JPH05209238A - Reducing smelting furnace of zinc oxide - Google Patents

Reducing smelting furnace of zinc oxide

Info

Publication number
JPH05209238A
JPH05209238A JP3691892A JP3691892A JPH05209238A JP H05209238 A JPH05209238 A JP H05209238A JP 3691892 A JP3691892 A JP 3691892A JP 3691892 A JP3691892 A JP 3691892A JP H05209238 A JPH05209238 A JP H05209238A
Authority
JP
Japan
Prior art keywords
furnace
layer
reducing
zinc
furnace gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3691892A
Other languages
Japanese (ja)
Inventor
Nobumasa Iemori
伸正 家守
Kimiaki Utsunomiya
公昭 宇都宮
Hitoshi Takano
斉 高野
Keiji Fujita
敬二 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3691892A priority Critical patent/JPH05209238A/en
Publication of JPH05209238A publication Critical patent/JPH05209238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To recover the metallic zinc by passing the reducing furnace gas through the layer of carbon solid reducing agent when the reducing furnace gas including the zinc vapor generated in the reducing smelting furnace, thereby decreasing the re-oxidation of zinc. CONSTITUTION:The reducing reaction is executed by blowing the raw material including the zinc oxide, coke breeze, oxygen, and nitrogen from a shaft ceiling part 3a of a reducing smelting furnace 1. The generated slag 2 is stored in the furnace bottom, and the furnace gas including the zinc vapor is passed through the layer 4a of the of the carbon solid reducing agent provided to the exit part, and guided to a condenser through a duct 8. Gas analyzing and measuring ports 6, 7 are provided before and after this layer 4a, and the composition of the furnace gas is analyzed, and the lump coke is thrown in from a throwing-in port so that the thickness of the layer 4a may approximately be 100mm or more. The grain size of the lump coke is approximately 10mm or more and the temperature of the layer is maintained at about 900 deg.C. This constitution allows the CO/CO2 ratio to be increased and re-oxidation of zinc to be decreased, leading to efficient recovery of the metallic zinc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化亜鉛の還元に関
し、具体的には、亜鉛を酸化物の形で含有した固体原料
あるいは熔融スラグから亜鉛を還元揮発回収する際に、
亜鉛蒸気を含む炉ガスの還元度を上昇させるように構成
することで、コンデンサーを含む炉操業の高効率化を図
る還元熔錬炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to reduction of zinc oxide, and more specifically, for reducing and recovering zinc from a solid raw material containing molten zinc in the form of oxide or molten slag,
The present invention relates to a reduction smelting furnace which is configured to increase the degree of reduction of furnace gas containing zinc vapor, thereby improving the efficiency of furnace operation including a condenser.

【0002】[0002]

【従来の技術】酸化亜鉛原料からの亜鉛の還元揮発製錬
法には大別して、熔鉱炉法、吹込み熔錬法、フラッシュ
熔錬法、スラグヒューミング法等、各種あるが、いずれ
の熔錬法においても、還元揮発した亜鉛蒸気は、CO、
CO2 を含む少なくとも800℃以上の還元性の炉ガス
中に存在する。
2. Description of the Related Art Zinc reduction from a zinc oxide raw material is roughly classified into various methods such as a blast furnace method, a blow smelting method, a flash smelting method, and a slag fuming method. Even in the smelting method, zinc vapor reduced and volatilized contains CO,
It is present in a reducing furnace gas containing CO 2 and having a temperature of at least 800 ° C. or higher.

【0003】この炉ガスは金属亜鉛回収のためコンデン
サーに導かれ、亜鉛蒸気は400〜600℃程度の熔融
鉛中に急冷濃縮される。
This furnace gas is led to a condenser for recovering metallic zinc, and zinc vapor is rapidly cooled and concentrated in molten lead at 400 to 600 ° C.

【0004】この際、化1に示す亜鉛の再酸化反応を少
しでも抑えるため、炉ガスの還元度を極力上げることが
必要となる。
At this time, in order to suppress the zinc reoxidation reaction shown in Chemical formula 1 as much as possible, it is necessary to raise the degree of reduction of the furnace gas as much as possible.

