JPH05214479A - High corrosion resistant and high strength hard sintered alloy - Google Patents

High corrosion resistant and high strength hard sintered alloy

Info

Publication number
JPH05214479A
JPH05214479A JP3834592A JP3834592A JPH05214479A JP H05214479 A JPH05214479 A JP H05214479A JP 3834592 A JP3834592 A JP 3834592A JP 3834592 A JP3834592 A JP 3834592A JP H05214479 A JPH05214479 A JP H05214479A
Authority
JP
Japan
Prior art keywords
content
boride
hard
phase
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3834592A
Other languages
Japanese (ja)
Other versions
JP2631791B2 (en
Inventor
Masao Komai
正雄 駒井
Kenichi Takagi
研一 高木
Yuji Yamazaki
裕司 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP3834592A priority Critical patent/JP2631791B2/en
Publication of JPH05214479A publication Critical patent/JPH05214479A/en
Application granted granted Critical
Publication of JP2631791B2 publication Critical patent/JP2631791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high corrosion resistant and high strength sintered alloy comprised of a hard phase essentially consisting of a tetragonal M3B2), type double boride phase and a bonding phase of an Ni base bonding the hard phase, excellent in wear resistance, oxidation resistance and high temp. strength and used for various machine constituting members, dies, parts for injection molding machines and due for drawing copper used in cold and hot conditions or the like. CONSTITUTION:The objective high corrosion resistant and high strength hard sintered alloy is constituted of 35 to 95% hard phase consisting of boride and a bonding phase of an Ni base bonding the hard phase and in which tetragonal M3B2 type double boride is positively formed by strictly controlling the content of alloy elements such as B, Ni, Mo, Cr, V and W and >=60% tetragonal M3B2 type double boride is incorporated into the whole hard phase by suppressing the formation of the other boride including rhombic M3B2 type double boride.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正方晶系のM32型複
硼化物相を主とする硬質相と、該硬質相を結合するNi
基の結合相からなり、耐摩耗性および耐食性に優れるば
かりでなく、常温および高温において十分な強度と耐酸
化性を有した高耐食性高強度硬質焼結合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard phase mainly composed of a tetragonal M 3 B 2 type double boride phase and a Ni phase which bonds the hard phase.
The present invention relates to a high-corrosion-resistant high-strength hard sintered alloy which is composed of a basic binder phase and has not only excellent wear resistance and corrosion resistance but also sufficient strength and oxidation resistance at room temperature and high temperature.

【0002】[0002]

【従来の技術】耐摩耗性を有する硬質焼結材料に対する
要求は年々厳しくなり、単なる耐摩耗性ばかりでなく、
耐食性、耐酸化性、常温および高温における高強度を合
わせ持った材料が求められている。硬質焼結材料として
は、従来よりWC基超硬合金やTiCN系サーメットに
代表される炭化物、窒化物及び炭窒化物を利用した材料
がよく知られているものの、腐食環境下での使用には問
題がある。近年これらに代わる材料として、硼化物の持
つ高硬度、高融点、電気伝導性などの優れた特性に着目
し、WB,TiB2などの金属硼化物、並びにMo2Fe
2およびMo2NiB2などの金属複硼化物を利用し
た、硬質合金及びセラミックスが提案されている。
2. Description of the Related Art The demand for hard sintered materials having wear resistance is becoming stricter year by year.
There is a demand for a material that has both corrosion resistance, oxidation resistance, and high strength at room temperature and high temperature. As hard sintered materials, conventionally, materials using carbides, nitrides and carbonitrides typified by WC-based cemented carbide and TiCN cermet are well known, but are not suitable for use in corrosive environments. There's a problem. In recent years, as alternative materials, attention has been paid to the excellent properties of boride such as high hardness, high melting point, and electrical conductivity, and metal borides such as WB and TiB 2 and Mo 2 Fe.
Hard alloys and ceramics utilizing metal double borides such as B 2 and Mo 2 NiB 2 have been proposed.

【0003】これらのうちWBをNi基合金で結合した
硬質合金(特公昭56−45985〜7)は、常磁性の
耐摩耗材料、特に時計側、装飾品を目的とした合金であ
り、耐食性は優れるものの、強度が十分ではない。Ti
2などの金属硼化物を利用したセラミクッス(例えば
特公昭61−50909、特公昭63−5353)は、
高硬度で耐熱性に優れるものの、金属結合相がないた
め、耐衝撃性に劣る。
Among these, a hard alloy in which WB is bonded by a Ni-based alloy (Japanese Patent Publication No. 56-45985-7) is a paramagnetic wear-resistant material, especially for watches and ornaments, and has corrosion resistance. Excellent, but not strong enough. Ti
Ceramic ceramics using a metal boride such as B 2 (for example, JP-B-61-50909 and JP-B-63-5353) are
Although it has high hardness and excellent heat resistance, it is inferior in impact resistance because it has no metallic binder phase.

【0004】また一般的に金属硼化物に金属元素を添加
した硬質材料は、脆い第3相を形成し易く高強度が得に
くいという欠点がある。この欠点を改良したのが、焼結
中の反応により形成されるMo2FeB2やMo2NiB2
などの金属複硼化物を利用した硬質合金である。このう
ちFe基結合相を有したMo2FeB2系硬質合金(特公
昭60−57499)は、常温における強度および耐摩
耗性には優れるものの、Fe基結合相を有するため耐食
性は十分でない。また、Ni基結合相を有したMo2
iB2系硬質合金(例えば特開昭62−196353、
特開昭63−143236、特開平1−131070、
特開平1−131071、特開平2−15140、特開
平2−19441)は、Mo2FeB2系硬質合金の耐食
性改善を目的として発明されたものであり、耐食性には
優れるが、常温における強度が十分でない。また、これ
らのNi基の結合相を有する硬質合金の場合に、硬質相
であるMo2NiB2、およびこれにW,Cr,Co等の
元素が固溶したM32型複硼化物の結晶構造としてはこ
れまでに斜方晶系のものしか報告されておらず、M32
型複硼化物と同定されているこれらの特許に記載された
硬質合金のM32型複硼化物の結晶構造は、正方晶系で
はなく、斜方晶系である。さらに、特開昭63−453
44、特開昭63−293134に開示されているNi
基結合相を有する硬質合金の硬質相であるM32型複硼
化物は、(Mo,Cr,Ni)32で表されるが、該特
許に記載されているX線回折図をみると、斜方晶系でも
正方晶系でもないことが明らかである。このように、同
じNi基の結合相を有する硬質合金の硬質相であるM3
2型複硼化物にも、その合金組成や製造方法によって
種々の結晶系のものがあり、そのために異なった特性を
持ち、これまでに耐摩耗性、耐食性、耐酸化性および高
強度の全ての特性を兼ね備えた材料は得られなかった。
Further, generally, a hard material obtained by adding a metal element to a metal boride has a drawback that it tends to form a brittle third phase and it is difficult to obtain high strength. This defect was improved by Mo 2 FeB 2 and Mo 2 NiB 2 formed by the reaction during sintering.
It is a hard alloy that utilizes metal double borides such as. Of these, the Mo 2 FeB 2 -based hard alloy having a Fe-based bonded phase (Japanese Patent Publication No. 60-57499) is excellent in strength and wear resistance at room temperature, but has a Fe-based bonded phase and thus is not sufficient in corrosion resistance. Further, Mo 2 N having a Ni-based binder phase
iB 2 type hard alloy (for example, JP-A-62-196353,
JP-A-63-143236, JP-A-1-131070,
JP-A-1-131071, JP-A-2-15140, and JP-A-2-19441) were invented for the purpose of improving the corrosion resistance of Mo 2 FeB 2 -based hard alloys, and are excellent in corrosion resistance, but have high strength at room temperature. not enough. Further, in the case of a hard alloy having these Ni-based binder phases, the hard phase of Mo 2 NiB 2 and M 3 B 2 type double boride in which elements such as W, Cr and Co are solid-dissolved As for the crystal structure, only an orthorhombic one has been reported so far, and M 3 B 2
The hard alloy M 3 B 2 type double boride described in these patents identified as type double boride is orthorhombic rather than tetragonal. Further, JP-A-63-453
44, Ni disclosed in JP-A-63-293134
The M 3 B 2 type complex boride, which is a hard phase of a hard alloy having a base bonding phase, is represented by (Mo, Cr, Ni) 3 B 2 , and the X-ray diffraction diagram described in the patent is used. It is clear that it is neither orthorhombic nor tetragonal. Thus, M 3 which is a hard phase of a hard alloy having the same Ni-based binder phase
B 2 -type compound borides also have various crystal systems depending on their alloy composition and manufacturing method, and therefore have different characteristics, so far, all of wear resistance, corrosion resistance, oxidation resistance and high strength have been achieved. It was not possible to obtain a material having the above characteristics.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記Ni基
結合相を有するMo2NiB2系硬質合金の特性改善を目
的としたものであり、耐摩耗性、耐食性、耐酸化性に加
えて、常温および高温における十分な強度を合わせ持っ
た、高耐食性高強度硬質焼結合金を提供することを目的
としている。
SUMMARY OF THE INVENTION The present invention is intended to improve the properties of Mo 2 NiB 2 type hard alloys having the above Ni-based bonding phase, and in addition to wear resistance, corrosion resistance and oxidation resistance, An object of the present invention is to provide a high-corrosion, high-strength hard sintered alloy having sufficient strength at room temperature and high temperature.

