JPH05217548A - Quadrupole type mass spectrometer - Google Patents

Quadrupole type mass spectrometer

Info

Publication number
JPH05217548A
JPH05217548A JP4046121A JP4612192A JPH05217548A JP H05217548 A JPH05217548 A JP H05217548A JP 4046121 A JP4046121 A JP 4046121A JP 4612192 A JP4612192 A JP 4612192A JP H05217548 A JPH05217548 A JP H05217548A
Authority
JP
Japan
Prior art keywords
temperature
quadrupole
voltage
high frequency
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4046121A
Other languages
Japanese (ja)
Inventor
Norito Inatsugi
範人 稲継
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP4046121A priority Critical patent/JPH05217548A/en
Publication of JPH05217548A publication Critical patent/JPH05217548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To arbitrarily correct temperature with high precision by an electrical means without selecting a combination of the special materials by installing a temperature sensor on a quadrupole and correcting the high frequency amplitude value which is applied on the basis of the detected temperature. CONSTITUTION:The influence due to the temperature rise of a quadrupole type mass spectrometer is a mass error which is a function of temperature caused by the variation of the distance between counter electrodes due to the reduction of the distance between counter electrodes due to the diameter increase of an electrode rod 1 and the increase of the distance between electrode centers due to the expansion of a holding frame 2. Accordingly, applied to the high frequency voltage V in order to shift the error portion, the correction value DELTAV to be is represented by DELTAV=g (t) as a function of the temperature difference (t). When the temperature difference (t) is detected by the temperature sensor (3), the voltage applied to the quadruplicate pole is previously memorized in V+DELTAV=V+g (t) in high frequency voltage, i.e., g (t) in the actual measurement, and the correction value DELTAV due to the temperature is applied, and the correct mass can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は四重極型質量分析計の温
度補正手段に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature correction means for a quadrupole mass spectrometer.

【0002】[0002]

【従来の技術】四重極型質量分析計では四重極間を通過
中に発散したイオンが四重極に入射するので、四重極の
温度が上昇し、熱膨張によって四重極電極棒の直径が増
し、四重極の保持枠も熱伝導を受けて昇温する結果熱膨
張して四重極電極間距離も増加する。このような熱膨張
は四重極電極相互の幾何学的関係を変化させ、イオン質
量の測定値に誤差を与える。
2. Description of the Related Art In a quadrupole mass spectrometer, ions diverging while passing between quadrupoles are incident on the quadrupole, so that the temperature of the quadrupole increases and thermal expansion causes quadrupole electrode rods. The diameter of the quadrupole increases, and the holding frame of the quadrupole also receives heat conduction to raise the temperature. Such thermal expansion changes the geometrical relationship between the quadrupole electrodes and gives an error to the measured value of the ion mass.

【0003】上述したような熱膨張の影響を補正するた
め従来は四重極電極と保持枠の材料の組合せを適当に選
んで四重極電極棒と保持枠の熱膨張の影響が相互に打ち
消し合うようにしていた。しかしこのような方法では理
想的な材料の組合せは得難く、一応の満足が行くような
組合せでも、材料の選択が非常に制限されて加工性が悪
くなるとか材料費が高価になる等の問題があり、しかも
補正自体完全には行い難いものであった。
In order to correct the effect of thermal expansion as described above, conventionally, the combination of materials of the quadrupole electrode and the holding frame is appropriately selected so that the effects of thermal expansion of the quadrupole electrode rod and the holding frame cancel each other out. I was trying to fit. However, with such a method, it is difficult to obtain an ideal combination of materials, and even if the combination is satisfactory, the selection of materials is very limited, the workability deteriorates, and the material cost increases. However, the correction itself was difficult to perform completely.