【0005】[0005]

【化1】Zn+CO2 →ZnO+COEmbedded image Zn + CO 2 → ZnO + CO

【0006】炉ガスの還元度は、炉ガスの温度または炉
ガス中のCO/CO2 比で影響を受け、炉ガス濃度やC
O/CO2 比が高いほど還元度は上昇する。
The degree of reduction of the furnace gas is affected by the temperature of the furnace gas or the CO / CO 2 ratio in the furnace gas, and the furnace gas concentration and C
The higher the O / CO 2 ratio, the higher the degree of reduction.

【0007】しかしながら、炉ガスの温度に関しては、
いくら高温にしても、プロセス上、コンデンサーで急冷
されるため、コンデンサーの手前では低温域となること
を避けられず、この領域で炉ガスの還元度は低下し、亜
鉛の再酸化が起こり易い状況となる。
However, regarding the temperature of the furnace gas,
Even if the temperature is high, the temperature is rapidly cooled by the condenser in the process, so it is unavoidable that the temperature is in the low temperature area before the condenser.In this area, the degree of reduction of the furnace gas is lowered and zinc reoxidation is likely to occur. Becomes

【0008】従って一般に炉ガスの還元度を上げるに
は、CO/CO2 比を高く保持することが効果的と考え
られている。
Therefore, it is generally considered effective to keep the CO / CO 2 ratio high in order to increase the degree of reduction of the furnace gas.

【0009】炉ガスのCO/CO2 比を高くするには、
炉に装入する酸素量に対する炭素系還元剤の装入割合を
増すことによって容易に達成できる。しかし、この方法
においては、従来、以下の様な問題点が生じ、CO/C
2 比を上昇させるには、各プロセスにおいて、それに
見合う限界値があった。
To increase the CO / CO 2 ratio of the furnace gas,
This can be easily achieved by increasing the charging ratio of the carbon-based reducing agent with respect to the amount of oxygen charged in the furnace. However, in this method, conventionally, the following problems occur and CO / C
In order to raise the O 2 ratio, there was a corresponding limit value in each process.

【0010】(1)炉ガスの還元度は、炉内に共存する
スラグあるいは原料の還元度にも影響を及ぼす為、両者
の還元度を別々に制御できない。
(1) Since the degree of reduction of the furnace gas also affects the degree of reduction of the slag or the raw material coexisting in the furnace, the degree of reduction of both cannot be controlled separately.

【0011】従って、炉ガスの還元度を上げるとスラグ
や原料の還元度も上昇し、例えばスラグ中の鉄酸化物も
過剰に還元されることになり、不必要な炭素還元剤消費
となるばかりではなく、還元度によっては金属鉄の析出
も生じ、これが炉内に蓄積するなどして、炉操業にも大
きな支障をきたすことになる。
Therefore, when the degree of reduction of the furnace gas is increased, the degree of reduction of the slag and the raw material is also increased, and, for example, the iron oxide in the slag is excessively reduced, resulting in unnecessary consumption of the carbon reducing agent. Rather, depending on the degree of reduction, metallic iron is also precipitated, which accumulates in the furnace, which greatly impedes the furnace operation.

【0012】(2)吹き込み熔錬法、フラッシュ熔錬
法、スラグヒューミング法等の酸素と共に炭素系還元剤
を同時に炉内に装入する熔錬法においては、炉ガスの還
元度を上げるため、つまり、炉内に装入する酸素量に対
する炭素系還元剤の装入割合を増やすほど、一般に炭素
系還元剤の未燃率が増加する傾向にある。この未燃率と
炉内に装入する酸素量に対する炭素系還元剤との関係
は、これらの装入方法によって多少異なるが、傾向は同
じで、この関係の一例を図2に示す。
(2) In a smelting method such as a blowing smelting method, a flash smelting method, a slag fuming method, etc., in which a carbon-based reducing agent is simultaneously charged into a furnace together with oxygen, in order to increase the degree of reduction of furnace gas. That is, the unburned rate of the carbon-based reducing agent generally tends to increase as the charging ratio of the carbon-based reducing agent to the amount of oxygen charged in the furnace increases. The relationship between the unburned rate and the carbon-based reducing agent with respect to the amount of oxygen charged in the furnace is slightly different depending on the charging method, but the tendency is the same, and an example of this relationship is shown in FIG.