【0006】[0006]

【課題を解決するための手段】本発明は、硼化物より成
る硬質相35〜95%と、該硬質相を結合するNi基の
結合相からなり、かつ全硬質相量のうち、正方晶系のM
32型複硼化物を60%以上含み、残部が斜方晶系のM
32型複硼化物あるいは他の硼化物よりなる高耐食性高
強度硬質焼結合金において、B含有量が3〜7.5%、
Mo含有量がMo/B原子比で0.8〜(1.6−0.
05X)(X:含有するBの重量%)、CrおよびV含
有量がいずれか一方または両者の合計で(9−X)〜
(55−5X)%、残部が10%以上のNi、および不
可避的不純物よりなる組成の合金、およびB含有量が3
〜7.5%、W含有量が0.1〜30%、Mo含有量が
MoおよびW含有量の合計で、(Mo+W)/B原子比
で0.8〜(1.6−0.05X)、CrおよびV含有
量がいずれか一方または両者の合計で(9−X)〜(5
5−5X)%、残部が10%以上のNi、および不可避
的不純物よりなる組成の高耐食性高強度硬質焼結合金を
提供するものである。さらに、耐食性向上にCu添加、
高温特性向上にCo添加、そして機械的特性向上にNb
添加が有効である。ゆえに、上記組成に加えて、Mo,
W,Cr,VおよびNiのいずれか一種または二種以上
の一部と置換する形で、Cu含有量が0.1〜5%、C
o含有量が0.2〜5%およびNb含有量が0.2〜1
0%のいずれか一種または2種以上を含み、必要に応じ
てNbの一部または全部を、Zr,Ti,Taの中から
選ばれた一種または二種以上で置換することを特徴とす
る高耐食性高強度硬質焼結合金を提供するものである。
DISCLOSURE OF THE INVENTION The present invention comprises a hard phase of 35 to 95% made of boride and a Ni-based binder phase for bonding the hard phase, and the tetragonal system is contained in the total hard phase content. M
3 B 2 type compound containing more than 60% of boride and the rest is orthorhombic M
In a high corrosion resistance and high strength hard sintered alloy composed of 3 B 2 type complex boride or other boride, the B content is 3 to 7.5%,
Mo content is 0.8 to (1.6-0.
05X) (X: wt% of B contained), Cr and / or V content is either (9-X)-
An alloy having a composition of (55-5X)%, the balance of Ni being 10% or more, and inevitable impurities, and a B content of 3
˜7.5%, W content 0.1 to 30%, Mo content is the sum of Mo and W contents, and (Mo + W) / B atomic ratio is 0.8 to (1.6-0.05X ), Cr and V contents are either (9-X) to (5) in total.
The present invention provides a high corrosion resistance and high strength hard sintered alloy having a composition of 5-5X)%, the balance of 10% or more of Ni, and unavoidable impurities. Furthermore, Cu is added to improve corrosion resistance,
Add Co to improve high temperature characteristics, and Nb to improve mechanical characteristics
Addition is effective. Therefore, in addition to the above composition, Mo,
The content of Cu is 0.1 to 5%, and C is substituted with a part of one or more of W, Cr, V and Ni.
o content 0.2-5% and Nb content 0.2-1
0% of any one kind or two kinds or more, and if necessary, a part or all of Nb is replaced with one kind or two kinds or more selected from Zr, Ti and Ta. Provided is a corrosion resistant high strength hard sintered alloy.

【0007】以下本発明の限定理由について詳細に説明
する。高強度の耐食性に優れたMo2NiB2系の耐摩耗
材料を種々検討したところ、合金の組成だけでなく、そ
の合金を構成している相の構造、すなわち結晶系が機械
的特性を始めとした諸特性に大きく影響していた。そし
て、斜方晶系に代わり、正方晶系のM32型複硼化物か
らなる硬質相と、Ni基の結合相を組み合わせることに
より、高強度の耐摩、耐食材料を得た。X線回折測定に
よる調査の結果、Mo2NiB2、W2NiB2および(M
o,W)2NiB2、あるいはこれらにCr、Co等の金
属元素が固溶した斜方晶系のM32型複硼化物とNi基
の結合相の組み合わせでは高い強度は得られないもの
の、合金組成を厳密に管理するとともに、焼結中の反応
により斜方晶系ではなく、正方晶系のM32型複硼化物
を積極的に形成させ、正方晶系のM32型複硼化物とN
i基の結合相からなる新規な焼結合金を開発することに
より、耐摩耗性および耐食性を減じることなく、強度の
倍増を可能にした。これは、斜方晶系よりも正方晶系の
32型複硼化物の方が、面心立方晶系のNi基結合相
との整合性が良いためと推察される。すなわち、耐食性
に優れたNi基の硬質合金において高い強度を得るに
は、Mo/B原子比あるいは(Mo+W)/B原子比に
くわえて、CrおよびVのどちらか一方または両者の含
有量を適正な範囲内に管理することにより、斜方晶系の
32型複硼化物の形成を抑え、正方晶系のM32型複
硼化物を60%以上焼結中の反応により形成させること
が必要不可欠である。この場合、正方晶系のM32型複
硼化物は、Mo2(Cr,Ni)B2、Mo2(V,N
i)B2、Mo2(Cr,V,Ni)B2、(Mo,W)2
(Cr,Ni)B2、(Mo,W)2(V,Ni)B2
よび(Mo,W)2(Cr,V,Ni)B2に近い組成で
表される。
The reasons for limitation of the present invention will be described in detail below. When various studies were carried out on Mo 2 NiB 2 wear resistant materials having high strength and excellent corrosion resistance, it was found that not only the composition of the alloy but also the structure of the phases constituting the alloy, that is, the crystal system, including mechanical properties It had a great influence on the characteristics. Then, in place of the orthorhombic system, a hard phase made of tetragonal M 3 B 2 type complex boride and a Ni-based binder phase were combined to obtain a high-strength wear-resistant and corrosion-resistant material. As a result of investigation by X-ray diffraction measurement, Mo 2 NiB 2 , W 2 NiB 2 and (M
o, W) 2 NiB 2 or a combination of an orthorhombic M 3 B 2 type double boride in which a metal element such as Cr or Co forms a solid solution with Ni and a binder phase of Ni group cannot provide high strength. However, while strictly controlling the alloy composition, the reaction during sintering positively forms a tetragonal M 3 B 2 type double boride rather than an orthorhombic system, and a tetragonal system M 3 B Type 2 compound boride and N
By developing a new sintered alloy consisting of an i-based binder phase, it has become possible to double the strength without reducing wear resistance and corrosion resistance. It is speculated that this is because the tetragonal M 3 B 2 type complex boride has better compatibility with the face-centered cubic Ni-based bonded phase than the orthorhombic system. That is, in order to obtain high strength in a Ni-based hard alloy having excellent corrosion resistance, in addition to the Mo / B atomic ratio or (Mo + W) / B atomic ratio, the content of either one or both of Cr and V is appropriate. By controlling the content within the above range, formation of orthorhombic M 3 B 2 type complex boride is suppressed and tetragonal M 3 B 2 type complex boride is formed by reaction during sintering of 60% or more. It is essential to let them do it. In this case, the tetragonal M 3 B 2 type double boride is Mo 2 (Cr, Ni) B 2 or Mo 2 (V, N
i) B 2 , Mo 2 (Cr, V, Ni) B 2 , (Mo, W) 2
(Cr, Ni) B 2 , (Mo, W) 2 (V, Ni) B 2 and (Mo, W) 2 (Cr, V, Ni) B 2 are represented by compositions close to each other.

【0008】本硬質焼結合金の耐摩耗性は、主として硬
度、つまり硼化物よりなる硬質相の量に依存する。硬質
相の量が35%未満になると、本硬質合金の硬度は、ロ
ックウエルAスケールで75以下となり、耐摩耗性が低
下する。一方、硬質相の量が95%を越えると硬度は高
くなるものの、強度の低下が著しい。よって本硬質合金
中の硬質相の割合は、35〜95%とする。
The wear resistance of the present hard sintered alloy depends mainly on the hardness, that is, the amount of the hard phase composed of boride. When the amount of the hard phase is less than 35%, the hardness of the present hard alloy becomes 75 or less on the Rockwell A scale, and the wear resistance decreases. On the other hand, when the amount of the hard phase exceeds 95%, the hardness becomes high, but the strength is remarkably reduced. Therefore, the proportion of the hard phase in the present hard alloy is 35 to 95%.

【0009】本硬質焼結合金の強度は、主として全硬質
相中に占める、正方晶系のM32型複硼化物の量に依存
する。全硬質相中に占める正方晶系のM32型複硼化物
の量が60%未満になり、残部の斜方晶系のM32型複
硼化物および他の硼化物のいずれか一方または両者の合
計量が40%を越えると、硬質焼結合金の強度の低下を
もたらす。よって、全硬質相中に占める正方晶系のM3
2型複硼化物の量を60%以上とする。つまり、硬質
焼結合金全体に占める正方晶系のM32型複硼化物の量
は、下限が35×0.6=21%であり、21〜95%
となる。
The strength of the present hard sintered alloy mainly depends on the amount of tetragonal M 3 B 2 type double boride in the total hard phase. The amount of tetragonal M 3 B 2 type complex boride in the total hard phase is less than 60%, and the balance is either orthorhombic M 3 B 2 type complex boride or other boride. If the total amount of one or both exceeds 40%, the strength of the hard sintered alloy decreases. Therefore, tetragonal M 3 occupies in the total hard phase
The amount of B 2 type complex boride is set to 60% or more. That is, the lower limit of the amount of the tetragonal M 3 B 2 type complex boride in the entire hard sintered alloy is 35 × 0.6 = 21%, which is 21 to 95%.
Becomes

【0010】Bは、本硬質焼結合金中の硬質相となる硼
化物を形成するために必要不可欠な元素であり、B含有
量が3%未満になると、硼化物よりなる硬質相の割合が
35%をきることになる。一方7.5%を越えると、硬
質相の量は95%を越え、強度の低下をもたらす。よっ
て、本硬質焼結合金中のB含有量は、3〜7.5%とす
る。
B is an essential element for forming a boride which becomes a hard phase in the hard sintered alloy of the present invention. When the B content is less than 3%, the proportion of the hard phase composed of boride is reduced. It will be below 35%. On the other hand, if it exceeds 7.5%, the amount of the hard phase exceeds 95%, resulting in a decrease in strength. Therefore, the B content in the present hard sintered alloy is set to 3 to 7.5%.

