JPH05215688A - Method and apparatus for detecting scatterer in light pervious body - Google Patents

Method and apparatus for detecting scatterer in light pervious body

Info

Publication number
JPH05215688A
JPH05215688A JP28229591A JP28229591A JPH05215688A JP H05215688 A JPH05215688 A JP H05215688A JP 28229591 A JP28229591 A JP 28229591A JP 28229591 A JP28229591 A JP 28229591A JP H05215688 A JPH05215688 A JP H05215688A
Authority
JP
Japan
Prior art keywords
light
fluorescence
inspection
area
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28229591A
Other languages
Japanese (ja)
Inventor
Osamu Yoshida
理 吉田
Makoto Kurumisawa
信 楜澤
Kazuaki Shimizu
一明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP28229591A priority Critical patent/JPH05215688A/en
Publication of JPH05215688A publication Critical patent/JPH05215688A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To accurately detect the scattering substance in a fluorescence pervious matter. CONSTITUTION:In order to detect the scattering substance 17 in the inspection area 14b within light pervious body 14, the fluorescence emitting area 14a different from the inspection area 14b is irradiated with the exciting light from an exciting light source 11 through a fluorescence area wavelength cut-off filter 18. Fluorescence 16a with a specific wavelength is generated in the fluorescence generating area 14a by exciting light and a part of the fluorescence 16 propagates through the light pervious body 14 as edge light of a kind. The propagated light 16a reaches the inspection area 14b and is scattered by the scattering substance 17 in the area 14b to be emitted to the outside from the light pervious body 14 being an object to be inspected and detected by a photodetector 12 through an exciting light area wavelength cut-off filter 13 to become an electric signal which is, in turn, subjected to image processing by an image processor 5 to become detection data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は蛍光性を有し、かつ光透
過性を有する物体(以下、蛍光性透光物体という)中の
散乱体検出法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting scatterers in an object having fluorescence and light transmittance (hereinafter referred to as a fluorescent light-transmitting object) and its apparatus.

【0002】[0002]

【従来の技術】従来、ガラス等の透光物体の異物や泡な
どの欠陥検査は、目視又は可視光源を使用した自動検査
装置によって行われていた。目視検査は目視検査者の視
力、持続力、あるいは疲労等の人的要因により、欠陥検
出精度が左右されるため、極微小な欠陥の場合、検査ミ
スを完全に避けることは困難であった。
2. Description of the Related Art Conventionally, defect inspection of a transparent object such as glass such as foreign matter and bubbles has been carried out by an automatic inspection device using visual or visible light sources. In the visual inspection, the defect detection accuracy depends on human factors such as visual acuity, sustainability, and fatigue of the visual inspector. Therefore, in the case of a very small defect, it is difficult to completely avoid the inspection error.

【0003】また、自動検査は主に、レーザー光線、ま
たはスリット光を被検査物に当て、その反射光または透
過光の欠陥からの散乱光を検出する方法(特開昭60−
70334号等)や、被検査物内に光を入射し、その内
部を伝播した光の欠陥からの散乱光を検出する一般にエ
ッジライト法と呼ばれている方法が知られている。
Further, automatic inspection is mainly carried out by irradiating an object to be inspected with a laser beam or slit light and detecting scattered light from a defect of the reflected light or transmitted light thereof (Japanese Patent Laid-Open No. 60-60).
No. 70334) or the like, or a method generally called an edge light method in which light is made incident on an object to be inspected and scattered light from a defect of light propagating in the inside is detected.

【0004】[0004]

【発明が解決しようとする課題】このような場合、自動
検査における前者の方法は汚れなど欠点以外のものを検
出してしまうために誤検出が多く、又、入射部の表面性
状に影響され易い。また後者の方法は、被測定物内に光
を入射することが被測定物が特定の形状をしているか、
または光源を接触させる方法でなければ困難な場合が多
く、又、被検査物の形状によっては入射した光を検査領
域まで伝播させることが光の減衰のため困難な場合が多
かった。
In such a case, the former method in automatic inspection detects many things other than defects, such as stains, and thus causes many false detections, and is easily affected by the surface texture of the incident portion. .. Also, the latter method is that the incident light into the measured object has a specific shape,
In many cases, it is difficult unless the light source is contacted, and it is often difficult to propagate the incident light to the inspection region depending on the shape of the object to be inspected due to the attenuation of the light.

【0005】本発明の目的は、汚れによる誤検出を従来
の方法に比べ少なくし、かつ欠陥の未検出を少なくする
欠陥検査法を提供することである。
An object of the present invention is to provide a defect inspection method in which false detection due to dirt is reduced as compared with the conventional method and the number of undetected defects is reduced.