【0013】このように、炉に装入する炭素系還元剤と
酸素の割合を制御し、炉ガスのCO/CO2 比を上昇さ
せようとすると、上記(1)の問題は勿論のこと、還元
反応に寄与しない炭素系還元剤即ち未燃炭素が増加し、
無駄な炭素系還元剤の消費になるばかりでなく、次工程
のコンデンサーへの未燃炭素のキャリーオーバーが増加
し、操業上の大きな支障となる。
As described above, if the ratio of the carbon-based reducing agent and oxygen charged into the furnace is controlled to increase the CO / CO 2 ratio of the furnace gas, the problem (1) is of course caused. Carbon-based reducing agent that does not contribute to the reduction reaction, that is, unburned carbon, increases,
Not only is the carbon-based reducing agent wasted in vain, but the carryover of unburned carbon to the condenser in the next step increases, which is a major obstacle to operation.

【0014】[0014]

【発明が解決しようとする課題】本発明は、還元熔錬炉
に装入する酸素量に対する炭素還元剤の割合を増加し、
亜鉛蒸気を含んだ炉ガスCO/CO2 比を上昇させよう
とするとき、不必要な炭素還元剤の消費、炉内に金属鉄
の析出による蓄積に起因する炉操業の低下、未燃炭素の
増加等の不都合が起るのを解消し、亜鉛蒸気を含んだ還
元性炉ガスのCO/CO2 比を上昇させる装置を作るこ
とである。
SUMMARY OF THE INVENTION The present invention increases the ratio of carbon reducing agent to the amount of oxygen charged in a reduction smelting furnace,
When trying to increase the CO / CO 2 ratio of the furnace gas containing zinc vapor, unnecessary consumption of the carbon reducing agent, deterioration of the furnace operation due to the accumulation of metallic iron in the furnace, reduction of unburned carbon It is to solve the inconvenience such as increase and to make a device for increasing the CO / CO 2 ratio of the reducing furnace gas containing zinc vapor.

【0015】[0015]

【課題を解決するための手段】本発明の酸化亜鉛の還元
熔錬炉は、酸化亜鉛を含有する固体原料あるいは熔融ス
ラグから、炭素系固体還元剤で該酸化亜鉛を還元揮発さ
せてコンデンサーで凝縮回収する還元熔錬炉において、
亜鉛蒸気を含んだ還元性炉ガスを該還元熔錬炉からコン
デンサーに導く間に炭素系固体還元剤の層を設けたこと
を特徴とする。
The zinc oxide reduction smelting furnace of the present invention is a solid raw material containing zinc oxide or a molten slag. In the reducing smelting furnace to recover,
It is characterized in that a layer of a carbon-based solid reducing agent is provided while introducing a reducing furnace gas containing zinc vapor from the reducing smelting furnace to a condenser.

【0016】本発明によれば、還元熔錬炉で発生した亜
鉛蒸気を含んだ還元性炉ガスがコンデンサーへ導かれる
前に、還元熔錬炉出口に設けた石炭、コークス等の炭素
系固体還元剤の層を通過することで還元が強化される。
According to the present invention, before the reducing furnace gas containing zinc vapor generated in the reduction smelting furnace is introduced to the condenser, carbon-based solid reduction such as coal or coke provided at the outlet of the reduction smelting furnace. The reduction is enhanced by passing through the agent layer.

【0017】[0017]

【作用】本発明は、還元熔錬炉において、還元反応によ
り生じた亜鉛蒸気を含んだ還元性炉ガスを、400〜6
00℃の低温に保持されているコンデンサーに導く前
に、還元熔錬炉出口部で炭素系固体還元剤の層を通過さ
せることにより、コンデンサーに導かれる炉ガスのCO
/CO2 比が上昇することを見出したことに基づいてい
る。
According to the present invention, the reducing furnace gas containing zinc vapor produced by the reduction reaction is supplied to the reducing smelting furnace at 400 to 6%.
The CO gas of the furnace gas introduced into the condenser is passed by passing through the layer of carbon-based solid reducing agent at the outlet of the reduction smelting furnace before introducing into the condenser held at a low temperature of 00 ° C.
It is based on the finding that the / CO 2 ratio increases.