【0011】MoはB同様硬質相となる硼化物を形成す
るために必要不可欠な元素である。本硬質焼結合金中の
硬質相である正方晶系のM32型複硼化物は、Mo
2(Cr,Ni)B2、Mo2(V,Ni)B2、Mo
2(Cr,V,Ni)B2に近い組成と推察され、Moと
Bの化学量論比は1:1であるが、実際は完全な化学量
論的な化合物ではなく、数%の組成範囲を有するため、
Mo/Bの原子比(以下Mo/B比と略す)は1である
必要はないが、1の前後のある特定の範囲にすることが
重要である。種々実験の結果、Mo/B比が1を大幅に
外れ、1より小さい場合には正方晶系のM32型複硼化
物とは異なる、正方晶系のCr53などのM'53
(M':Crを主体とし、Mo、Ni等を含む)硼化物
や斜方晶系のNi3BなどのM"3B型(M":Niを主体
とし、Cr、Mo等を含む)硼化物などの他の硼化物が
第3相として形成され、0.8より小さくなると強度の
低下が著しい。一方、1より大きい場合にはBに対して
過剰なMoの一部は、Ni基合金マトリックス中に固溶
し、結合相を固溶強化し、本硬質焼結合金の機械的特性
の向上をもたらす。しかしながら適正な量を越えたMo
は、Mo−Ni系の金属間化合物を第3相として形成
し、強度の低下を招く。したがって、Ni基合金マトリ
ックス中のMo量を厳密に管理することが必要不可欠で
ある。すなわちB含有量が増加するとともに、正方晶系
のM32型複硼化物量が増加し、それに伴いNi基合金
マトリックスは減少するため、合金の強度を維持するに
は、それと共にマトリックス中に含まれる過剰なMo量
も減少させる必要があることから、Mo含有量の上限
は、B含有量が下限の3%の場合、Mo/B比で1.4
5、上限の7.5%の場合1.225にする必要があ
る。これを式で表すと、B含有量をX%とした時1.6
−0.05Xとなる。したがって、Mo/B比が、0.
8〜(1.6−0.05X)の範囲内に有れば、正方晶
系のM32型複硼化物およびNi基合金マトリックス以
外に、これらの第3相が形成されたとしても、その影響
は少なく、強度の低下は許容範囲内にある。よって、M
o含有量は、Mo/B原子比で0.8〜(1.6−0.
05X)を満足する範囲とする。
Like B, Mo is an essential element for forming a boride which becomes a hard phase. The tetragonal M 3 B 2 type complex boride which is the hard phase in the hard sintered alloy is Mo.
2 (Cr, Ni) B 2 , Mo 2 (V, Ni) B 2 , Mo
It is assumed that the composition is close to 2 (Cr, V, Ni) B 2 , and the stoichiometric ratio of Mo and B is 1: 1. However, it is not a completely stoichiometric compound, and the composition range is several%. To have
The atomic ratio of Mo / B (hereinafter abbreviated as Mo / B ratio) does not have to be 1, but it is important to set it within a certain range around 1. As a result of various experiments, when the Mo / B ratio greatly deviates from 1 and is smaller than 1, it is different from the tetragonal M 3 B 2 type complex boride, and M ′ such as tetragonal Cr 5 B 3 is different. 5 B 3 type (M ': Cr mainly, including Mo, Ni, etc.) Borides and orthorhombic Ni 3 B M " 3 B type (M": Ni mainly, Cr, Mo Other borides such as borides are formed as the third phase, and if it is less than 0.8, the strength is significantly reduced. On the other hand, when it is larger than 1, a part of excess Mo with respect to B dissolves in the Ni-based alloy matrix and strengthens the binder phase to improve the mechanical properties of the hard sintered alloy. Bring However, Mo exceeding the proper amount
Forms an intermetallic compound of the Mo-Ni system as the third phase, leading to a decrease in strength. Therefore, it is essential to strictly control the amount of Mo in the Ni-based alloy matrix. That is, as the B content increases, the tetragonal M 3 B 2 type double boride content increases, and the Ni-based alloy matrix decreases accordingly. Since it is also necessary to reduce the excess Mo content contained in, the upper limit of the Mo content is 1.4 at the Mo / B ratio when the B content is 3%, which is the lower limit.
5, if the upper limit is 7.5%, it must be set to 1.225. When this is expressed by a formula, it is 1.6 when the B content is X%.
It becomes −0.05X. Therefore, the Mo / B ratio is 0.
Within the range of 8 to (1.6-0.05X), even if these third phases are formed in addition to the tetragonal M 3 B 2 type complex boride and the Ni-based alloy matrix. , Its effect is small, and the decrease in strength is within the allowable range. Therefore, M
The o content is 0.8 to (1.6-0.
05X).

【0012】WはMoと置換可能な元素であるととも
に、適正な量の添加により形崩れが少ない良好な形状の
焼結体が得られ、ニヤネット化が図れる。さらに合金の
耐摩耗性を向上させる効果もあるが、0.1%未満では
効果が表れない。一方、30%を越えて添加しても、添
加量ほどの特性の向上は認められないだけでなく、正方
晶系のCr53などのM'53型(M':Crを主体と
し、W、Mo、Ni等を含む)硼化物などの他の硼化物
が多く形成され、全硬質相中に占める正方晶系M32
複硼化物量が60%より少なくなり、抗折力が低下す
る。また、比重が高くなり、製品重量が増す。したがっ
て、W含有量は0.1〜30%とする。Wを含有した本
硬質焼結合金中の硬質相である正方晶系のM32型複硼
化物は、(Mo,W)2(Cr,Ni)B2、(Mo,
W)2(V,Ni)B2および(Mo,W)2(Cr,
V,Ni)B2に近い組成と推察され、MoとWの合計
とBの化学量論比は1:1であるが、実際は完全な化学
量論的な化合物ではなく、数%の組成範囲を有するた
め、(Mo+W)/Bの原子比(以下(Mo+W)/B
比と略す)は1である必要はないが、1の前後のある特
定の範囲にすることが重要である。種々実験の結果、
(Mo+W)/B比が1を大幅に外れ、1より小さい場
合には正方晶系のM32型複硼化物とは異なる、正方晶
系のCr53などのM'53型硼化物や斜方晶系のNi3
BなどのM"3B型(M":Niを主体とし、Cr、W、
Mo等を含む)硼化物などの他の硼化物が第3相として
形成され、0.8より小さくなると強度の低下が著し
い。一方、1より大きい場合にはBに対して過剰なMo
およびWの一部は、Ni基合金マトリックス中に固溶
し、結合相を固溶強化し、本硬質焼結合金の機械的特性
の向上をもたらす。しかしながら適正な量を越えたMo
およびWは、Mo−W−Ni系の金属間化合物を第3相
として形成し、強度の低下を招く。したがって、Ni基
合金マトリックス中のMoおよびW量を厳密に管理する
ことが必要不可欠である。すなわちB含有量が増加する
とともに、正方晶系のM32型複硼化物量が増加し、そ
れに伴いNi基合金マトリックスは減少するため、合金
の強度を維持するには、それと共にマトリックス中に含
まれる過剰なMoおよびW量も減少させる必要があるこ
とから、MoおよびW含有量の上限は、B含有量が下限
の3%の場合、(Mo+W)/B比で1.45、上限の
7.5%の場合1.225にする必要がある。これを式
で表すと、B含有量をX%とした時1.6−0.05X
となる。したがって、(Mo+W)/B比が0.8〜
(1.6−0.05X)の範囲内に有れば、正方晶系の
32型複硼化物およびNi基合金マトリックス以外
に、これらの第3相が形成されたとしても、その影響は
少なく、強度の低下は許容範囲内にある。よってWを
0.1〜30%含有した場合の(Mo+W)/B原子比
は、0.8〜(1.6−0.05X)を満足する範囲と
する。
W is an element capable of substituting for Mo, and when added in an appropriate amount, a sintered body having a good shape with less deformation can be obtained, and a near net can be achieved. Further, it has an effect of improving the wear resistance of the alloy, but if it is less than 0.1%, the effect is not exhibited. On the other hand, even when added in excess of 30%, not only observed improvement in the properties of the higher amount, M '5 B 3 type (M', such as Cr 5 B 3 tetragonal: mainly Cr Other boride such as boride (including W, Mo, Ni, etc.) is formed in large amounts, and the amount of tetragonal M 3 B 2 type complex boride in the total hard phase is less than 60%. Folding strength decreases. In addition, the specific gravity is increased and the product weight is increased. Therefore, the W content is 0.1 to 30%. The tetragonal M 3 B 2 type complex boride which is the hard phase in the present hard sintered alloy containing W is (Mo, W) 2 (Cr, Ni) B 2 , (Mo,
W) 2 (V, Ni) B 2 and (Mo, W) 2 (Cr,
V, Ni) It is inferred that the composition is close to B 2 , and the stoichiometric ratio of Mo and W to B is 1: 1. However, it is not a completely stoichiometric compound, but a composition range of several%. Has an atomic ratio of (Mo + W) / B (hereinafter (Mo + W) / B
The ratio (abbreviated as ratio) does not have to be 1, but it is important to set it within a certain range around 1. The results of various experiments,
When the (Mo + W) / B ratio largely deviates from 1 and is smaller than 1, it is different from the tetragonal M 3 B 2 type double boride, and M ′ 5 B 3 such as tetragonal Cr 5 B 3 is different. -Type borides and orthorhombic Ni 3
B such as M " 3 B type (M": Ni as the main component, Cr, W,
Other borides such as borides (including Mo, etc.) are formed as the third phase, and if it is smaller than 0.8, the strength is significantly reduced. On the other hand, when it is larger than 1, excessive Mo is added to B.
And a part of W are solid-solved in the Ni-based alloy matrix to solid-solution strengthen the binder phase, and improve the mechanical properties of the present hard sintered alloy. However, Mo exceeding the proper amount
And W form a Mo-W-Ni-based intermetallic compound as the third phase, which causes a decrease in strength. Therefore, it is essential to strictly control the amounts of Mo and W in the Ni-based alloy matrix. That is, as the B content increases, the tetragonal M 3 B 2 type double boride content increases, and the Ni-based alloy matrix decreases accordingly. Since it is necessary to reduce the excess amounts of Mo and W contained in, the upper limit of the Mo and W contents is 1.45 when the B content is 3%, which is the lower limit, and the upper limit is 1.45. In case of 7.5%, it is necessary to set to 1.225. When this is expressed by a formula, when the B content is X%, 1.6-0.05X
Becomes Therefore, the (Mo + W) / B ratio is 0.8 to
Within the range of (1.6-0.05X), even if these third phases are formed in addition to the tetragonal M 3 B 2 type double boride and the Ni-based alloy matrix, The influence is small and the decrease in strength is within the allowable range. Therefore, the (Mo + W) / B atomic ratio when W is contained in an amount of 0.1 to 30% is in a range satisfying 0.8 to (1.6-0.05X).