【0006】[0006]

【課題を解決するための手段】本発明は、前述の課題を
解決するためのものであり、蛍光性を有する透光性物体
中の散乱体検出方法であって、透光性物体中に蛍光を発
生させる励起光を照射し、該励起光により発生して、透
光性物体中を伝播し、所定の検査領域に到達した前記蛍
光のうち、透光性物体中の散乱体にて散乱されて透光性
物体外に出射する光を検出する、ことを特徴とする透光
性物体中の散乱体検出方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention is for solving the above-mentioned problems, and is a method for detecting a scatterer in a translucent object having fluorescence, wherein the scatterer in the translucent object is fluorescent. Of the fluorescence that has been emitted by the excitation light, is generated by the excitation light, propagates through the transparent object, and reaches a predetermined inspection region, and is scattered by the scatterer in the transparent object. The present invention provides a method for detecting a scatterer in a light transmissive object, which is characterized in that light emitted outside the light transmissive object is detected.

【0007】又、蛍光性を有する透光性物体中の散乱体
検出装置であって、透光性物体中の特定の蛍光発生領域
に蛍光を発生させるための励起光源と、前記蛍光発生領
域から透光性物体中の特定の検査領域まで伝播し、かつ
該検査領域内の散乱体により散乱された蛍光を検出する
光検出手段と、からなる透光性物体中の散乱体検出装置
を提供するものである。
A scatterer detection device in a translucent object having fluorescence, which comprises an excitation light source for generating fluorescence in a specific fluorescence generation region in the translucent object, and Provided is a scatterer detection device in a light-transmissive object, which comprises light detection means for propagating to a specific inspection region in the light-transmissive object and detecting fluorescence scattered by the scatterers in the inspection region. It is a thing.

【0008】本発明においては、蛍光を利用するため、
透光性の被検査物は、蛍光性を有することが必要とな
る。即ち、被検査物は紫外線、可視光線などの励起光を
照射することにより蛍光を発する透光性物質であれば何
でも良い。ガラス一般、特にブラウン管用ガラス等が好
ましい検査対象となる。
In the present invention, since fluorescence is used,
The translucent inspection object needs to have fluorescence. That is, the object to be inspected may be any translucent substance that emits fluorescence when irradiated with excitation light such as ultraviolet rays or visible rays. Glass in general, particularly glass for cathode ray tubes and the like are preferable inspection targets.

【0009】又、本発明によれば被検査物中(表面も含
む)にあり、前記の蛍光を散乱するもの、例えば、異物
や泡などを検出することが可能である。好ましくは、ガ
ラス等の欠陥検査に用いることができるが、透明体中の
泡状物の個数のカウントや分布調査、大きさ、種類の調
査等、その用途は欠陥検査に限られるものではない。
Further, according to the present invention, it is possible to detect an object which is present in the object to be inspected (including the surface) and which scatters the fluorescence, for example, a foreign substance or a bubble. Preferably, it can be used for defect inspection of glass or the like, but its use is not limited to defect inspection, such as counting the number and distribution of bubbles in a transparent body, and examining size and type.

【0010】本発明の原理を示す概念図が図1である。
図で14は被検査物たる透光性物体、14aは蛍光発生
領域、14bは検査領域、11は励起光源、12は光検
出器13は励起光領域波長遮断フィルタ、15は画像処
理装置である。
FIG. 1 is a conceptual diagram showing the principle of the present invention.
In the figure, 14 is a translucent object as an inspection object, 14a is a fluorescence generation region, 14b is an inspection region, 11 is an excitation light source, 12 is a photodetector 13 is an excitation light region wavelength cutoff filter, and 15 is an image processing device. ..

【0011】透光性物体14中の検査領域14b内の散
乱体17を検出するために、検査領域14bとは異なる
蛍光発生領域14aに、励起光源11からの励起光を蛍
光領域波長遮断フィルタ18を介して照射する。蛍光発
生領域14aでは、励起光により特定の波長の蛍光16
aが発生し、この蛍光16aのうち一部は一種のエッジ
ライト光として透光性物体14中を伝播する。伝播した
蛍光16aは検査領域14bに達し、その中の散乱体1
7により散乱されて被検査物たる透光性物体14外に
出、励起光領域波長遮断フィルタ13を通して、光検出
器12で検出されて電気信号となり、画像処理装置15
で画像処理され検出データとなる。
In order to detect the scatterer 17 in the inspection region 14b in the light-transmissive object 14, the excitation light from the excitation light source 11 is supplied to the fluorescence generation region 14a, which is different from the inspection region 14b, in the fluorescence region wavelength cutoff filter 18. Irradiate through. In the fluorescence generation region 14a, the fluorescence 16 having a specific wavelength is excited by the excitation light.
a is generated, and a part of the fluorescence 16a propagates in the translucent object 14 as a kind of edge light. The propagated fluorescence 16a reaches the inspection region 14b, and the scatterer 1 therein
The light is scattered by 7 and goes out of the light-transmitting object 14, which is the object to be inspected, passes through the excitation light region wavelength cutoff filter 13, is detected by the photodetector 12, and becomes an electric signal.
Image processing is carried out to obtain detection data.