【0018】炉ガスのCO/CO2 比が上昇するのは、
炉ガスが炭素系固体還元剤の層を通過する際、炉ガス中
のCO2 ガスが炭素系固体還元剤によって化2に示すブ
ルドワ反応に従いCOガスに還元されるためである。
The increase in the CO / CO 2 ratio of the furnace gas is due to
This is because when the furnace gas passes through the layer of carbon-based solid reducing agent, the CO 2 gas in the furnace gas is reduced to CO gas by the carbon-based solid reducing agent according to the Burdower reaction shown in Chemical formula 2.

【0019】[0019]

【化2】CO2 +C→2CO[Chemical formula 2] CO 2 + C → 2CO

【0020】このように、一旦還元熔錬炉内で還元反応
を終了させた炉ガスに対し、さらに還元熔錬炉出口部で
CO/CO2 比を高める操作を行うため、このCO/C
2比を高めた炉ガスが還元熔錬炉内で進行する還元反
応に影響を及ぼすことはなく、上記(1)の問題点を回
避することができる。
As described above, the furnace gas whose reduction reaction has been completed in the reducing smelting furnace is further operated to increase the CO / CO 2 ratio at the outlet of the reducing smelting furnace.
The furnace gas having an increased O 2 ratio does not affect the reduction reaction that proceeds in the reduction smelting furnace, and the problem (1) can be avoided.

【0021】また、上記問題点(2)に関しても、還元
熔錬炉に装入する酸素に対する炭素系還元剤の割合を増
やすことなく、炉ガスのCO/CO2 を上昇させ得るた
め、この問題点(2)を回避できる。
Regarding the above problem (2), the CO / CO 2 of the furnace gas can be increased without increasing the ratio of the carbon-based reducing agent to the oxygen charged in the reduction smelting furnace. The point (2) can be avoided.

【0022】以上説明したように、還元熔錬炉出口部に
設けた炭素系固体還元剤の層へ炉ガスを通過させること
によって、上記問題点(1)、(2)を引き起こすこと
なく、コンデンサーに導かれる前に炉ガスのCO/CO
2 比を上昇させることが可能となる。
As described above, by passing the furnace gas through the layer of the carbon-based solid reducing agent provided at the outlet of the reduction smelting furnace, the condenser (1) and the condenser (2) are not caused, and the condenser is prevented. CO / CO of the furnace gas before being introduced to
It is possible to increase the 2 ratio.

【0023】この方法による炉ガスのCO/CO2 比の
上昇度は、炭素系固体還元剤の層の温度、この層内の炉
ガスの滞留時間、炭素系固体還元剤の表面積等によって
影響を受け、これらの要因を調整することにより、炉ガ
スのCO/CO2 比の上昇度を制御することができる。
The degree of increase in the CO / CO 2 ratio of the furnace gas by this method is influenced by the temperature of the layer of the carbon-based solid reducing agent, the residence time of the furnace gas in this layer, the surface area of the carbon-based solid reducing agent, and the like. By adjusting these factors, the degree of increase in the CO / CO 2 ratio of the furnace gas can be controlled.

【0024】炭素系固体還元剤の層内の温度に関しては
高温ほどブルドワ反応が起こり易く即ちCO/CO2
上昇し易く、少なくとも700℃以上、望ましくば90
0℃以上が良い。
Regarding the temperature in the layer of the carbon-based solid reducing agent, the higher the temperature, the more easily the Burdower reaction occurs, that is, the CO / CO 2 is more likely to increase, and at least 700 ° C. or higher, preferably 90 ° C.
0 ° C or higher is good.

【0025】また炭素系固体還元剤の表面積に関して
は、表面積が大きいほど即ち粒度が小さいほど炉ガスと
の接触面積が増え効果的であるが、あまり細粒になる
と、還元熔錬炉の炉圧の上昇や、ハンドリング上の問題
が生じるので、少なくと10m/m以上の粒度が望まし
い。
Regarding the surface area of the carbon-based solid reducing agent, the larger the surface area, that is, the smaller the particle size, the more effectively the contact area with the furnace gas increases. However, if the particle size becomes too fine, the furnace pressure of the reduction smelting furnace will increase. Particle size and particle size of at least 10 m / m are desirable, since this raises problems with handling and handling.