【0013】CrおよびVは、正方晶系のM32型複硼
化物を形成するために必要不可欠な元素であり、B量に
対して一定量添加する必要がある。また、添加したCr
およびVは硬質相だけでなくNi基の結合相中にも固溶
する元素であり、硬質合金の耐食性向上にも効果が大き
い。CrおよびVのどちらか一方または両者の合計含有
量の下限は、種々実験の結果、60%以上正方晶系のM
32型複硼化物を形成させるためには、B含有量が下限
の3%の場合が6%であり、上限の7.5%の場合は理
由は不明であるが、CrおよびVの含有量は少なくて
1.5%である。これを式で表すと、B含有量をX%と
した時(9−X)%となる。この含有量未満では、硼化
物より成る硬質相全体に占める正方晶系のM32型複硼
化物の量が60%未満になり、残部の斜方晶系のM32
型複硼化物および他の硼化物のいずれか一方または両者
の合計量が40%を越え、硬質焼結合金の強度の低下を
もたらす。一方、CrおよびVのどちらか一方または両
者の合計含有量の上限は、種々実験の結果、60%以上
正方晶系のM32型複硼化物を形成させるためには、B
含有量が下限の3%の場合が40%であり、上限の7.
5%の場合は理由は不明であるが、17.5%である。
これを式で表すと、B含有量をX%とした時(55−5
X)%となる。この含有量を越えると、Niとの金属間
化合物や正方晶系のCr53などのM'53型硼化物な
どの他の硼化物が第3相として形成され、硼化物より成
る硬質相全体に占める正方晶系のM32型複硼化物の量
が60%未満になり、強度の低下を招く。したがって、
CrおよびV含有量はいずれか一方または両者の合計
で、B含有量をX%とした時(9−X)〜(55−5
X)の範囲とする。
Cr and V are indispensable elements for forming a tetragonal M 3 B 2 type double boride, and must be added in a certain amount with respect to the amount of B. Also, the added Cr
And V are elements that form a solid solution not only in the hard phase but also in the Ni-based binder phase, and have a great effect on improving the corrosion resistance of the hard alloy. As a result of various experiments, the lower limit of the total content of either or both of Cr and V is 60% or more.
In order to form a 3 B 2 type double boride, the lower limit of 3% is 6% and the upper limit of 7.5% is 6%. The content is at least 1.5%. When this is expressed by a formula, it becomes (9-X)% when the B content is X%. If the content is less than this, the amount of tetragonal M 3 B 2 type complex boride in the entire hard phase composed of borides is less than 60%, and the balance is orthorhombic M 3 B 2
Either or both of the type compound boride and the other boride exceeds 40%, resulting in a decrease in strength of the hard sintered alloy. On the other hand, the upper limit of the total content of either or both of Cr and V is 60% or more as a result of various experiments, and in order to form a tetragonal M 3 B 2 type complex boride,
When the content is 3% which is the lower limit, it is 40%, and when the content is 7.
In the case of 5%, the reason is unknown, but it is 17.5%.
When this is expressed by an equation, when the B content is X% (55-5
X)%. Beyond this amount, other borides, such as M '5 B 3 type borides such as Cr 5 B 3 intermetallic compounds and tetragonal and Ni is formed as the third phase, consisting of borides The amount of tetragonal M 3 B 2 type double boride in the entire hard phase is less than 60%, resulting in a decrease in strength. Therefore,
The Cr and V contents are either one or both in total, and when the B content is X%, (9-X) to (55-5).
X) range.

【0014】Niは、正方晶系のM32型複硼化物形成
に必要不可欠な元素である。また、結合相を構成する主
な元素であり、本高耐食性高強度硬質合金の優れた耐食
性に寄与する。Ni含有量が10%未満になると、種々
実験の結果、硼化物より成る硬質相全体に占める正方晶
系のM32型複硼化物の量が60%未満になり、強度の
低下を招く。したがって、残部は10%以上のNiとす
る。なお、B,Mo,W,Cr,V,Cu,Co,N
b,Zr,Ti,Taの合計量が100%を越え、Ni
を10%含有できない場合には、いうまでもなく、各元
素の許容される重量%の範囲内において、その量を減じ
て、残部に10%以上のNiを確保する。
Ni is an essential element for forming a tetragonal M 3 B 2 type double boride. Further, it is a main element constituting the binder phase and contributes to the excellent corrosion resistance of the present high corrosion resistance and high strength hard alloy. When the Ni content is less than 10%, as a result of various experiments, the amount of tetragonal M 3 B 2 type complex boride occupying the whole hard phase composed of borides is less than 60%, resulting in a decrease in strength. .. Therefore, the balance is 10% or more of Ni. In addition, B, Mo, W, Cr, V, Cu, Co, N
b, Zr, Ti, Ta total amount exceeds 100%, Ni
When 10% cannot be contained, it goes without saying that the amount is reduced within the allowable weight% range of each element to secure 10% or more of Ni in the balance.

【0015】Cuは、主としてNi基合金結合相中に固
溶し、本高耐食性高強度硬質焼結合金の耐食性の改善に
効果を示す。添加量が0.1%未満ではこれらの効果は
認められず、5%を越えると機械的特性が低下する。よ
って本高耐食性高強度硬質焼結合金にCuを添加した場
合の含有量は、0.1〜5%とする。
Cu mainly forms a solid solution in the Ni-based alloy binder phase and exhibits an effect of improving the corrosion resistance of the present high corrosion resistance and high strength hard sintered alloy. If the amount added is less than 0.1%, these effects are not observed, and if it exceeds 5%, the mechanical properties deteriorate. Therefore, when Cu is added to the present high corrosion resistance and high strength hard sintered alloy, the content is set to 0.1 to 5%.

【0016】Coは、主としてNi基合金結合相中に固
溶し、本高耐食性高強度硬質焼結合金の高温強度、耐酸
化性の改善に効果を示す。添加量が0.2%未満ではこ
れらの効果は認められず、5%を越えると機械的特性が
低下する。よって本高耐食性高強度硬質焼結合金にCo
を添加した場合の含有量は、0.2〜5%とする。
Co is mainly solid-dissolved in the Ni-base alloy binder phase and has an effect of improving the high temperature strength and oxidation resistance of the present high corrosion resistance and high strength hard sintered alloy. If the added amount is less than 0.2%, these effects are not observed, and if it exceeds 5%, the mechanical properties deteriorate. Therefore, this high corrosion resistance and high strength hard sintered alloy can be
The content in the case of adding is 0.2 to 5%.

【0017】Nbは硼化物形成元素であり、本高耐食性
高強度硬質焼結合金に添加した場合、硬質相中に固溶す
るとともに、一部は硼化物を形成し、硬度の上昇をもた
らすばかりでなく、結合相中にも固溶し液相焼結時の結
晶粒の粗大化を抑制する働きを持つ。Nbは少量の添加
で効果を示すが、0.2%未満では効果が表れない。一
方、10%を越えて添加しても、添加量ほどの特性の向
上は認められない。よって、Nbの添加量は、0.2〜
10%とする。さらに、Zr,Ti,TaはNbと同様
に硼化物形成元素であり、本高耐食性高強度硬質焼結合
金に添加した場合、硬質相中に固溶するとともに、一部
は硼化物を形成し、硬度の上昇をもたらすばかりでな
く、結合相中にも固溶し液相焼結時の結晶粒の粗大化を
抑制する働きを持つ。これらの元素は少量の添加で効果
を示すが、0.2%未満では効果が表れない。一方、1
0%を越えて添加しても、添加量ほどの特性の向上は認
められないだけでなく、全般にこれらの元素は高価であ
るため、コストの上昇を招く。これらの元素は、各々単
独で添加できるだけでなく、2種以上の元素の複合添加
をすることも可能である。よって、これらの元素の添加
量はNb,Zr,Ti,Taの1種または2種以上の合
計で、0.2〜10%とする。
Nb is a boride-forming element, and when added to the present high corrosion resistance and high-strength hard sintered alloy, it forms a solid solution in the hard phase and partly forms boride, which not only increases the hardness. Not only that, it also forms a solid solution in the binder phase and has the function of suppressing the coarsening of crystal grains during liquid phase sintering. Nb shows an effect even if added in a small amount, but no effect appears if it is less than 0.2%. On the other hand, even if it is added in excess of 10%, the improvement in characteristics as much as the addition amount is not recognized. Therefore, the amount of Nb added is 0.2 to
10%. Further, Zr, Ti, and Ta are boride-forming elements like Nb, and when added to this high corrosion-resistant high-strength hard sintered alloy, they form a solid solution in the hard phase and partly form boride. Not only does it increase hardness, but also acts as a solid solution in the binder phase to suppress coarsening of crystal grains during liquid phase sintering. These elements are effective when added in a small amount, but the effect is not exhibited when less than 0.2%. On the other hand, 1
Even if added in excess of 0%, not only the improvement in characteristics as much as the added amount is not recognized, but also since these elements are generally expensive, the cost is increased. These elements can be added not only individually but also as a composite addition of two or more kinds of elements. Therefore, the addition amount of these elements is 0.2 to 10% in total of one kind or two kinds or more of Nb, Zr, Ti, and Ta.