【0012】ここで、励起光領域波長遮断フィルタ13
は、検査領域14b付近で励起光が十分減衰しており、
光検出レベルが蛍光に比べて小さければ、特に必要とし
ないが、誤検出を防ぎ測定精度を向上するためには使用
することが極めて好ましい。又、蛍光領域波長遮断フィ
ルタ18を励起光源11の前面に配置することにより、
光検出器12に到達する蛍光領域波長のバックグラウン
ドを抑えることができるので、コントラスト向上に極め
て好ましい。
Here, the pumping light region wavelength cutoff filter 13
Indicates that the excitation light is sufficiently attenuated near the inspection region 14b,
If the light detection level is lower than that of fluorescence, it is not particularly necessary, but it is extremely preferable to use it in order to prevent erroneous detection and improve measurement accuracy. Further, by disposing the fluorescent region wavelength cutoff filter 18 in front of the excitation light source 11,
Since the background of the fluorescence region wavelength reaching the photodetector 12 can be suppressed, it is extremely preferable for improving the contrast.

【0013】本発明によれば、散乱体検出のための光の
発生源が被測定物内部にあるため、管状の被検査物な
ど、光を入射することが極めて困難な形状の被検査物に
対しても散乱体検出が可能となる。
According to the present invention, since the light source for detecting scatterers is inside the object to be measured, the object to be inspected is extremely difficult to enter the light, such as a tubular object to be inspected. It is also possible to detect scatterers.

【0014】又、蛍光発生領域14aと被検査領域14
bとはある程度距離をおくことが好ましい。つまり、あ
る程度の距離をおくことにより発生した蛍光16aのう
ち、透光性物体14外に出てしまうものは出てしまい、
透光性物体14と空気などの外界との屈折率差によりそ
の内部を伝播する光のみ透光性物体14中に存在するよ
うにできる。このため、散乱物体17により散乱する光
以外は透光性物体14中に閉じ込められる形となるの
で、誤検出を防ぎ、測定精度を高めることができる。
Further, the fluorescence generating region 14a and the inspection region 14 are
It is preferable to keep a certain distance from b. In other words, among the fluorescent light 16a generated by keeping a certain distance, the fluorescent light 16a that goes out of the translucent object 14 comes out,
Due to the difference in refractive index between the translucent object 14 and the outside world such as air, only light propagating inside the translucent object 14 may be present in the translucent object 14. Therefore, the light other than the light scattered by the scattering object 17 is confined in the translucent object 14, so that erroneous detection can be prevented and the measurement accuracy can be improved.

【0015】光検出器には種々のものを用いることがで
きる。これには二次元的に広がった画素を有するCCD
カメラ等でもよい。また、ある程度の範囲を同時に光検
出できると共に、分解能も高い一次元ラインセンサカメ
ラを用いることも好ましい。なお、光検出を行う手段と
して、上述の例のように光検出器を用いることが検査自
動化の上で好ましいが、目視により光検出を行うことも
差しつかえない。又、通常は検査領域14bを透光性物
体14内で順次移動させて散乱体検出を行うことになる
が、同時に励起光を照射する蛍光発生領域14aも移動
させて、検査領域14bと蛍光発生領域14aとの距離
を一定に保つようにすれば、検査領域14b中の蛍光強
度を一定に保つことになり、好ましい。
Various types of photodetectors can be used. This has a CCD with two-dimensionally spread pixels
It may be a camera or the like. It is also preferable to use a one-dimensional line sensor camera which can detect light in a certain range at the same time and has high resolution. It should be noted that it is preferable to use a photodetector as a means for performing photodetection as in the above example for inspection automation, but it is permissible to perform photodetection visually. Further, normally, the inspection region 14b is sequentially moved within the translucent object 14 to detect the scatterers, but at the same time, the fluorescence generation region 14a for irradiating the excitation light is also moved to generate the fluorescence generation with the inspection region 14b. If the distance from the region 14a is kept constant, the fluorescence intensity in the inspection region 14b will be kept constant, which is preferable.