【0026】次に滞留時間であるが、滞留時間が長いほ
ど、炭素系固体還元剤と炉ガスの接触時間が増えCO/
CO2 比の上昇に効果的である。少なくとも滞留時間が
0.3秒以上になるように炉ガス量に対して炭素系固体
還元剤の層の断面積と層厚を調整することが望ましい。
この際、層厚は少なくとも100m/m以上に設定する
のが望ましい。
Next, regarding the residence time, the longer the residence time, the more the contact time between the carbon-based solid reducing agent and the furnace gas increases.
It is effective in increasing the CO 2 ratio. It is desirable to adjust the cross-sectional area and layer thickness of the carbon-based solid reducing agent layer with respect to the amount of furnace gas so that the residence time will be at least 0.3 seconds.
At this time, the layer thickness is preferably set to at least 100 m / m or more.

【0027】操炉上、炉ガスのCO/CO2 比の上昇度
の制御は、この層厚を調整することで行うのが、即ち滞
留時間の調整で行うことが比較的簡単である。
In the furnace operation, it is relatively easy to control the degree of increase in the CO / CO 2 ratio of the furnace gas by adjusting the layer thickness, that is, by adjusting the residence time.

【0028】[0028]

【実施例】図1に本実施例にかかる酸化亜鉛還元熔錬炉
を示す。本実施例における還元熔錬炉1は1.5m直
径、長さ5.5mの内寸法を持つ円筒形の炉である。還
元熔錬炉1の炉底にスラグ2が溜るようになっている。
また、還元熔錬炉1には、シャフト3およびアップテー
ク4が設けられている。
EXAMPLE FIG. 1 shows a zinc oxide reduction smelting furnace according to this example. The reduction smelting furnace 1 in this embodiment is a cylindrical furnace having an inner size of 1.5 m in diameter and 5.5 m in length. The slag 2 collects at the bottom of the reduction smelting furnace 1.
Further, the reduction smelting furnace 1 is provided with a shaft 3 and an uptake 4.

【0029】シャフト3の天井部3aにガス化バーナ3
bが設けられ、アップテーク4にコンデンサへのダクト
8が設けられている。
A gasification burner 3 is installed on the ceiling 3a of the shaft 3.
b is provided and the uptake 4 is provided with a duct 8 to the condenser.

【0030】さらに、アップテーク4には、炭素系還元
剤の層4aを支持する部材(図示せず)が設けられ、ア
ップテーク直上に投入口5が設けられている。炭素系還
元剤層4aの支持部材は、粒状の炭素系還元剤を保持す
る網状部材でよい。本実施例では、網状部材を一段設け
た。しかし、一段だけでなく複数段に支持部材を配置し
てもよい。さらに、アップテーク4の断面全体に層4a
を配置するだけでなく、一部に配置したり、互い違いに
配置してもよい。
Further, the uptake 4 is provided with a member (not shown) for supporting the layer 4a of the carbon-based reducing agent, and the charging port 5 is provided directly above the uptake. The support member for the carbon-based reducing agent layer 4a may be a mesh member that holds the granular carbon-based reducing agent. In this embodiment, the mesh member is provided in one stage. However, the support members may be arranged not only in one stage but in a plurality of stages. Furthermore, a layer 4a is formed on the entire cross section of the uptake 4.
In addition to arranging, the parts may be arranged partially or alternately.

【0031】本実施例の作業においては、還元熔錬炉1
のシャフト天井部3aから、酸化亜鉛を含有する原料4
00kg/h、粉コークス(85%C)240kg/
h、酸素(100%O2 )260Nm3 /h、窒素11
0Nm3 /hを共に吹き込み、還元熔錬炉1で還元反応
を行なわせた。
In the work of this embodiment, the reduction smelting furnace 1
From the shaft ceiling 3a of the raw material 4 containing zinc oxide
00 kg / h, powder coke (85% C) 240 kg /
h, oxygen (100% O 2 ) 260 Nm 3 / h, nitrogen 11
0 Nm 3 / h was blown together and reduction reaction was carried out in the reduction smelting furnace 1.