【0018】本高耐食性高強度硬質焼結合金中に含まれ
る不可避的不純物元素の主なものは、Fe,Si,A
l,Mn,Mg,P,S,N,O,C等であり、Feを
除くSi,Al,Mn,Mg,P,S,N,O,C等の
不純物元素の含有量は、正方晶系のM32型複硼化物形
成のためには極力少ない方がよく、含有量の合計が1.
5%以下であれば特性の低下は比較的少ない。なお、F
eは本高耐食性高強度硬質焼結合金を製造する過程で、
原料粉末および製造容器等から混入し易い不純物であ
り、合金強度におよぼす影響は少ないものの、耐食性の
低下をもたらすため、本高耐食性高強度硬質焼結合金中
の含有量は少ない方がよく、4%以下とする。よって本
高耐食性高強度硬質焼結合金中に含まれる不可避的不純
物元素の含有量は、Feが4%以下、好ましくは2%以
下、より好ましくは1%以下とする。Feを除くSi,
Al,Mn,Mg,P,S,N,O,C等の含有量の合
計で1.5%以下、好ましくは1%以下とする。なお、
本高耐食性高強度硬質焼結合金を強度を余り必要としな
い耐摩耗被覆として用い、耐酸化性向上のために意識的
にSi,Alなどを添加する場合はこの限りではない。
また、Cは本高耐食性高強度硬質焼結合金中に炭化物を
形成し、強度を低下させるものの、硬度の上昇および耐
摩耗性を改善するため、特に耐摩耗性を要求される用途
に関して、意識的にCを添加する場合もこの限りではな
い。さらに、FeはNiと置換可能な安価な元素であ
り、本高耐食性高強度硬質焼結合金の耐食性を低下させ
るものの、特に廉価な用途に関して、意識的にFeを添
加する場合もこの限りではない。
The main unavoidable impurity elements contained in the present high corrosion resistance and high strength hard sintered alloy are Fe, Si and A.
The content of impurity elements such as Si, Al, Mn, Mg, P, S, N, O, and C other than Fe is tetragonal. In order to form the M 3 B 2 type double boride in the system, it is preferable that the amount is as small as possible, and the total content is 1.
If it is 5% or less, the deterioration of the characteristics is relatively small. In addition, F
e is the process of manufacturing the high corrosion resistant high strength hard sintered alloy,
Although it is an impurity that is easily mixed from the raw material powder and manufacturing container, and has little effect on alloy strength, it causes a decrease in corrosion resistance. Therefore, it is better that the content in this high corrosion resistance high strength hard sintered alloy is small. % Or less. Therefore, the content of the unavoidable impurity element contained in the present high corrosion resistance and high strength hard sintered alloy is 4% or less of Fe, preferably 2% or less, and more preferably 1% or less. Si excluding Fe,
The total content of Al, Mn, Mg, P, S, N, O, C, etc. is 1.5% or less, preferably 1% or less. In addition,
This does not apply when the present high corrosion resistance and high strength hard sintered alloy is used as a wear resistant coating that does not require much strength and Si, Al, etc. are intentionally added to improve the oxidation resistance.
Further, although C forms carbide in the high corrosion resistance and high strength hard sintered alloy to reduce the strength, it improves the hardness and improves the wear resistance, so that it is necessary to consider the wear resistance in particular. This does not apply even when C is added intentionally. Further, Fe is an inexpensive element that can be replaced with Ni, and reduces the corrosion resistance of the present high corrosion resistance and high strength hard sintered alloy, but it is not limited to the case where Fe is intentionally added for particularly inexpensive applications. ..

【0019】本高耐食性高強度硬質焼結合金は、Ni,
Mo,Cr,V,W,Cu,Co,Nb,Zr,Ti,
Taの元素の内1種または2種以上の元素とBとの合金
粉末、もしくはB単体粉末と、Ni,Mo,Cr,V,
W,Cu,Co,Nb,Zr,Ti,Taの単体金属粉
末、もしくはこれらの元素の内2種以上を含む合金粉末
を、振動ボールミルなどにより有機溶媒中で湿式混合粉
砕後、乾燥・造粒・成形を行い、その後真空、還元性ガ
ス、あるいは不活性ガス中などの非酸化性雰囲気中で、
液相焼結を行うことにより製造される。なお、原料粉で
あるNi,Mo,Cr,V,W,Cu,Co,Nb,Z
r,Ti,Taの元素の内1種または2種以上の元素と
Bとの合金粉末は、水またはガスアトマイズ法等により
製造してもさしつかえない。本高耐食性高強度硬質焼結
合金の硬質相となる正方晶系のM32型複硼化物は、上
記原料粉末の焼結中の反応により形成されるが、あらか
じめMo,W,Cr,VおよびNi等の硼化物、B単体
粉末などと、Mo,W,Cr,VおよびNiなどの金属
粉末を炉中で反応させることにより、Mo2(Cr,N
i)B2、Mo2(V,Ni)B2、Mo2(Cr,V,N
i)B2、(Mo,W)2(Cr,Ni)B2、(Mo,
W)2(V,Ni)B2および(Mo,W)2( Cr,
V,Ni)B2などの正方晶系M32型複硼化物を製造
し、これらの複硼化物粉末に、Ni基合金マトリックス
となるNiおよびCr,V,Mo,Wなどの金属粉末を
配合した粉末を原料粉末として用いても差しつかえな
い。本高耐食性高強度硬質焼結合金の湿式混合粉砕は、
振動ボールミルなどにより有機溶媒中で行われ、焼結中
の正方晶系M32型複硼化物形成反応を迅速、かつ十分
に行わせるために、振動ボールミル粉砕後の、粉末の平
均粒径は0.2〜2μmが好ましい。なお、0.2μm
未満まで粉砕しても、微細化による効果向上は少ないば
かりでなく、粉砕に長時間を要する。また、2μmを越
えると正方晶系M32型複硼化物形成反応が迅速に進行
せず、焼結体中の硬質相の粒径も大きくなり、機械的特
性の低下が著しい。本高耐食性高強度硬質焼結合金の液
相焼結は、合金組成により異なるが、一般的には115
0〜1350℃の温度で5〜90分間行われる。115
0℃未満では正方晶系のM32型複硼化物が十分に形成
しない。一方、1350℃を越えると過剰の液相を生
じ、焼結体の形崩れが著しい。したがって、最終焼結温
度は1150〜1350℃とする。好ましくは1175
〜1325℃である。昇温速度は一般的には0.5〜6
0℃/分であり、0.5℃/分より遅いと所定の加熱温
度に到達するまでに長時間を要する。一方、60℃/分
より速すぎると焼結炉の温度コントロールができない。
したがって、昇温速度は0.5〜60℃/分、好ましく
は1〜30℃/分である。なお1150〜1350℃で
行う液相焼結に先立ち、1025〜1125℃の液相が
存在しない固相域において10〜240分間保持し、原
料粉末中に含まれているCにより、粉末表面の酸化被膜
を十分に還元除去することが好ましい。これは酸化被膜
が存在すると、正方晶系のM32型複硼化物が十分に形
成しないからである。したがって、原料粉末の酸化の程
度が著しい場合には、意図的にCを原料粉末として配合
しても良い。ただし、Cは本来不純物元素であり、特性
を低下させるため、最終焼結体中の含有量はFeを除く
Si,Al,Mn,Mg,P,S,N,O,C等の含有
量の合計で、1.5%以下とすることはいうまでもな
い。
This high corrosion resistance and high strength hard sintered alloy is composed of Ni,
Mo, Cr, V, W, Cu, Co, Nb, Zr, Ti,
An alloy powder of B with one or more of the elements of Ta and B, or a powder of B alone, Ni, Mo, Cr, V,
Single metal powder of W, Cu, Co, Nb, Zr, Ti, Ta, or alloy powder containing two or more of these elements is wet-mixed and ground in an organic solvent by a vibrating ball mill or the like, and then dried and granulated.・ Molding, then in a non-oxidizing atmosphere such as vacuum, reducing gas or inert gas,
It is manufactured by performing liquid phase sintering. The raw material powders of Ni, Mo, Cr, V, W, Cu, Co, Nb, Z
The alloy powder of B with one or more of the elements of r, Ti and Ta and B may be produced by a water or gas atomizing method or the like. The tetragonal M 3 B 2 type complex boride, which is the hard phase of the high corrosion-resistant high-strength hard sintered alloy, is formed by the reaction during sintering of the above raw material powders. By reacting a boride such as V and Ni, a simple B powder or the like with a metal powder such as Mo, W, Cr, V or Ni in a furnace, Mo 2 (Cr, N
i) B 2 , Mo 2 (V, Ni) B 2 , Mo 2 (Cr, V, N
i) B 2 , (Mo, W) 2 (Cr, Ni) B 2 , (Mo,
W) 2 (V, Ni) B 2 and (Mo, W) 2 (Cr,
V, Ni) B 2 and other tetragonal M 3 B 2 type complex borides are produced, and Ni and Cr, V, Mo, W and other metal powders serving as a Ni-based alloy matrix are added to these complex boride powders. There is no problem even if a powder blended with is used as the raw material powder. Wet-mix grinding of this high corrosion-resistant high-strength hard sintered alloy
The average particle size of the powder after the vibration ball mill is pulverized in order to quickly and sufficiently carry out the tetragonal M 3 B 2 type double boride formation reaction during sintering performed in an organic solvent by a vibration ball mill or the like. Is preferably 0.2 to 2 μm. 0.2 μm
Even if it is pulverized to less than a certain amount, not only is the improvement in effect due to miniaturization small, but pulverization requires a long time. On the other hand, if it exceeds 2 μm, the tetragonal M 3 B 2 type double boride forming reaction does not proceed rapidly, the grain size of the hard phase in the sintered body becomes large, and the mechanical properties are significantly deteriorated. The liquid phase sintering of the high corrosion resistant high strength hard sintered alloy varies depending on the alloy composition, but is generally 115.
It is carried out at a temperature of 0 to 1350 ° C. for 5 to 90 minutes. 115
If the temperature is lower than 0 ° C., tetragonal M 3 B 2 type double boride is not sufficiently formed. On the other hand, when the temperature exceeds 1350 ° C., an excessive liquid phase is generated, and the shape of the sintered body is significantly lost. Therefore, the final sintering temperature is 1150 to 1350 ° C. Preferably 1175
~ 1325 ° C. The heating rate is generally 0.5 to 6
It is 0 ° C./minute, and if it is slower than 0.5 ° C./minute, it takes a long time to reach a predetermined heating temperature. On the other hand, if it is faster than 60 ° C / min, the temperature of the sintering furnace cannot be controlled.
Therefore, the rate of temperature rise is 0.5 to 60 ° C / min, preferably 1 to 30 ° C / min. Prior to the liquid phase sintering performed at 1150 to 1350 ° C., the powder surface was kept at 1025 to 1125 ° C. for 10 to 240 minutes in the solid phase region where the liquid phase did not exist, and was oxidized by the C contained in the raw material powder. It is preferable to sufficiently reduce and remove the coating. This is because if an oxide film is present, tetragonal M 3 B 2 type complex boride is not sufficiently formed. Therefore, when the degree of oxidation of the raw material powder is remarkable, C may be intentionally mixed as the raw material powder. However, since C is an impurity element by nature and deteriorates the characteristics, the content in the final sintered body is the content of Si, Al, Mn, Mg, P, S, N, O, C, etc. excluding Fe. It goes without saying that the total is 1.5% or less.