【0016】ところで、蛍光を利用した本発明の方法
は、検査対象の蛍光性や透光性が低い場合、検査対象物
体の形状が大きい肉厚が大きいなどの場合は蛍光が検査
領域に十分に伝播せず、散乱光の強度が極めて低下する
ため、検出が極めて困難になる。例えば、蛍光性、透光
性の弱い大型物体、具体的にブラウン管用のパネル等の
検査においてである。
By the way, the method of the present invention utilizing fluorescence has sufficient fluorescence in the inspection area when the fluorescence or translucency of the inspection object is low, the shape of the inspection object is large, and the wall thickness is large. Since it does not propagate and the intensity of scattered light is extremely reduced, detection becomes extremely difficult. For example, in the inspection of a large object having weak fluorescence and translucency, specifically a panel for a cathode ray tube.

【0017】かかる場合に好ましい態様の原理を示す概
念図が図4である。図で28は被検査物たる透光性物
体、21は励起光源、22は走査装置、30は励起光領
域波長遮断フィルタ、27は光検出器、29は画像処理
装置である。
FIG. 4 is a conceptual diagram showing the principle of the preferred embodiment in such a case. In the figure, 28 is a translucent object as an inspection object, 21 is an excitation light source, 22 is a scanning device, 30 is an excitation light region wavelength cutoff filter, 27 is a photodetector, and 29 is an image processing device.

【0018】励起光源21よりの励起光23を蛍光領域
波長遮断フィルタ31を通し被検査物28に照射し、蛍
光発生領域28a内に蛍光24を起こさせる。検出器2
7の検出領域に散乱体25があれば、励起光23により
発生した蛍光24を散乱して、散乱光26を発生する。
ここで励起光23と散乱光26とは走査装置22によ
り、同時に走査されるようにしている。散乱光26は走
査装置22により走査され、励起光領域波長遮断フィル
タ30を通り、光検出器27により検出される。さらに
その信号は画像処理装置29により処理され、検出デー
タとなる。
Excitation light 23 from the excitation light source 21 is applied to the inspection object 28 through the fluorescence region wavelength cutoff filter 31 to generate fluorescence 24 in the fluorescence generation region 28a. Detector 2
If there is a scatterer 25 in the detection area of 7, the fluorescent light 24 generated by the excitation light 23 is scattered to generate scattered light 26.
Here, the excitation light 23 and the scattered light 26 are simultaneously scanned by the scanning device 22. The scattered light 26 is scanned by the scanning device 22, passes through the excitation light region wavelength cutoff filter 30, and is detected by the photodetector 27. Further, the signal is processed by the image processing device 29 and becomes detection data.

【0019】走査方法については、ポリゴンミラーなど
の光走査装置を用いる方法でも良いし、被検査物を動か
して走査する方法でもよく、またこれらの方法に限られ
るわけではない。
The scanning method may be a method using an optical scanning device such as a polygon mirror, or a method of moving an object to be inspected for scanning, and is not limited to these methods.

【0020】図4に示した態様において、励起光の当て
方については、点で当てる方法、線で当てる方法、リン
グ状に当てる方法が例示される。同時に光検出も、点で
検出する素子、エリアカメラなどが例示される。励起光
領域波長遮断フィルタ及び蛍光領域波長遮断フィルタ
は、使用する励起光、蛍光の波長強度分布によっては、
特に必要はないが、誤検出を防ぎ、測定精度を向上させ
るためには使用することが好ましい。
In the embodiment shown in FIG. 4, the excitation light is applied by a point method, a line method, or a ring method. At the same time, for light detection, an element that detects by points, an area camera, or the like is exemplified. Excitation light region wavelength cutoff filter and fluorescence region wavelength cutoff filter, depending on the excitation light used, the wavelength intensity distribution of the fluorescence,
Although not particularly necessary, it is preferably used in order to prevent erroneous detection and improve measurement accuracy.