【0004】[0004]

【発明が解決しようとする課題】本発明は特別な材料の
組合せを選択すると云うようなことをしないで、電気的
な手段で任意に高精度で温度に対する補正がなされた四
重極型質量分析計を提供しようとするものである。
The present invention does not mean to select a special material combination, but the quadrupole mass spectrometer is corrected with temperature with arbitrary precision by electric means. It is intended to provide a total.

【0005】[0005]

【課題を解決するための手段】四重極電極棒或は同電極
保持枠に温度センサを設け、検出された温度データに基
づいて四重極に印加する直流電圧及び高周波電圧に補正
値を加算して四重極に印加するようにした。
A temperature sensor is provided on a quadrupole electrode rod or an electrode holding frame, and a correction value is added to a DC voltage and a high frequency voltage applied to the quadrupole based on the detected temperature data. Then, the voltage was applied to the quadrupole.

【0006】[0006]

【作用】四重極型質量分析器における温度上昇の影響は
四重極電極棒の直径が増すことによる対向電極間距離の
短縮と保持枠の膨張による四重極電極の中心間距離の増
加による対向電極間距離の増加の差として現れる対向電
極間距離の変化で、測定される質量に現れる質量誤差は
この距離変化の関数であり、距離変化は温度の関数であ
るから、質量誤差は温度の関数で、その形は四重極電極
構造の各寸法と材質によって決まる。従って任意質量M
を検出する場合の標準温度Toにおける正規の四重極印
加電圧をU,V(Uは直流電圧、Vは高周波電圧)とす
ると、温度TのときT−To=tとして検出される質量
はM+ΔMで ΔM=f(t) 上記誤差分だけ検出質量をずらせるため、U或はVに与
えるべき補正値ΔU或はΔVはまた温度差tの関数で例
えば ΔV=g(t) 従って温度差tが検出されたとき、四重極に印加する電
圧を高周波電圧において V+ΔV=V+g(t) g(t)は同じ設計の質量分析計では決まった形である
から、予め実測でg(t)の形を求め記憶しておくこと
で、四重極印加電圧に温度による補正値を付加すること
により、常に正しい質量を求めることが可能となる。
[Function] The influence of temperature rise in the quadrupole mass spectrometer is due to the shortening of the distance between the counter electrodes due to the increase in the diameter of the quadrupole electrode rod and the increase in the distance between the centers of the quadrupole electrodes due to expansion of the holding frame The change in the distance between the counter electrodes that appears as a difference in the increase in the distance between the counter electrodes, the mass error that appears in the measured mass is a function of this change in distance, and the change in distance is a function of temperature. It is a function and its shape depends on each dimension and material of the quadrupole electrode structure. Therefore, arbitrary mass M
When the normal quadrupole applied voltage at the standard temperature To for detecting is U and V (U is a direct current voltage and V is a high frequency voltage), the mass detected as T-To = t at the temperature T is M + ΔM. ΔM = f (t) In order to shift the detected mass by the above error, the correction value ΔU or ΔV to be given to U or V is also a function of the temperature difference t, for example ΔV = g (t) Therefore, the temperature difference t Is detected, the voltage applied to the quadrupole is a high-frequency voltage. V + ΔV = V + g (t) g (t) is a fixed form in the mass spectrometer of the same design, so g (t) is measured in advance. By obtaining and storing the shape, it becomes possible to always obtain the correct mass by adding the correction value due to the temperature to the quadrupole applied voltage.

【0007】[0007]

