JPH0520808Y2 - - Google Patents

Info

Publication number
JPH0520808Y2
JPH0520808Y2 JP11851787U JP11851787U JPH0520808Y2 JP H0520808 Y2 JPH0520808 Y2 JP H0520808Y2 JP 11851787 U JP11851787 U JP 11851787U JP 11851787 U JP11851787 U JP 11851787U JP H0520808 Y2 JPH0520808 Y2 JP H0520808Y2
Authority
JP
Japan
Prior art keywords
laminated rubber
rubber bearing
seismic isolation
laminated
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11851787U
Other languages
Japanese (ja)
Other versions
JPS6423506U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11851787U priority Critical patent/JPH0520808Y2/ja
Publication of JPS6423506U publication Critical patent/JPS6423506U/ja
Application granted granted Critical
Publication of JPH0520808Y2 publication Critical patent/JPH0520808Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Description

【考案の詳細な説明】 イ 考案の目的 [産業上の利用分野] この考案は、建築物等の上部構造の荷重を基礎
等の下部構造に伝達支持するとともに地震時の振
動を吸収する積層ゴム体を使用したいわゆる弾性
免震支持装置に関する。
[Detailed explanation of the invention] A. Purpose of the invention [Field of industrial application] This invention is a laminated rubber material that transfers and supports the load of the upper structure of a building to the lower structure such as a foundation, and absorbs vibrations during earthquakes. This invention relates to a so-called elastic seismic isolation support device using a body.

[従来技術の問題点] 積層ゴム体を建築物と基礎との間に介装し、免
震支持装置として使用することは近年注目されつ
つあり、一般住宅もその例外ではない。ここで、
免震性能は建築物の重量(鉛直荷重)とそれを支
持する免震支持装置の水平ばねからなる固有振動
数によつて決定される。そして、建築物の鉛直荷
重の大小にかかわらず、同一の地震入力に対して
同等の免震性能を補償するために免震装置は同一
の水平変形性能が必要とされる。従つて、鉛直荷
重が小さい一般住宅などの建築物に用いる積層ゴ
ム体は本来のばね特性を損なうことなしに同程度
の設計水平移動量を確保するように、必然的にそ
の横断面積に比し丈高い構造となる。従つて、こ
の積層ゴム体をそのまま使用した場合、鉛直荷重
による座屈を生じ易い状態となり、この状態で大
きな水平移動が生じた場合、実用上問題がある。
[Problems with the Prior Art] In recent years, the use of a laminated rubber body interposed between a building and a foundation as a seismic isolation support device has been attracting attention, and ordinary houses are no exception. here,
Seismic isolation performance is determined by the weight of the building (vertical load) and the natural frequency of the horizontal springs of the seismic isolation support device that supports it. Regardless of the magnitude of the vertical load of the building, the seismic isolation device is required to have the same horizontal deformation performance in order to compensate for the same seismic isolation performance against the same earthquake input. Therefore, laminated rubber bodies used in buildings such as ordinary houses where the vertical load is small must be designed to have the same amount of horizontal movement in comparison to their cross-sectional area, without impairing their original spring characteristics. It has a tall structure. Therefore, if this laminated rubber body is used as it is, it will be in a state where buckling is likely to occur due to vertical loads, and if a large horizontal movement occurs in this state, there will be a practical problem.

[技術的課題] 本考案は上記実情に鑑みなされたものであつ
て、建築物自体の重量が軽量である建築物への適
用を可能とする積層ゴム体を主体とする弾性免震
支持装置を提供することを目的(技術的課題)と
する。
[Technical Issues] The present invention was developed in view of the above circumstances, and is an elastic seismic isolation support device based on a laminated rubber body that can be applied to buildings where the weight of the building itself is light. The purpose is to provide (technical issue).