【0021】図4の態様においては、励起光と散乱光と
が同一の走査装置により、走査される。このため、蛍光
発生領域と検査領域とが、近接されるとともに常に同じ
位置関係を保ちながら、測定が行われるので、測定を非
常に安定に行うことができる。励起光をどのような形状
の光束として、被検査物に照射するかについては、上述
のように様々なものがある。特に散乱光の強度を強く一
定に保ち、欠点形状により散乱光が方向によって強度変
化し、誤検出されるような事態を防ぐ観点からは、励起
光は断面リング状の光束とし、その内部に例えば円形の
検査領域を設けるものが好ましい。
In the embodiment of FIG. 4, the excitation light and the scattered light are scanned by the same scanning device. For this reason, the fluorescence generation region and the inspection region are brought close to each other and the measurement is performed while always maintaining the same positional relationship, so that the measurement can be performed very stably. As described above, there are various shapes of the excitation light beam with which the inspection object is irradiated. In particular, from the viewpoint of keeping the intensity of scattered light strong and constant and changing the intensity of scattered light depending on the direction due to the defect shape, and preventing a situation in which it is erroneously detected, the excitation light is a light flux with a ring-shaped cross section, and It is preferable to provide a circular inspection area.

【0022】さらに走査時に、励起光を散乱光と誤検出
してしまう事態を防ぐ観点からは、励起光の光束の断面
形状を、走査方向についてリングの一部に切り欠きを設
けたような形状としても良い。
Further, from the viewpoint of preventing the situation where the excitation light is erroneously detected as scattered light during scanning, the cross-sectional shape of the luminous flux of the excitation light is such that a cutout is provided in a part of the ring in the scanning direction. Also good.

【0023】[0023]

【実施例】本発明の一実施例として管状のブラウン管の
ネックチューブ内の泡・異物検査を行う場合を例にとり
説明する。図2がその構成である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment of the present invention, description will be given by taking as an example the case of inspecting bubbles and foreign substances in the neck tube of a tubular Braun tube. FIG. 2 shows the configuration.

【0024】1は励起光源である水銀キセノンランプで
あり、実際には500W出力のものを2台用いた。水銀
キセノンランプ1からの310nm付近の紫外線を、ラ
イトガイド20でファイバガイド2に導き約200mm
長のスリット状光線とする。4は被検査物たるブラウン
管ネックチューブである。外径30mm、肉厚2.5m
m、全長130mmのものを用いた。励起光源である紫
外線は、400nmより長波長に吸収領域をもつ蛍光領
域波長遮断フィルタ3を通過し、ブラウン管ネックチュ
ーブ4の蛍光発生領域4aに照射され同領域内に410
nm付近の波長の蛍光を発生する。
Reference numeral 1 is a mercury xenon lamp which is an excitation light source, and actually two lamps each having a power output of 500 W were used. Ultraviolet light around 310 nm from the mercury-xenon lamp 1 is guided to the fiber guide 2 by the light guide 20 and is about 200 mm.
It is a long slit light beam. Reference numeral 4 is a CRT neck tube which is an object to be inspected. Outer diameter 30 mm, wall thickness 2.5 m
m, total length 130 mm was used. Ultraviolet light, which is an excitation light source, passes through a fluorescence region wavelength cutoff filter 3 having an absorption region at a wavelength longer than 400 nm, is irradiated to a fluorescence generation region 4a of a cathode ray tube neck tube 4, and is irradiated within the region 410.
Fluorescence with a wavelength near nm is generated.

【0025】図3は、その様子をブラウン管ネックチュ
ーブ4上方から見た平面図であり、蛍光発生領域4aで
発生した蛍光はブラウン管ネックチューブ4内を導光さ
れ、検査領域4bに達する。又、励起光である紫外線自
体、もしくは蛍光発生領域4aで発生した蛍光が、ブラ
ウン管ネックチューブ4内を導光せずに直接検査領域4
bに達して、検出精度を低下させる事態を防止するた
め、ブラウン管ネックチューブ4内に遮光ロッド5を挿
入している。
FIG. 3 is a plan view of this state as seen from above the CRT neck tube 4, and the fluorescence generated in the fluorescence generation region 4a is guided inside the CRT neck tube 4 and reaches the inspection region 4b. In addition, the ultraviolet ray itself as the excitation light or the fluorescence generated in the fluorescence generation area 4 a does not directly guide the inside of the cathode ray tube neck tube 4 and is directly inspected in the inspection area 4
The light blocking rod 5 is inserted into the cathode ray tube neck tube 4 in order to prevent the situation in which the detection accuracy is lowered after reaching b.