【実施例】図1に本発明の一実施例を示す。図で1は四
重極を構成する電極棒、2は四重極電極棒の保持枠で絶
縁材料で作られており、これらは図2に示すような関係
で結合されている。3は保持枠2に一つの電極棒1の近
くまで穿設した盲孔4に挿入されている温度センサであ
る。5はイオン源で図1で右方にイオンビームを発射
し、四重極に印加される直流電圧Uと高周波電圧Vとの
値によって決まる特定質量のイオンが四重極間を通過し
て図1の右方のイオン検出器6によって検出される。
FIG. 1 shows an embodiment of the present invention. In the figure, 1 is an electrode rod forming a quadrupole, 2 is a holding frame for the quadrupole electrode rod, which is made of an insulating material, and these are connected in a relationship as shown in FIG. Reference numeral 3 denotes a temperature sensor inserted in a blind hole 4 formed in the holding frame 2 up to the vicinity of one electrode rod 1. Reference numeral 5 denotes an ion source that emits an ion beam to the right in FIG. 1, and ions of a specific mass determined by the values of the DC voltage U and the high frequency voltage V applied to the quadrupole pass between the quadrupoles. 1 to the right of the ion detector 6.

【0008】図2に上記実施例における四重極に電圧を
印加する回路を示す。図で7は制御回路で四重極に印加
する直流電圧Uと高周波電圧Vのディジタルデータを出
力する。高周波電圧及び直流電圧Vのディジタルデータ
はD/A変換器10で直流電圧に変換されアナログ加算
回路11に被加数信号として印加される。加算回路11
には温度センサ3の出力に応じた補正信号の電圧が加数
データとして印加され、両方の和の電圧が高周波電源1
2及び直流電圧電源9を制御して、高周波電源12から
V+ΔV(ΔVは温度に対する補正値)の振幅の高周波
電圧を発生及び直流電圧U+ΔU(ΔUは温度に対する
補正値)させ、この電圧が四重極に印加される。
FIG. 2 shows a circuit for applying a voltage to the quadrupole in the above embodiment. In the figure, 7 is a control circuit for outputting digital data of a DC voltage U and a high frequency voltage V applied to the quadrupole. The digital data of the high frequency voltage and the DC voltage V is converted into a DC voltage by the D / A converter 10 and applied to the analog adder circuit 11 as the augend signal. Adder circuit 11
The voltage of the correction signal corresponding to the output of the temperature sensor 3 is applied to the high frequency power supply 1 as the addend data.
2 and the DC voltage power supply 9 are controlled to generate a high frequency voltage having an amplitude of V + ΔV (ΔV is a correction value for temperature) and a DC voltage U + ΔU (ΔU is a correction value for temperature) from the high frequency power supply 12, and this voltage is quadruple. Applied to the poles.

【0009】図2で鎖線ブロック13で示した回路は温
度センサ3の出力から加算回路11に印加する補正デー
タ信号を発生する回路である。温度センサ3の出力は差
動アンプ14で規準電圧との差の信号xに変換される。
これは作用の項で述べた温度差tに相当する信号であ
る。補正データEは E=kxu で与えられる。kは質量分析計によって決まる定数uは
D/A変換器10の出力で、検出しようとしているイオ
ン質量Mに対応している。このような信号Cを得るた
め、差動増幅器14の出力xとD/A変換器10の出力
uとが掛算回路15に入力され、その出力xuが加算回
路11でk倍される。これは加算回路で、被加数信号入
力抵抗Rと帰還抵抗Rとは等しいので、被加数信号は等
倍率で出力されるが、加算信号入力抵抗R’と帰還抵抗
Rとの比R/R’がkに設定してあるので加算回路の出
力は u+kxu となり、これが高周波電圧+Δ及び直流電圧+Δ’にな
って四重極電極に印加されることになる。
The circuit shown by the chain line block 13 in FIG. 2 is a circuit for generating a correction data signal to be applied to the adding circuit 11 from the output of the temperature sensor 3. The output of the temperature sensor 3 is converted by the differential amplifier 14 into a signal x which is the difference from the reference voltage.
This is a signal corresponding to the temperature difference t described in the section of action. The correction data E is given by E = kxu. k is a constant determined by the mass spectrometer, u is the output of the D / A converter 10, and corresponds to the ion mass M to be detected. In order to obtain such a signal C, the output x of the differential amplifier 14 and the output u of the D / A converter 10 are input to the multiplication circuit 15, and the output xu thereof is multiplied by k in the addition circuit 11. This is an adder circuit, and since the augend signal input resistance R and the feedback resistance R are equal, the augend signal is output at an equal magnification, but the ratio R / of the addition signal input resistance R ′ and the feedback resistance R is Since R'is set to k, the output of the adding circuit becomes u + kxu, which becomes the high frequency voltage + Δ and the DC voltage + Δ ', and is applied to the quadrupole electrode.