【0020】[0020]

【作用】本発明は、硼化物より成る硬質相35〜95%
と、該硬質相を結合するNi基の結合相からなり、かつ
全硬質相量のうち、正方晶系のM32型複硼化物を60
%以上含み、残部が斜方晶系のM32型複硼化物あるい
は他の硼化物よりなる高耐食性高強度硬質焼結合金を提
供するものであり、B含有量は3〜7.5%、Mo含有
量はMo/B原子比で0.8〜(1.6−0.05X)
(X:含有するBの重量%)、CrおよびV含有量はい
ずれか一方または両者の合計で、(9−X)〜(55−
5X)%を満足する範囲内に限定することにより、硼化
物系硬質合金中に形成され易い、斜方晶系のM32型複
硼化物および他の硼化物等の第3相の形成を抑制し、正
方晶系のM32型複硼化物とNi基合金マトリックスの
主として2相からなる高耐食性高強度硬質焼結合金が得
られる。また、0.1〜30%の必要量のW添加は焼結
性改善および耐摩耗性向上に効果があり、この場合に
は、Mo含有量を(Mo+W)/B原子比で0.8〜
(1.6−0.05X)に限定する。さらにCu添加に
より本高耐食性高強度硬質焼結合金の耐食性、Co添加
により高温強度および耐酸化性、Nb,Zr,Ti,T
a添加により機械的特性が大幅に改善される。
In the present invention, the hard phase composed of boride is 35 to 95%.
And a tetragonal M 3 B 2 type boride composed of a Ni-based binder phase that bonds the hard phase and out of the total hard phase content.
% Or more, with the balance being an orthorhombic M 3 B 2 type complex boride or other boride, which has high corrosion resistance and high strength, and has a B content of 3 to 7.5. %, Mo content is 0.8 to (1.6-0.05X) in Mo / B atomic ratio.
(X:% by weight of B contained), Cr and V contents are either one or a total of (9-X) to (55-
The formation of a third phase, such as an orthorhombic M 3 B 2 type complex boride and other borides, which is likely to be formed in a boride-based hard alloy, by limiting the content to a range satisfying 5X)%. And a high corrosion resistance and high strength hard sintered alloy mainly composed of two phases of a tetragonal M 3 B 2 type double boride and a Ni-based alloy matrix can be obtained. Further, the addition of a required amount of W of 0.1 to 30% is effective in improving the sinterability and the wear resistance. In this case, the Mo content is (Mo + W) / B atomic ratio of 0.8 to
Limited to (1.6-0.05X). Furthermore, by adding Cu, the corrosion resistance of this high-corrosion-resistant high-strength hard sintered alloy, by adding Co, high-temperature strength and oxidation resistance, Nb, Zr, Ti, T
Addition of a significantly improves the mechanical properties.

【0021】[0021]

【実施例】本発明の実施例及び比較例を表1〜8により
説明する。
EXAMPLES Examples and comparative examples of the present invention will be described with reference to Tables 1 to 8.

【0022】原料粉末として、表1に示す化合物粉末お
よび表2に示す純金属粉末を用い、これらの粉末を表3
および4に示す組成になるように、表5および6に示す
配合比で配合後、振動ボールミルによりアセトン中で3
0時間、湿式混合粉砕を行った。ボールミル後の粉末は
乾燥・造粒を行い、できた微粉末を所定の形状にプレス
成形後、真空中において1100℃の温度に90分間保
持した後、1220〜1340℃の温度で30分間焼結
を行った。昇温速度は10℃/分とした。なお、比較例
10および11に示すステンレス鋼SUS304および
SUS440Cは市販品を使用した。
As raw material powders, the compound powders shown in Table 1 and the pure metal powders shown in Table 2 were used.
And 4 to obtain the compositions shown in Tables 5 and 6, and then 3 in acetone by a vibration ball mill.
Wet mixing and grinding was performed for 0 hours. The powder after ball milling is dried and granulated, and the fine powder thus obtained is press-molded into a predetermined shape, held at a temperature of 1100 ° C for 90 minutes in vacuum, and then sintered at a temperature of 1220 to 1340 ° C for 30 minutes. I went. The heating rate was 10 ° C./min. Commercially available stainless steels SUS304 and SUS440C shown in Comparative Examples 10 and 11 were used.

【0023】 [0023]

【0024】 [0024]

【0025】 [0025]

【0026】 [0026]

【0027】 [0027]

【0028】 [0028]

【0029】実施例に示す組成の本高耐食性高強度硬質
焼結合金および比較例の、焼結後の試片の常温における
硬質相および全硬質相中の正方晶系M32型複硼化物の
重量%、抗折力および硬度の測定結果と共に、800℃
における高温抗折力を表7および8に示す。さらに腐食
性の強い雰囲気である40℃、10%弗化水素酸水溶液
中10時間浸漬後の腐食減量を測定し、1時間当たりの
腐食減量(mg/cm2/h)に換算した結果、および900℃
静止大気中、1時間保持後の酸化増量の測定結果を示
す。なお、全硬質相中の正方晶系M32型複硼化物量
は、X線回折装置を用いて定量分析した。また、高温抗
折力は常温において高い強度を示す試料のみ実施した。
Tetragonal M 3 B 2 type double boron in the hard phase and the total hard phase of the sintered samples of the high corrosion resistance and high strength hard alloys of the compositions shown in the examples and the comparative examples. Along with the measurement results of the weight% of the compound, bending strength and hardness
The high temperature transverse rupture strengths of the above are shown in Tables 7 and 8. Furthermore, the corrosion weight loss after immersion in a 10% hydrofluoric acid aqueous solution at 40 ° C., which is a highly corrosive atmosphere, for 10 hours was measured and converted into the corrosion weight loss per hour (mg / cm 2 / h), and 900 ° C
The measurement result of the oxidation increase after 1 hour holding | maintenance in a stationary atmosphere is shown. The amount of tetragonal M 3 B 2 type double boride in all hard phases was quantitatively analyzed using an X-ray diffractometer. Further, the high temperature transverse rupture strength was carried out only for the samples showing high strength at room temperature.