【0026】検査領域4bに達した蛍光は、もし、検査
領域4b内に散乱体が存在するならば、そこで散乱さ
れ、ブラウン管ネックチューブ4外に射出され、360
nmより短波長に吸収領域をもつ励起光領域波長遮断フ
ィルタ10を通して、一次元ラインセンサカメラ6で受
光される。受光された光は電気信号に変換され、画像処
理装置7で画像処理され、異物・泡等の欠点の数又は分
布が検出される。なお、図では水銀キセノンランプ1を
一次元ラインセンサカメラ6とほぼ一直線上に相対向さ
せたが、水銀キセノンランプ1の光軸からブラウン管ネ
ックチューブ4の円周方向に若干ずらして一次元ライン
センサカメラ6を配置することも、キズ、異物などの欠
点の種類によっては検出感度が向上して効果的である。
The fluorescent light reaching the inspection area 4b is scattered if a scatterer exists in the inspection area 4b, and is emitted outside the cathode ray tube neck tube 4 to obtain 360.
The light is received by the one-dimensional line sensor camera 6 through the excitation light region wavelength cutoff filter 10 having an absorption region at a wavelength shorter than nm. The received light is converted into an electric signal and image-processed by the image processing device 7, and the number or distribution of defects such as foreign matters and bubbles is detected. In the figure, the mercury-xenon lamp 1 is made to face the one-dimensional line sensor camera 6 in a substantially straight line, but the one-dimensional line sensor is slightly displaced from the optical axis of the mercury-xenon lamp 1 in the circumferential direction of the cathode ray tube neck tube 4. Arranging the camera 6 is also effective because the detection sensitivity is improved depending on the types of defects such as scratches and foreign matters.

【0027】なお、被検査物たるブラウン管ネックチュ
ーブ4はその管の軸まわりに回転する回転台9の上に設
置される。回転台9はモータ(図示せず)により回転
し、検査領域4bを順次、ブラウン管ネックチューブ4
内で移動させることができる。これにより、蛍光発生領
域4aもそれと同様にブラウン管ネックチューブ4内で
移動することになるので、蛍光発生領域4aと検査領域
4bとの位置関係は、検査領域4bを移動させても一定
に保たれるので、検査の安定上極めて好ましくなる。
The CRT neck tube 4, which is an object to be inspected, is installed on a turntable 9 which rotates about the axis of the tube. The turntable 9 is rotated by a motor (not shown), and the inspection areas 4b are sequentially moved to the cathode ray tube neck tube 4.
Can be moved within. As a result, the fluorescence generation region 4a also moves in the cathode ray tube neck tube 4 in the same manner, so that the positional relationship between the fluorescence generation region 4a and the inspection region 4b is kept constant even if the inspection region 4b is moved. Therefore, it is extremely preferable for the stability of the inspection.

【0028】回転はモータ駆動部に接続されたパーソナ
ルコンピュータ8にて制御される。又、パーソナルコン
ピュータには、画像処理装置7からのデータが取り込ま
れるため、欠点に関する情報と、回転台9の回転とを同
期してコントロール可能となるので、ブラウン管ネック
チューブ4内の欠点分布なども解析可能となった。
The rotation is controlled by the personal computer 8 connected to the motor drive section. Further, since the personal computer receives the data from the image processing device 7, it becomes possible to control the defect information and the rotation of the turntable 9 in synchronization with each other, so that the defect distribution in the cathode ray tube neck tube 4 and the like can be obtained. It became possible to analyze.

【0029】次に本発明の他の実施例について説明す
る。ブラウン管パネルの欠点検査を例としてとりあげ
る。図5がその構成である。42は励起光源たる紫外発
光レーザーである。光源からの励起光は、蛍光領域波長
遮断フィルタ31及びレンズを通り、マスク32によっ
てリング状の光束とされる。
Next, another embodiment of the present invention will be described. Take defect inspection of a cathode ray tube panel as an example. FIG. 5 shows the configuration. Reference numeral 42 is an ultraviolet light emitting laser as an excitation light source. Excitation light from the light source passes through the fluorescent region wavelength cutoff filter 31 and the lens, and is converted into a ring-shaped light flux by the mask 32.

【0030】励起光はビームスプリッター33を介して
ポリゴンミラー34とガルバノミラー35によって走査
され、検査対象であるブラウン管パネル36上に照射さ
れる。照射領域中には蛍光が発生し、一部はリング内の
円状の検査領域にまで伝播する。そして、検査領域に泡
や異物等の欠点があればそれによる散乱光が発生し、励
起光領域波長遮断フィルタ27及びレンズを介して受光
素子38の光電子増倍管により輝度の変化として検出さ
れる。受光素子38よりの信号は画像処理装置39で処
理され、その輝度分布の特徴により41のホストコンピ
ュータによって判定される。
The excitation light is scanned by the polygon mirror 34 and the galvano mirror 35 via the beam splitter 33, and is irradiated onto the CRT panel 36 to be inspected. Fluorescence is generated in the irradiation area, and part of the fluorescence propagates to the circular inspection area in the ring. If there is a defect such as bubbles or foreign matter in the inspection area, scattered light is generated, and is detected as a change in brightness by the photomultiplier tube of the light receiving element 38 via the excitation light area wavelength cutoff filter 27 and the lens. .. The signal from the light receiving element 38 is processed by the image processing device 39, and is judged by the host computer 41 according to the characteristics of the brightness distribution.