【0010】図2で規準温度における四重極の対向電極
棒の中心間距離を2R、電極棒の直径を2pとし、保持
枠の線膨張係数をα、電極棒の線膨張係数をβとし、規
準温度における対向電極間距離をroとすると、規準温
度からtだけ温度が上昇したときの対向電極間距離rは ro=R−p r=R(1+αt)−p(1+βt)=ro+(Rα−
pβ)t 他方四重極に印加する電圧U,Vを一定にしておくと検
出される質量Mはroに対して M=C’/ro2 の関係にあるのでroの温度による変化Δr=(Rα−
pβ)tに対するMの変化ΔMは ΔM=−C’・2Δr/ro=−2MΔr/ro 上式にΔr=(Rα−pβ)tを代入すると ΔM=−C’M(Rα−pβ)t…(1) 従来は上式右辺()内が0になるようにRα−pβを選
んでいたから、材質の選択が制限され設計の自由度がな
かった。本発明は規準温度で質量Mのイオンを検出する
場合の四重極印加電圧Uo,Voの両方に補正値を加え
て検出される質量をΔMだけシフトさせることで温度の
影響を補正するものである。上記(1) 式はΔM=−CM
tと書け、これに対する電圧補正量はKMtとなって、
Kは装置によって決まったものとなる。
In FIG. 2, the center-to-center distance of the quadrupole opposing electrode rods at the standard temperature is 2R, the electrode rod diameter is 2p, the linear expansion coefficient of the holding frame is α, and the linear expansion coefficient of the electrode rod is β. Assuming that the distance between the counter electrodes at the reference temperature is ro, the distance r between the counter electrodes when the temperature rises from the reference temperature by t is ro = R−p r = R (1 + αt) −p (1 + βt) = ro + (Rα−
pβ) t On the other hand, when the voltages U and V applied to the quadrupole are kept constant, the detected mass M has a relationship of M = C ′ / ro 2 with respect to ro, and therefore the change of ro with temperature Δr = ( Rα-
The change ΔM of M with respect to pβ) t is ΔM = −C ′ · 2Δr / ro = -2MΔr / ro Substituting Δr = (Rα-pβ) t into the above equation, ΔM = −C′M (Rα-pβ) t ... (1) Conventionally, Rα-pβ was selected so that the value in the right side of the above formula () was 0, so that the selection of materials was limited and there was no design freedom. The present invention corrects the effect of temperature by adding a correction value to both the quadrupole applied voltages Uo and Vo when detecting ions of mass M at the reference temperature and shifting the detected mass by ΔM. is there. The above formula (1) is ΔM = -CM
can be written as t, and the voltage correction amount for this is KMt,
K is determined by the device.

【0011】四重極型質量分析計で質量走査を行う場合
直流電圧Uと高周波電圧Vは図3に示すような軌跡に沿
って変化させる。図2で制御回路7はこの軌跡に沿うよ
うUとVに対応するディジタルデータを出力している。
上述実施例では制御回路7は質量Mの検出に対して規準
温度に対応するU,Vのデータを出力し、アナログ加算
回路で補正量を加えているが、制御回路7が質量Mにお
ける検出された温度に対する補正質量ΔMを算出し、規
準温度でM−ΔMに対応するU,Vのデータを出力し、
それをそのまゝ四重極に印加する直流,高周波の電圧に
変換するようにしてもよい。
When mass scanning is performed by the quadrupole mass spectrometer, the DC voltage U and the high frequency voltage V are changed along the locus shown in FIG. In FIG. 2, the control circuit 7 outputs digital data corresponding to U and V along this locus.
In the above-mentioned embodiment, the control circuit 7 outputs the data of U and V corresponding to the reference temperature for the detection of the mass M, and the correction amount is added by the analog addition circuit. However, the control circuit 7 detects the mass M. Calculate the corrected mass ΔM for the specified temperature and output the U and V data corresponding to M-ΔM at the standard temperature.
It may be converted into a DC or high frequency voltage applied to the quadrupole.