ロ 考案の構成 [問題点を解決するための手段] 本考案の弾性免震支持装置は上記目的を達成す
るため、積層ゴム体の外周に、この積層ゴム体の
上面の荷重中心点が下面より外れるいわゆるP−
δ(ピーデルタ)効果により履歴特性が低下し始
める位置から設計許容変位まで荷重を支持する機
構を付加してなる。
B. Structure of the invention [Means for solving the problem] In order to achieve the above object, the elastic seismic isolation support device of the invention is designed so that the load center point on the upper surface of the laminated rubber body is lower than the lower surface on the outer periphery of the laminated rubber body. The so-called P- that comes off
A mechanism is added to support the load from the position where the hysteresis characteristics begin to deteriorate due to the δ (P-Delta) effect to the design allowable displacement.

しかして、本考案はこの荷重支持機構として、
積層ゴム体の外周に一定空間を存して積層ゴム体
と同等のせん断剛性を有する環状の荷重支持体を
設置してなるものである。
Therefore, the present invention as this load support mechanism,
An annular load support having a shear rigidity equivalent to that of the laminated rubber body is installed in a certain space around the outer periphery of the laminated rubber body.

本考案の弾性免震支持装置は更に具体的には次
の構成(技術的手段)を採る。すなわち、上部構
造と下部構造との間に介装され、ゴム弾性層と補
強板とを交互に積層してなる積層ゴム支承と、前
記積層ゴム支承の外周に一定空間を存して配され
たゴム弾性層と補強板とを交互に積層した環状の
バツクアツプ積層ゴム支承環とからなり、前記積
層ゴム支承が通常位置にあるとき、該積層ゴム支
承の側面及び上部構造の下面と前記バツクアツプ
積層ゴム支承環の内側面及び上面との間に間隙が
形成され、前記積層ゴム支承が水平方向に変位し
たとき、該積層ゴム支承の荷重中心がその下面よ
り外れ始めたときから、少なくとも該積層ゴム支
承の側面と前記バツクアツプ積層ゴム支承環の内
側面とが衝接してなることを特徴とする。
More specifically, the elastic seismic isolation support device of the present invention has the following configuration (technical means). That is, a laminated rubber bearing is interposed between the upper structure and the lower structure and is made of alternately laminated rubber elastic layers and reinforcing plates, and a laminated rubber bearing is arranged with a certain space around the outer periphery of the laminated rubber bearing. It consists of an annular back-up laminated rubber bearing ring in which rubber elastic layers and reinforcing plates are alternately laminated, and when the laminated rubber bearing is in the normal position, the side surface of the laminated rubber bearing, the lower surface of the upper structure, and the back-up laminated rubber bearing ring are formed. A gap is formed between the inner surface and the upper surface of the bearing ring, and when the laminated rubber bearing is displaced in the horizontal direction, the load center of the laminated rubber bearing starts to move away from the lower surface, and at least the laminated rubber bearing The side surface of the back-up laminated rubber bearing ring is in contact with the inner surface of the back-up laminated rubber bearing ring.

[作用] 常時においては、積層ゴム支承は上部構造の荷
重を下部構造に伝達支持する。
[Function] Under normal conditions, the laminated rubber bearing transfers and supports the load of the upper structure to the lower structure.

一方、下部構造に地震等の強力な強制振動力が
作用すると、積層ゴム支承はこの振動変位に追従
するとともにその水平ばね特性によりこの振動変
位の上部構造への伝達を防止する。
On the other hand, when a strong forced vibration force, such as an earthquake, acts on the lower structure, the laminated rubber bearing follows this vibrational displacement and uses its horizontal spring characteristics to prevent this vibrational displacement from being transmitted to the upper structure.

このとき、上・下部構造の相対変位が大きく、
積層ゴム支承が水平方向に大きく変形してその上
面の荷重中心が下面より外れることとなつても、
バツクアツプゴム支承環が上部構造の荷重を受
け、許容変形量に至るまで転倒モーメントが作用
することはない。
At this time, the relative displacement of the upper and lower structures is large,
Even if the laminated rubber bearing deforms significantly in the horizontal direction and the load center on the top surface deviates from the bottom surface,
The back-up rubber bearing ring receives the load of the upper structure, and no overturning moment acts on it until it reaches the allowable amount of deformation.

[実施例] 本考案の弾性免震支持装置の実施例を図面に基
づいて説明する。
[Example] An example of the elastic seismic isolation support device of the present invention will be described based on the drawings.