【0031】なお、同期装置40により、ポリゴンミラ
ー34、ガルバノミラー35及び画像処理装置39は連
動するようになっている。
A polygon mirror 34, a galvanometer mirror 35, and an image processing device 39 are linked by a synchronizing device 40.

【0032】本実施例ブラウン管ネックチューブ及びブ
ラウン管の欠点検査に用いる例について述べたが、本発
明の用途はこれに限ることなく、散乱体の検出用途とし
て広範に用いることができる。
This embodiment has been described with respect to an example used for defect inspection of a cathode ray tube and a cathode ray tube, but the application of the present invention is not limited to this, and it can be widely used for detecting scatterers.

【0033】[0033]

【発明の効果】本発明の方法及び装置によれば、蛍光性
透光物体中の散乱物の検出を、透光物体の形状に依存せ
ず、精度よく行うことが可能になる。
According to the method and apparatus of the present invention, it is possible to detect a scattered object in a fluorescent translucent object with high accuracy without depending on the shape of the translucent object.

【0034】また、従来の光入射法のように、光入射部
の表面性状や汚れなどを検出してしまう誤検出を防ぐこ
とができる。
Further, it is possible to prevent erroneous detection such as detection of the surface texture and dirt of the light incident portion as in the conventional light incident method.

【0035】さらに、励起光源に蛍光領域波長遮断フィ
ルタを、また、光検出器に、励起光領域波長遮断フィル
タを併用することにより、散乱体の検出をより精度良く
行うことができる。
Further, by using a fluorescent region wavelength cutoff filter for the excitation light source and an excitation light region wavelength cutoff filter for the photodetector, the scatterer can be detected more accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示す概念図FIG. 1 is a conceptual diagram showing the configuration of the present invention.

【図2】本発明の1つの実施例を示す斜視図FIG. 2 is a perspective view showing an embodiment of the present invention.

【図3】図2の要部平面図FIG. 3 is a plan view of an essential part of FIG.

【図4】本発明の原理の他の例を示す概念図FIG. 4 is a conceptual diagram showing another example of the principle of the present invention.

【図5】本発明の他の実施例を示す概念図FIG. 5 is a conceptual diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 水銀キセノンランプ 2 ファイバガイド 3,31 蛍光領域波長遮断フィルタ 4 ブラウン管ネックチューブ 5 遮光ロッド 6 一次元ラインセンサカメラ 10,27 励起光領域波長遮断フィルタ 32 マスク 33 ビームスプリッター 34 ポリゴンミラー 35 ガルバノミラー 36 ブラウン管パネル 38 受光素子 39 画像処理装置 40 同期装置 41 ホストコンピュータ 42 紫外発光レーザー 1 Mercury xenon lamp 2 Fiber guide 3,31 Fluorescent region wavelength cutoff filter 4 CRT neck tube 5 Shading rod 6 One-dimensional line sensor camera 10,27 Excitation light region wavelength cutoff filter 32 Mask 33 Beam splitter 34 Polygon mirror 35 Galvano mirror 36 CRT Panel 38 Light receiving element 39 Image processing device 40 Synchronous device 41 Host computer 42 Ultraviolet light emitting laser