【0012】実施例では補正量は温度上昇tに比例させ
ているが、厳密には電圧U或はVに対する補正量は、質
量Mの検出に当たって例えば高周波電圧の規準温度にお
ける値をVoとし、温度上昇tのときの値をVとする
と、Vはtの級数 V=Vo(1+at+bt2 +ct3 +……) の形で表されるもので、実施例は上式でtの1次の項ま
でとったものである。
In the embodiment, the correction amount is proportional to the temperature rise t, but strictly speaking, the correction amount for the voltage U or V is Vo when the value of the high frequency voltage at the standard temperature is Vo when the mass M is detected. Assuming that the value at the time of rise t is V, V is expressed in the form of the series of t, V = Vo (1 + at + bt 2 + ct 3 + ...), and in the embodiment, up to the first-order term of t in the above equation. It was taken.

【0013】[0013]

【発明の効果】本発明によれば材質の組合せの制限がな
いから、材料選択の面でも加工性の面でも最も有利な選
択ができ、温度補正は電気的に行われるので、装置が構
造的に複雑になることもなく、安価に高精度の四重極型
質量分析計を提供することが可能となる。
According to the present invention, since there is no restriction on the combination of materials, the most advantageous selection can be made in terms of material selection and workability, and the temperature correction is performed electrically, so that the apparatus is structurally structured. It is possible to provide a highly accurate quadrupole mass spectrometer at low cost without being complicated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の要部側面図FIG. 1 is a side view of an essential part of an embodiment of the present invention.

【図2】上記実施例の要部横断面および回路構成図FIG. 2 is a cross-sectional view of a main part and a circuit configuration diagram of the above embodiment.

【図3】四重極型質量分析計の印加電圧軌跡のグラフ[Fig. 3] Graph of applied voltage locus of quadrupole mass spectrometer

【符号の説明】[Explanation of symbols]

1 四重極電極棒 2 電極棒保持枠 3 温度センサ 7 制御回路 11 加算回路 13 補正データ信号を出力する回路 1 Quadrupole electrode rod 2 Electrode rod holding frame 3 Temperature sensor 7 Control circuit 11 Adder circuit 13 Circuit for outputting correction data signal

Claims (1)

【特許請求の範囲】[Claims] 四重極電極棒或はその保持枠に温度センサを取付け、同
センサにより得られた温度データに基づいて四重極電極
に印加する直流電圧或は高周波電圧に付加する温度補正
量を算出し、四重極印加電圧に加算して印加するように
したことを特徴とする四重極型質量分析計。
A temperature sensor is attached to the quadrupole electrode rod or its holding frame, and the temperature correction amount to be added to the DC voltage or the high frequency voltage applied to the quadrupole electrode is calculated based on the temperature data obtained by the sensor. A quadrupole mass spectrometer characterized in that it is applied in addition to the quadrupole applied voltage.
JP4046121A 1992-01-31 1992-01-31 Quadrupole type mass spectrometer Pending JPH05217548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4046121A JPH05217548A (en) 1992-01-31 1992-01-31 Quadrupole type mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4046121A JPH05217548A (en) 1992-01-31 1992-01-31 Quadrupole type mass spectrometer

Publications (1)

Publication Number Publication Date
JPH05217548A true JPH05217548A (en) 1993-08-27

