5 were used and heat-cured at 100°C. The results are shown in Table-6.

【表】 表−6からわかるように、本発明のねつ硬化製
セメント組成物を使用すると、長期においても強
度劣化がなく、耐久性が改良される。 実施例 4 配合No.23を用いて、減水剤としてリグニンスル
ホン酸ナトリウムを表−7に示すように併用した
こと以外は、実施例2と同様に行つた。結果を表
−7に併記する。
[Table] As can be seen from Table 6, when the cathode-cured cement composition of the present invention is used, there is no strength deterioration even over a long period of time, and durability is improved. Example 4 The same procedure as in Example 2 was conducted except that formulation No. 23 was used in combination with sodium ligninsulfonate as a water reducing agent as shown in Table 7. The results are also listed in Table-7.

〔発明の効果〕〔Effect of the invention〕

本発明の熱硬化性セメント組成物を使用するこ
とによつて、早期脱型が可能となり、製造スピー
ドが速くなり、省エネルギー、コストダウンが図
れる。 そのため、木版セメント板、木毛セメント板そ
の他モルタルコンクリート二次製品に応用でき
る。
By using the thermosetting cement composition of the present invention, early demolding is possible, production speed is increased, and energy saving and cost reduction can be achieved. Therefore, it can be applied to woodblock cement boards, wood wool cement boards, and other mortar concrete secondary products.

Claims (1)

【特許請求の範囲】[Claims] 1 潜在水硬性物質100重量部、アルカリ金属炭
酸塩3〜20重量部、及び活性シリカを主成分とす
る熱硬化性セメント組成物。
1. A thermosetting cement composition containing 100 parts by weight of a latent hydraulic substance, 3 to 20 parts by weight of an alkali metal carbonate, and activated silica.
JP60131953A 1985-06-19 1985-06-19 Thermosettable cement composition Granted JPS61291443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60131953A JPS61291443A (en) 1985-06-19 1985-06-19 Thermosettable cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131953A JPS61291443A (en) 1985-06-19 1985-06-19 Thermosettable cement composition

Publications (2)

Publication Number Publication Date
JPS61291443A JPS61291443A (en) 1986-12-22
JPH0522663B2 true JPH0522663B2 (en) 1993-03-30

Family

ID=15070068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131953A Granted JPS61291443A (en) 1985-06-19 1985-06-19 Thermosettable cement composition

Country Status (1)

Country Link
JP (1) JPS61291443A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128326A (en) * 1975-05-02 1976-11-09 Nippon Steel Chemical Co Production method of extrusion molded article with granulated slag
JPS5777054A (en) * 1980-10-28 1982-05-14 Asahi Glass Co Ltd Slag hardened body
JPS5930747A (en) * 1982-08-16 1984-02-18 電気化学工業株式会社 Spraying mortar concrete composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128326A (en) * 1975-05-02 1976-11-09 Nippon Steel Chemical Co Production method of extrusion molded article with granulated slag
JPS5777054A (en) * 1980-10-28 1982-05-14 Asahi Glass Co Ltd Slag hardened body
JPS5930747A (en) * 1982-08-16 1984-02-18 電気化学工業株式会社 Spraying mortar concrete composition

Also Published As

Publication number Publication date
JPS61291443A (en) 1986-12-22

Similar Documents

Publication Publication Date Title
AU2018202064B2 (en) Composition for use as a two component back filled grout comprising extracted silicate
AU745556B2 (en) Alkali activated supersulphated binder
JPWO2002022518A1 (en) Cement composition
JP5750011B2 (en) Blast furnace cement composition
JP4616112B2 (en) Cement quick setting material and cement composition
JP6983963B1 (en) Cement composition
JPH0337145A (en) Quick setting agent for cement
JPH0352420B2 (en)
US2099176A (en) Aluminous cements
JP3877374B2 (en) Quick setting material, spraying material, and spraying method using it
JPS6366788B2 (en)
JPH0522663B2 (en)
JP2716758B2 (en) Cement admixture
JPH04331750A (en) Cement admixture and cement composition
JPH0131466B2 (en)
JP2503235B2 (en) Curing accelerator
JPH09301756A (en) Quick setting agent, spraying material and spraying method using them
JPH11292578A (en) Belite slag
KR100406218B1 (en) cement blend compound furtherance to do the chief ingredient for slag powder
KR101804711B1 (en) Composition for activating glassy surface layer of slag powder
JPS63123842A (en) Manufacture of thermosettable cement
JP2000026151A (en) Grout material
JP2000026150A (en) Grout material
JP5761848B2 (en) Calcium aluminosilicate and quick-setting admixture
JP2018172252A (en) Admixture for cement, cement composition, and hydraulic composition