【0032】この時、生じたスラグ2は還元熔錬炉1内
に溜り、炉ガスは、還元熔錬炉1の出口部に設けた炭素
系固体還元剤の層4aを通過させ、この層4aの前後の
炉ガスの組成をガス分析測定口6及び7から採取し分析
した。
At this time, the generated slag 2 accumulates in the reduction smelting furnace 1, and the furnace gas passes through the layer 4a of the carbon-based solid reducing agent provided at the outlet of the reduction smelting furnace 1 to form this layer 4a. The composition of the furnace gas before and after was sampled from the gas analysis measurement ports 6 and 7 and analyzed.

【0033】炭素系固体還元剤としては、平均粒度36
m/m、固定炭素品位89%の塊コークスを使用した。
この層4の断面積は0.8m2 で層厚は250〜300
m/mになるように、投入口5から適宜塊コークスを補
充した。
The carbon-based solid reducing agent has an average particle size of 36.
A lump coke with m / m and a fixed carbon quality of 89% was used.
The cross-sectional area of this layer 4 is 0.8 m 2 and the layer thickness is 250-300.
Bulk coke was appropriately replenished from the charging port 5 so as to obtain m / m.

【0034】この際の塊コークス層の温度は900〜1
000℃に保たれていた。
The temperature of the lump coke layer at this time is 900 to 1
It was kept at 000 ° C.

【0035】このようにして得られた塊コークス層の前
後での炉ガスのCO/CO2 比を表1に示す。表1から
炉ガスが塊コークス層を通過する間にCO/CO2 比が
0.33上昇したことがわかる。
Table 1 shows the CO / CO 2 ratio of the furnace gas before and after the lump coke layer thus obtained. It can be seen from Table 1 that the CO / CO 2 ratio increased by 0.33 while the furnace gas passed through the agglomerated coke layer.

【0036】[0036]

【表1】 [Table 1]

【0037】本実施例では、熔融スラグを形成して還元
する場合を示したが、固定原料から直接に還元する場合
にも本発明を適用できる。
In the present embodiment, the case where the molten slag is formed and reduced is shown, but the present invention can also be applied to the case where the fixed raw material is directly reduced.

【0038】[0038]

【発明の効果】本発明により、還元熔錬炉に装入する酸
素に対する炭素系還元剤の割合を増加させることなく、
コンデンサーに導入される前に炉ガスのCO/CO2
を上昇させることができる。
According to the present invention, without increasing the ratio of the carbon-based reducing agent to the oxygen charged in the reduction smelting furnace,
The CO / CO 2 ratio of the furnace gas can be increased prior to being introduced into the condenser.

【0039】この炉ガスのCO/CO2 比を上昇させる
ことにより亜鉛の再酸化が減少し、金属亜鉛の回収が効
率よくできる。
By increasing the CO / CO 2 ratio of this furnace gas, reoxidation of zinc is reduced and metallic zinc can be efficiently recovered.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の還元炉を示す縦断面図FIG. 1 is a vertical sectional view showing a reduction furnace according to an embodiment of the present invention.

【図2】炭素還元炉における炭素還元剤の未燃率と炉に
装入するO2 /Cのモル比の関係を示すグラフ
FIG. 2 is a graph showing the relationship between the unburned ratio of a carbon reducing agent in a carbon reduction furnace and the O 2 / C molar ratio charged in the furnace.

【符号の説明】[Explanation of symbols]

1 還元熔錬炉 2 スラグ 3 シャフト 3a シャフト天井部 3b 喰い込みバーナ 4 アップテーク 4a 炭素系固体還元剤の層 5 塊コークス(炭素系固体還元剤)投入口 6 炉ガス分析測定口(炭素系固体還元剤の層入口) 7 炉ガス分析測定口(炭素系固体還元剤の層出口) 8 ダクト 1 Reducing and Smelting Furnace 2 Slag 3 Shaft 3a Shaft Ceiling 3b Biting Burner 4 Uptake 4a Carbon Solid Reducing Agent Layer 5 Bulk Coke (Carbon Solid Reducing Agent) Inlet 6 Furnace Gas Analysis Measuring Port (Carbon Solid) Reactor layer inlet) 7 Reactor gas analysis measurement port (carbon solid reducing agent layer outlet) 8 Duct