Family

ID=12738163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4046121A Pending JPH05217548A (en) 1992-01-31 1992-01-31 Quadrupole type mass spectrometer

Country Status (1)

Country Link
JP (1) JPH05217548A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106484A (en) * 1996-09-30 1998-04-24 Shimadzu Corp Quadrupole mass spectrographic device
WO2008146440A1 (en) * 2007-05-30 2008-12-04 Shimadzu Corporation Time-of-flight mass spectrometer
JP2009187850A (en) * 2008-02-08 2009-08-20 Hitachi High-Technologies Corp Mass spectroscope
JP2014022162A (en) * 2012-07-18 2014-02-03 Hitachi High-Technologies Corp Mass spectroscope
WO2023013274A1 (en) 2021-08-06 2023-02-09 株式会社日立ハイテク Mass spectrometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285246A (en) * 1990-03-30 1991-12-16 Shimadzu Corp Quadrupole mass spectrometric device
JPH0455752A (en) * 1990-06-25 1992-02-24 Yokogawa Electric Corp Quadrupole mass filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285246A (en) * 1990-03-30 1991-12-16 Shimadzu Corp Quadrupole mass spectrometric device
JPH0455752A (en) * 1990-06-25 1992-02-24 Yokogawa Electric Corp Quadrupole mass filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106484A (en) * 1996-09-30 1998-04-24 Shimadzu Corp Quadrupole mass spectrographic device
WO2008146440A1 (en) * 2007-05-30 2008-12-04 Shimadzu Corporation Time-of-flight mass spectrometer
US8013293B2 (en) 2007-05-30 2011-09-06 Shimadzu Corporation Time-of-flight mass spectrometer
JP4816794B2 (en) * 2007-05-30 2011-11-16 株式会社島津製作所 Time-of-flight mass spectrometer
JP2009187850A (en) * 2008-02-08 2009-08-20 Hitachi High-Technologies Corp Mass spectroscope
JP2014022162A (en) * 2012-07-18 2014-02-03 Hitachi High-Technologies Corp Mass spectroscope
WO2023013274A1 (en) 2021-08-06 2023-02-09 株式会社日立ハイテク Mass spectrometer

Similar Documents

Publication Publication Date Title
JP5556890B2 (en) Quadrupole mass spectrometer
EP2767843A2 (en) Hall device, magnetic sensor having same, and signal correcting method thereof
JP2000136966A (en) Temperature measuring circuit using thermopile sensor
US4099238A (en) Apparatus for determining a magnetic field
JPH05217548A (en) Quadrupole type mass spectrometer
JP3331162B2 (en) Circuit device for measuring drive current of display device and method of driving and biasing the display device
JPH0542106B2 (en)
JP2010185777A (en) Flow sensor and flow correction method
Götz et al. Stability and performance of the binary compensation unit for cryogenic current comparator bridges
SU1056482A1 (en) X-ray generator
JPH05299194A (en) Plasma diagnostic device by two-current probe
JPH0680426B2 (en) Air-fuel ratio detector
JPS63243763A (en) Gas rate sensor
JP3184592B2 (en) Electron beam equipment
US20080024147A1 (en) Non-linear sensor temperature compensation using summed temperature compensation signals
JPH0750134B2 (en) AC / DC difference comparison device for thermoelectric AC / DC converter
JP2000206022A (en) Method for heating sample for temperature-rise desorption method
JP2001330520A (en) High temperature distortion measuring instrument
JPH02206436A (en) Nuclear magnetic resonance diagnostic apparatus
RU2113954C1 (en) Electron-beam welding method
JP2663469B2 (en) Electronic balance
JPH055070B2 (en)
JPH0720155A (en) Temperature coefficient measuring method for hall element and temperature compensation method for current detector
JPS5911403Y2 (en) Sweep device in mass spectrometer
JP2964597B2 (en) Correction method of fluctuation of irradiation current in surface analysis