【0030】 [0030]

【0031】 [0031]

【0032】表7、8より実施例1〜11は、比較例に
比較して、いずれも優れた抗折力、硬度、耐食性を有す
るばかりでなく、高温においても優れた抗折力を有する
ことがわかる。また、比較例10および11に示すステ
ンレス鋼と比較しても、同等の優れた耐酸化性を有して
いるばかりでなく、ステンレス鋼を越える耐食性を持つ
ことが明らかである。実施例1は特許請求範囲のB含有
量の下限に近い組成の合金であり、B含有量が3.3
%、硼化物よりなる硬質相量は40%である。したがっ
て硬度はやや低いものの、切削加工が可能という利点が
ある。また、正方晶系のM32型複硼化物を60%以上
含んでいるために、抗折力は260kg/mm2と高い
値である。実施例2〜5は硬質相が全て正方晶系のM3
2型複硼化物からなる組成の合金であり、硬度および
抗折力ともに高い値である。また、実施例4および5は
Wを含有した合金であり、形崩れのない良好な焼結体が
得られた。実施例6および7は、B含有量が各々6%お
よび7%であり、硬度が高く、特に実施例7は耐摩耗性
に優れる合金である。また、Ni基結合相量が少ないも
のの、正方晶系のM32型複硼化物を60%以上含んで
おり、硬度が高いわりには抗折力も高い値を示してい
る。実施例8はCuを含有しており、10%弗化水素酸
水溶液中、40℃、10時間浸漬後の腐食減量が少な
く、耐食性が特に優れる合金である。実施例9〜11は
Nb、ZrおよびTiの硼化物形成元素を含有したもの
であり、硬度が高く耐摩耗性に優れる。また、結晶粒が
微細化しており、抗折力も高い値を示している。さら
に、実施例9および11はCoを含有しており、900
℃静止大気中、1時間保持後の酸化増量が少なく、耐酸
化性に優れる。それに対して比較例1は、B量が3%よ
り低い2.5%の場合であり、硬質相量が35%より少
なく低硬度であり、耐摩耗性に問題がある。また、V含
有量がB含有量をX%とした時の(9−X)=6.5%
より少ない5%であり、斜方晶系のM32型複硼化物が
多量に形成されており、全硬質相中に占める正方晶系の
32型複硼化物量が60%より少なく、抗折力が低
い。比較例2は、B含有量が7.5%より多い7.8%
の場合であり、硬質相量が95%を越え、硬度は高い。
しかしながらNi基結合相が少ないことにくわえて、C
r含有量がB含有量をX%とした時の(55−5X)=
16%を越えて17%であり、全硬質相中に占める正方
晶系M32型複硼化物量が60%より少なく、抗折力が
低い。比較例3はMo/B比が0.8より小さい0.6
であり、全硬質相中に占める正方晶系M32型複硼化物
量が60%より少なく、抗折力が低い。比較例4はB含
有量をX%とした時、Mo/B比が(1.6−0.05
X)=1.35を越えて1.37であり、強度低下をも
たらすMo−Ni系金属間化合物が第3相として形成さ
れるとともに、CrおよびVの合計含有量が、B含有量
をX%とした時の(55−5X)=30%を越えて32
%であり、全硬質相中に占める正方晶系M32型複硼化
物量が60%より少なく、抗折力が低い。比較例5はC
rおよびVのどちらか一方または両者の合計含有量が0
%であり、硬質相が全て斜方晶系M32型複硼化物より
なり、抗折力が低い。比較例6はCrおよびVの合計含
有量が、B含有量をX%とした時の(55−5X)=3
6%を越えて45%であり、全硬質相中に占める正方晶
系M32型複硼化物量が60%より少なく、抗折力が低
い。比較例7はW含有量が30%より多く、全硬質相中
に占める正方晶系M32型複硼化物量が60%より少な
く、抗折力が低い。また、W含有量が多いために、Wを
含まない組成の合金と比較すると1ポイント比重が高
く、軽量化を求められる用途に不向きである。比較例8
はFeを10%含有したものであり、強度は高いもの
の、10%弗化水素酸水溶液中、40℃、10時間浸漬
後の腐食減量が多く、耐食性が劣る。また、耐酸化性に
も劣る。比較例9はNiを全く含まない組成の合金であ
り、正方晶系M32型複硼化物が認められず、抗折力が
低い。
From Tables 7 and 8, Examples 1 to 11 have not only excellent transverse rupture strength, hardness and corrosion resistance, but also excellent transverse rupture strength even at high temperatures, as compared with Comparative Examples. I understand. Further, even when compared with the stainless steels shown in Comparative Examples 10 and 11, it is clear that not only they have equivalent excellent oxidation resistance, but also have corrosion resistance exceeding that of stainless steel. Example 1 is an alloy having a composition close to the lower limit of the B content in the claims, and the B content is 3.3.
%, The hard phase amount consisting of boride is 40%. Therefore, although the hardness is a little low, it has an advantage that it can be cut. Further, since it contains 60% or more of tetragonal M 3 B 2 type double boride, the transverse rupture strength is as high as 260 kg / mm 2 . In Examples 2 to 5, all hard phases are tetragonal M 3
It is an alloy having a composition composed of a B 2 -type double boride, and has high hardness and bending strength. In addition, Examples 4 and 5 are alloys containing W, and good sintered bodies without deformation were obtained. In Examples 6 and 7, the B contents were 6% and 7%, respectively, and the hardness was high. In particular, Example 7 is an alloy excellent in wear resistance. Further, although the amount of Ni-based binder phase was small, it contained 60% or more of tetragonal M 3 B 2 type double boride, and although the hardness was high, the bending strength was high. Example 8 is an alloy containing Cu, which has a small corrosion weight loss after immersion in a 10% hydrofluoric acid aqueous solution at 40 ° C. for 10 hours and is particularly excellent in corrosion resistance. Examples 9 to 11 contain the boride forming elements of Nb, Zr and Ti, and have high hardness and excellent wear resistance. In addition, the crystal grains are miniaturized, and the transverse rupture strength also shows a high value. Furthermore, Examples 9 and 11 contain Co and
Excellent in oxidation resistance, with little increase in oxidation after 1 hour in static air at ℃. On the other hand, in Comparative Example 1, the amount of B is 2.5%, which is lower than 3%, the amount of hard phase is less than 35% and the hardness is low, and there is a problem in wear resistance. Further, the V content is (9−X) = 6.5% when the B content is X%.
It is less than 5%, and a large amount of orthorhombic M 3 B 2 type complex boride is formed, and the amount of tetragonal M 3 B 2 type complex boride in the total hard phase is 60%. Less and less bending strength. In Comparative Example 2, the B content is 7.8%, which is more than 7.5%.
In this case, the hard phase content exceeds 95% and the hardness is high.
However, in addition to the small amount of Ni-based bonded phase, C
r content is (55-5X) when B content is X% =
It is more than 16% and 17%, the amount of tetragonal M 3 B 2 type complex boride in the total hard phase is less than 60%, and the transverse rupture strength is low. In Comparative Example 3, the Mo / B ratio is smaller than 0.8 and is 0.6.
The tetragonal M 3 B 2 type double boride content in the total hard phase is less than 60%, and the transverse rupture strength is low. In Comparative Example 4, when the B content was X%, the Mo / B ratio was (1.6-0.05).
X) = 1.35 to 1.37, a Mo—Ni-based intermetallic compound that causes strength reduction is formed as the third phase, and the total content of Cr and V is the B content of X. % When (55-5X) = 30% over 32
%, The tetragonal M 3 B 2 type double boride content in the total hard phase is less than 60%, and the transverse rupture strength is low. Comparative Example 5 is C
The total content of either or both of r and V is 0.
%, And the hard phase is composed entirely of orthorhombic M 3 B 2 type complex boride, and the transverse rupture strength is low. In Comparative Example 6, the total content of Cr and V is (55-5X) = 3 when the B content is X%.
It is more than 6% and 45%, the amount of tetragonal M 3 B 2 type complex boride in the total hard phase is less than 60%, and the transverse rupture strength is low. Comparative Example 7 has a W content of more than 30%, a tetragonal M 3 B 2 type compound boride content of less than 60% in the total hard phase, and a low transverse rupture strength. Further, since the W content is large, it has a high one-point specific gravity as compared with an alloy having a composition not containing W, and is not suitable for applications requiring weight reduction. Comparative Example 8
Contains 10% of Fe and has high strength, but has a large corrosion weight loss after immersion in a 10% hydrofluoric acid aqueous solution at 40 ° C. for 10 hours, resulting in poor corrosion resistance. Also, it is inferior in oxidation resistance. Comparative Example 9 is an alloy having a composition containing no Ni, a tetragonal M 3 B 2 type double boride is not recognized, and the transverse rupture strength is low.

【0033】実施例に示す組成の、本高耐食性高強度硬
質焼結合金の主要硬質相である、正方晶系M32型複硼
化物相の、Cu−Kα線によるX線回折図形を図1に示
す。さらに同じM32型複硼化物でありながら、その量
が多くなると合金の強度を低下させる斜方晶系M32
複硼化物相の、Cu−Kα線によるX線回折図形を図2
に示す。図1および2を比較すると、同じM32型複硼
化物であっても、全く結晶系が異なる異種複硼化物であ
ることが明らかである。したがって、表7および8よ
り、図1に示されるX線回折図形の正方晶系のM32
複硼化物を全硬質相のうち60%以上含むことが、本高
耐食性高強度硬質焼結合金には必要不可欠であることが
明らかである。
An X-ray diffraction pattern by Cu-Kα ray of a tetragonal M 3 B 2 type complex boride phase, which is a main hard phase of the present high corrosion resistance and high strength hard sintered alloy having the composition shown in the example, is shown. As shown in FIG. Further, an X-ray diffraction pattern by Cu-Kα ray of an orthorhombic M 3 B 2 type double boride phase, which is the same M 3 B 2 type double boride and which decreases the strength of the alloy when the amount thereof increases, Figure 2
Shown in. Comparing FIGS. 1 and 2, it is clear that even the same M 3 B 2 type double boride is a different type double boride having a completely different crystal system. Therefore, from Tables 7 and 8, it is found that the content of the tetragonal M 3 B 2 type complex boride in the X-ray diffraction pattern shown in FIG. Clearly it is essential for bond money.

【0034】[0034]

【発明の効果】以上説明したように、本発明の正方晶系
のM32型複硼化物とNi基合金マトリックスよりなる
高耐食性高強度硬質焼結合金は、優れた耐食性および機
械的特性を兼ね備えており、射出成形機用部品、熱間伸
銅ダイス、軸受け、および化学工業等の高腐食環境下に
おいて使用可能な高強度耐摩耗材料として利用できる。
As described above, the high corrosion resistance and high strength hard sintered alloy comprising the tetragonal M 3 B 2 type boride and the Ni-based alloy matrix of the present invention has excellent corrosion resistance and mechanical properties. Therefore, it can be used as a high-strength wear-resistant material that can be used in highly corrosive environments such as parts for injection molding machines, hot-rolled copper dies, bearings, and the chemical industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】正方晶系M32型複硼化物相のCu−Kα線に
よるX線回折図である。
FIG. 1 is an X-ray diffraction diagram of a tetragonal M 3 B 2 type double boride phase by Cu—Kα ray.