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛を含有する固体原料あるいは熔
融スラグから、炭素系固体還元剤で該酸化亜鉛を還元揮
発させてコンデンサーで凝縮回収する還元熔錬炉におい
て、亜鉛蒸気を含んだ還元性炉ガスを該還元熔錬炉から
コンデンサーに導く間に炭素系固体還元剤の層を設けた
ことを特徴とする熔錬炉。
1. A reducing smelting furnace for reducing and volatilizing zinc oxide from a solid raw material or molten slag containing zinc oxide with a carbon-based solid reducing agent and condensing and recovering with a condenser, a reducing furnace containing zinc vapor. A smelting furnace characterized in that a layer of a carbon-based solid reducing agent is provided while introducing gas from the reducing smelting furnace to a condenser.
JP3691892A 1992-01-29 1992-01-29 Reducing smelting furnace of zinc oxide Pending JPH05209238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3691892A JPH05209238A (en) 1992-01-29 1992-01-29 Reducing smelting furnace of zinc oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3691892A JPH05209238A (en) 1992-01-29 1992-01-29 Reducing smelting furnace of zinc oxide

Publications (1)

Publication Number Publication Date
JPH05209238A true JPH05209238A (en) 1993-08-20

Family

ID=12483149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3691892A Pending JPH05209238A (en) 1992-01-29 1992-01-29 Reducing smelting furnace of zinc oxide

Country Status (1)

Country Link
JP (1) JPH05209238A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370043C (en) * 2006-05-10 2008-02-20 徐建成 Crude zinc smelting method and smelting furnace therefor
CN102230090A (en) * 2010-06-01 2011-11-02 中国瑞林工程技术有限公司 Lead-zinc integrated smelting furnace, and method for recovering lead and zinc

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100370043C (en) * 2006-05-10 2008-02-20 徐建成 Crude zinc smelting method and smelting furnace therefor
CN102230090A (en) * 2010-06-01 2011-11-02 中国瑞林工程技术有限公司 Lead-zinc integrated smelting furnace, and method for recovering lead and zinc

Similar Documents

Publication Publication Date Title
JP2671053B2 (en) Method for recovering valuable metals from zinc-containing dust
RU2004117592A (en) METHOD FOR PRODUCING SLAG CONTAINING TITANIUM OXIDE
US3262771A (en) Recovery of steel and zinc from waste materials
JP4580256B2 (en) Method for recovering zinc from zinc-containing dust
JP5348647B2 (en) How to operate the rotary kiln
JPH05209238A (en) Reducing smelting furnace of zinc oxide
US11408054B2 (en) Method for the recovery of zinc
US9150939B2 (en) Method for the commercial production of iron
JP4550422B2 (en) A method for increasing the processing capacity of waste heat boilers in metallurgical and financial furnaces.
JP2003147450A (en) Method of producing rude zinc oxide powder
JP3336131B2 (en) Method for recovering zinc from zinc-containing dust
JP4711350B2 (en) Electric furnace operation method using steelmaking dust
JPH07118768A (en) Treatment of dust
JPS62127432A (en) Method for recovering useful metal from dust discharged from metallurgical furnace for metal refining
JP2008150668A (en) Method for producing molten pig iron with the use of vertical scrap-melting furnace
JP3257315B2 (en) Waste heat recovery method in sintering operation
JP4328001B2 (en) Blast furnace operation method
JP2003342649A (en) Process for operating rotary kiln used for reducing iron and steel dust
JPS62170436A (en) Method for recovering valuable metal from dust discharged from metallurgical furnace for refining of metal
JP4024647B2 (en) Electric furnace operation method using steelmaking dust
KR900006695B1 (en) Process for recovering valuable metals from an iron dust constaining a higher content of zinc
RU2172355C1 (en) Method of rotary-kiln processing of zinc-indiumcontaining materials
JP2558989B2 (en) Method for producing low phosphorus molten metal
SU287306A1 (en)
CN112322819A (en) Rotary hearth furnace, method for using same, and method for producing reduced iron-containing material and zinc-containing material