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】蛍光性を有する透光性物体中の散乱体検出
方法であって、 透光性物体中に蛍光を発生させる励起光を照射し、 該励起光により発生して、透光性物体中を伝播し、所定
の検査領域に到達した前記蛍光のうち、透光性物体中の
散乱体にて散乱されて透光性物体外に出射する光を検出
する、ことを特徴とする透光性物体中の散乱体検出方
法。
1. A method for detecting a scatterer in a light-transmitting object having fluorescence, which comprises irradiating a light-transmitting object with excitation light for generating fluorescence, the light-transmitting property being generated by the excitation light. Among the fluorescent light that has propagated through the object and reached a predetermined inspection region, the light that is scattered by the scatterer in the translucent object and goes out of the translucent object is detected. A method for detecting scatterers in an optical object.
【請求項2】蛍光性を有する透光性物体中の散乱体検出
装置であって、 透光性物体中の特定の蛍光発生領域に蛍光を発生させる
ための励起光源と、 前記蛍光発生領域から透光性物体中の特定の検査領域ま
で伝播し、かつ該検査領域内の散乱体により散乱された
蛍光を検出する光検出手段と、からなる透光性物体中の
散乱体検出装置。
2. A scatterer detection device in a translucent object having fluorescence, comprising: an excitation light source for generating fluorescence in a specific fluorescence generation region in the translucent object; A scatterer detecting device in a light-transmissive object, comprising: a light detecting unit that propagates to a specific inspection area in the light-transmissive object and detects fluorescence scattered by the scatterers in the inspection area.
JP28229591A 1991-07-10 1991-10-02 Method and apparatus for detecting scatterer in light pervious body Withdrawn JPH05215688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28229591A JPH05215688A (en) 1991-07-10 1991-10-02 Method and apparatus for detecting scatterer in light pervious body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19584791 1991-07-10
JP3-195847 1991-07-10
JP28229591A JPH05215688A (en) 1991-07-10 1991-10-02 Method and apparatus for detecting scatterer in light pervious body

Publications (1)

Publication Number Publication Date
JPH05215688A true JPH05215688A (en) 1993-08-24

Family

ID=26509384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28229591A Withdrawn JPH05215688A (en) 1991-07-10 1991-10-02 Method and apparatus for detecting scatterer in light pervious body

Country Status (1)

Country Link
JP (1) JPH05215688A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090949A1 (en) * 2004-03-22 2005-09-29 Aohata Corporation Method of inspecting sealed container and method of producing sealed container product that contains contents
WO2012011438A1 (en) * 2010-07-20 2012-01-26 日本電気硝子株式会社 Device and method for detecting bubble in transparent tube
JP2013164371A (en) * 2012-02-13 2013-08-22 Nippon Electric Glass Co Ltd Inspection device and inspection method for phosphor-containing glass member
WO2021235158A1 (en) * 2020-05-19 2021-11-25 コニカミノルタ株式会社 Fluorescent fingerprint image acquisition device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090949A1 (en) * 2004-03-22 2005-09-29 Aohata Corporation Method of inspecting sealed container and method of producing sealed container product that contains contents
JP2005265812A (en) * 2004-03-22 2005-09-29 Aohata Corp Inspection method for sealed container, and manufacturing method for sealed container product with content
WO2012011438A1 (en) * 2010-07-20 2012-01-26 日本電気硝子株式会社 Device and method for detecting bubble in transparent tube
JP2013164371A (en) * 2012-02-13 2013-08-22 Nippon Electric Glass Co Ltd Inspection device and inspection method for phosphor-containing glass member
WO2021235158A1 (en) * 2020-05-19 2021-11-25 コニカミノルタ株式会社 Fluorescent fingerprint image acquisition device

Similar Documents

Publication Publication Date Title
JP5349742B2 (en) Surface inspection method and surface inspection apparatus
KR960014919A (en) Optical inspection method and optical inspection device
US20080068587A1 (en) Surface defect detection method and surface defect inspection apparatus
JP5596925B2 (en) Foreign object inspection apparatus and inspection method
JPS6036013B2 (en) Metal surface defect inspection method
TW201224443A (en) Device and method for detecting bubble in transparent tube
JPH04122839A (en) Inspecting method of surface
JPH05215688A (en) Method and apparatus for detecting scatterer in light pervious body
JP2000505906A (en) Optical inspection apparatus and lithography apparatus provided with this inspection apparatus
JP6121758B2 (en) Crack and appearance inspection apparatus and crack and appearance inspection method
JPH11258167A (en) Method and apparatus for inspection of defect in glass tube
JP2004257776A (en) Inspection device for light transmission body
JP2003240728A (en) Method and apparatus for examining outer periphery of object to be examined
JPH0755710A (en) Defect inspecting device for drum of photoreceptor
JP3369268B2 (en) Defect detection method inside translucent object
JPH09288063A (en) Apparatus for inspecting damage of transparent board
JP2002286656A (en) Substrate inspection apparatus
JPH11190698A (en) Defect inspection device
CN212567282U (en) Detection device and detection equipment
JPS61207951A (en) Defect inspecting device for transparent object
JP2005201782A (en) Device for inspecting surface and internal defect
JP6414842B2 (en) Inspection method and inspection apparatus
KR200250993Y1 (en) Non-uniformity Inspection Device in Transmissive Objects
JP2006313107A (en) Inspection device, inspection method, and method of manufacturing pattern substrate using them
JP2009222629A (en) Device for inspecting edge of object to be inspected

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107