【図2】斜方晶系M32型複硼化物相のCu−Kα線に
よるX線回折図である。
FIG. 2 is an X-ray diffraction diagram of an orthorhombic M 3 B 2 type double boride phase by Cu—Kα ray.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 硼化物より成る硬質相35〜95重量%
(以下%は重量%を表す)と、該硬質相を結合するNi
基の結合相からなる硬質焼結合金において、全硬質相量
のうち正方晶系のM32型(M:Mo、Niの他はCr
および/またはV)複硼化物を60%以上含み、残部が
斜方晶系のM32型複硼化物あるいは他の硼化物よりな
ることを特徴とする耐食性に優れた高強度硬質焼結合
金。
1. Hard phase consisting of boride 35-95% by weight
(Hereinafter,% represents weight%) and Ni that binds the hard phase
In a hard sintered alloy composed of a base binder phase, tetragonal M 3 B 2 type (M: Mo, Ni other than Cr is included in the total hard phase amount).
And / or V) A high-strength hard-fired bond excellent in corrosion resistance, characterized by containing 60% or more of a compound boride and the balance being an orthorhombic M 3 B 2 type compound boride or another boride. Money.
【請求項2】 合金中のB含有量が3〜7.5%、Mo
含有量がMo/B原子比で0.8〜(1.6−0.05
X)(X:含有するBの重量%)、CrおよびV含有量
がいずれか一方または両者の合計で(9−X)〜(55
−5X)%、残部が10%以上のNi、および不可避的
不純物よりなることを特徴とする請求項1の高耐食性高
強度硬質焼結合金。
2. The B content in the alloy is 3 to 7.5%, Mo
The content is 0.8 to (1.6-0.05 in Mo / B atomic ratio.
X) (X: wt% of B contained), Cr and / or V content is either (9-X) to (55) in total.
-5X)%, the balance 10% or more of Ni, and unavoidable impurities, The high corrosion-resistant high-strength hard sintered alloy according to claim 1.
【請求項3】 合金中のB含有量が3〜7.5%、Mo
含有量がMo/B原子比で0.8〜(1.6−0.05
X)、CrおよびV含有量がいずれか一方または両者の
合計で(9−X)〜(55−5X)%、残部が10%以
上のNi、および不可避的不純物よりなる硬質焼結合金
において、Cu含有量が0.1〜5%、Co含有量が
0.2〜5%およびNb含有量が0.2〜10%のいず
れか一種または二種以上を含むことを特徴とする請求項
1の高耐食性高強度硬質焼結合金。
3. The B content in the alloy is 3 to 7.5%, Mo
The content is 0.8 to (1.6-0.05 in Mo / B atomic ratio.
X), Cr, and V contents are either one or both in total (9-X) to (55-5X)%, the balance is 10% or more of Ni, and a hard sintered alloy consisting of inevitable impurities, The Cu content is 0.1 to 5%, the Co content is 0.2 to 5%, and the Nb content is 0.2 to 10% and any one kind or two or more kinds is contained. High corrosion resistance and high strength hard sintered alloy of.
【請求項4】 硼化物より成る硬質相35〜95%と、
該硬質相を結合するNi基の結合相からなり、かつ全硬
質相量のうち正方晶系のM32型(M:Mo、W、Ni
の他はCrおよび/またはV)複硼化物を60%以上含
み、残部が斜方晶系のM32型複硼化物あるいは他の硼
化物よりなることを特徴とする耐食性に優れた高強度硬
質焼結合金。
4. A hard phase composed of boride, 35 to 95%,
A tetragonal M 3 B 2 type (M: Mo, W, Ni consisting of a Ni-based binder phase that bonds the hard phase, and of the total hard phase content.
Other than Cr and / or V) compound boride in an amount of 60% or more, and the balance being orthorhombic M 3 B 2 type compound boride or other boride. Strong hard sintered alloy.
【請求項5】 合金中のB含有量が3〜7.5%、W含
有量が0.1〜30%、Mo含有量がMoおよびW含有
量の合計で、(Mo+W)/B原子比で0.8〜(1.
6−0.05X)、CrおよびV含有量がいずれか一方
または両者の合計で(9−X)〜(55−5X)%、残
部が10%以上のNi、および不可避的不純物よりなる
ことを特徴とする請求項4の高耐食性高強度硬質焼結合
金。
5. The B content in the alloy is 3 to 7.5%, the W content is 0.1 to 30%, the Mo content is the sum of Mo and W contents, and the (Mo + W) / B atomic ratio is obtained. 0.8- (1.
6-0.05X), one or both of Cr and V contents is (9-X) to (55-5X)%, the balance is 10% or more of Ni, and inevitable impurities. The high-corrosion-resistant high-strength hard sintered alloy according to claim 4.
【請求項6】 合金中のB含有量が3〜7.5%、W含
有量が0.1〜30%、Mo含有量がMoおよびW含有
量の合計で、(Mo+W)/B原子比で0.8〜(1.
6−0.05X)、CrおよびV含有量がいずれか一方
または両者の合計で(9−X)〜(55−5X)%、残
部が10%以上のNi、および不可避的不純物よりなる
硬質焼結合金において、Cu含有量が0.1〜5%、C
o含有量が0.2〜5%およびNb含有量が0.2〜1
0%のいずれか一種または2種以上を含むことを特徴と
する請求項4の高耐食性高強度硬質焼結合金。
6. The alloy has a B content of 3 to 7.5%, a W content of 0.1 to 30%, a Mo content of Mo and a total of W contents of (Mo + W) / B atomic ratio. 0.8- (1.
6-0.05X), the content of Cr and / or V is (9-X) to (55-5X)% in total or both, and the balance is 10% or more of Ni, and hard baking consisting of unavoidable impurities. In the bond gold, Cu content is 0.1-5%, C
o content 0.2-5% and Nb content 0.2-1
The high-corrosion-resistant high-strength hard sintered alloy according to claim 4, which contains 0% of any one kind or two or more kinds.
【請求項7】 Nbの一部または全部を、Zr,Ti,
Taの中から選ばれた一種または二種以上で置換するこ
とを特徴とする請求項3または6の高耐食性高強度硬質
焼結合金。
7. Part or all of Nb is Zr, Ti,
The high-corrosion-resistant high-strength hard sintered alloy according to claim 3 or 6, which is substituted by one or more selected from Ta.
JP3834592A 1992-01-30 1992-01-30 High corrosion resistance, high strength hard sintered alloy Expired - Lifetime JP2631791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3834592A JP2631791B2 (en) 1992-01-30 1992-01-30 High corrosion resistance, high strength hard sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3834592A JP2631791B2 (en) 1992-01-30 1992-01-30 High corrosion resistance, high strength hard sintered alloy

Publications (2)

Publication Number Publication Date
JPH05214479A true JPH05214479A (en) 1993-08-24
JP2631791B2 JP2631791B2 (en) 1997-07-16

Family

ID=12522700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3834592A Expired - Lifetime JP2631791B2 (en) 1992-01-30 1992-01-30 High corrosion resistance, high strength hard sintered alloy

Country Status (1)

Country Link
JP (1) JP2631791B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005802A1 (en) * 1996-08-06 1998-02-12 Toyo Kohan Co., Ltd. Hard sintered alloy
WO2012133328A1 (en) * 2011-03-30 2012-10-04 東洋鋼鈑株式会社 Hard sintered alloy
CN113005319A (en) * 2021-02-22 2021-06-22 林玉婷 Metal ceramic wear-resistant material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005802A1 (en) * 1996-08-06 1998-02-12 Toyo Kohan Co., Ltd. Hard sintered alloy
US6030429A (en) * 1996-08-06 2000-02-29 Toyo Kohan Co., Ltd. Hard sintered alloy
CN1076053C (en) * 1996-08-06 2001-12-12 东洋钢钣株式会社 Hard sintered alloy
WO2012133328A1 (en) * 2011-03-30 2012-10-04 東洋鋼鈑株式会社 Hard sintered alloy
CN113005319A (en) * 2021-02-22 2021-06-22 林玉婷 Metal ceramic wear-resistant material and preparation method thereof

Also Published As

Publication number Publication date
JP2631791B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
JP3717525B2 (en) Hard sintered alloy
JP2660455B2 (en) Heat resistant hard sintered alloy
EP3441497A1 (en) Lightweight steel and steel sheet with enhanced elastic modulus, and manufacturing method thereof
JPS5867842A (en) Hard sintered alloy
US20040079191A1 (en) Hard alloy and W-based composite carbide powder used as starting material
Hanada Niobium aluminides
JP2001089823A (en) Double boride sintered hard alloy, and screw for resin processing machine using the alloy
JP2631791B2 (en) High corrosion resistance, high strength hard sintered alloy
JP4282298B2 (en) Super fine cemented carbide
JP2611177B2 (en) Cemented carbide with high hardness and excellent oxidation resistance
JPS62196353A (en) Hard sintered alloy having high corrosion resistance
JPS63286550A (en) Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation
JP4265853B2 (en) Hard sintered alloy excellent in corrosion resistance and thermal shock resistance against molten metal, and member for molten metal using the alloy
JPH0892602A (en) Titanium-aluminium intermetallic compound powder and its sintered compact
JP2002501983A (en) Iron aluminide composite and method for producing the same
JP2004263251A (en) Group 7a element-containing cemented carbide
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JP3603318B2 (en) Double boride based sintered alloy
JPH06340941A (en) Nano-phase composite hard material and its production
JP2005068479A (en) Boron-containing cemented carbide
JPH07138691A (en) Sintered hard alloy for aluminum working
JPH073376A (en) Multiple boride cermet sintered compact and ageing method thereof
JPS63143236A (en) Composite boride sintered body
JPS5913045A (en) External decorative parts for timepiece
JPH08134583A (en) Production of sintered hard alloy excellent in machinability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970218

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 15