第1図及び第2図はその一実施例を示す。すな
わち、第1図は本弾性免震支持装置の設置状態の
構造を示す縦断面図、第2図はその横断面図であ
る。
FIGS. 1 and 2 show one embodiment thereof. That is, FIG. 1 is a longitudinal cross-sectional view showing the structure of the present elastic seismic isolation support device in an installed state, and FIG. 2 is a cross-sectional view thereof.

図において、Gは建築物等の上部構造、Bは基
礎等の下部構造である。
In the figure, G is an upper structure such as a building, and B is a lower structure such as a foundation.

本弾性免震支持装置(以下「免震装置」と略記
する)Hは、鉛プラグを封入したいわゆる鉛プラ
グ入り積層ゴム支承1と該鉛プラグ入り積層ゴム
支承1周りに付置される環状のバツクアツプゴム
支承環2とを含み、上部構造Gの下面に固設され
た上部取付け板5と下部構造Bの上面に固設され
た上部取付け板6との間に介装される。なお、上
部取付け板5はアンカー部材7を介して上部構造
Gに固設され、その下面5Aは平滑面とされ、ま
た、下部取付け板6はアンカー部材8を介して下
部構造Bに固設され、その上面6Aは平滑面に形
成されている。
This elastic seismic isolation support device (hereinafter abbreviated as "seismic isolation device") H consists of a so-called lead plug-filled laminated rubber bearing 1 in which a lead plug is enclosed, and an annular back-up rubber attached around the lead plug-filled laminated rubber bearing 1. The support ring 2 is interposed between an upper mounting plate 5 fixed to the lower surface of the upper structure G and an upper mounting plate 6 fixed to the upper surface of the lower structure B. The upper mounting plate 5 is fixed to the upper structure G via the anchor member 7, and its lower surface 5A is a smooth surface, and the lower mounting plate 6 is fixed to the lower structure B via the anchor member 8. , its upper surface 6A is formed into a smooth surface.

以下、免震装置Hの構造を詳細に説明する。 The structure of the seismic isolation device H will be described in detail below.

鉛プラグ入り積層ゴム支承(以下「積層ゴム支
承」と略記する)1は、円筒状の積層ゴム体10
と該積層ゴム体10の中心部に鉛直方向に貫通状
に埋め込まれた鉛プラグ11とからなり、そし
て、本免震装置Hの上面10Aは上部取付け板2
0に接着固定され、その下面10Bは下部取付け
板21に接着固定される。
A laminated rubber bearing with a lead plug (hereinafter abbreviated as "laminated rubber bearing") 1 has a cylindrical laminated rubber body 10.
and a lead plug 11 embedded vertically through the center of the laminated rubber body 10, and the upper surface 10A of the seismic isolation device H is connected to the upper mounting plate 2.
0, and its lower surface 10B is adhesively fixed to the lower mounting plate 21.

もつと詳しくは、積層ゴム体10は、ゴム弾性
層12と補強板13とが交互に積層されて、これ
らは加硫接着により強固に一体化されている。ゴ
ム弾性層12はかぶり分だけ補強板13の外径よ
り大径にされている。また、補強板13は通常に
は鋼板が使用されるが、繊維補強硬質ゴム板や繊
維補強合成樹脂板であつてもよい。
More specifically, the laminated rubber body 10 has rubber elastic layers 12 and reinforcing plates 13 alternately laminated, and these are firmly integrated by vulcanization adhesion. The rubber elastic layer 12 is made larger in diameter than the outer diameter of the reinforcing plate 13 by the amount of cover. Furthermore, although a steel plate is normally used as the reinforcing plate 13, it may also be a fiber-reinforced hard rubber plate or a fiber-reinforced synthetic resin plate.

鉛プラグ11はこの積層ゴム体10の中心孔1
4内に密接して埋め込まれる。
The lead plug 11 is inserted into the center hole 1 of this laminated rubber body 10.
It is closely embedded within 4.

バツクアツプゴム支承環(以下「バツクアツプ
環」と略記する)2は円環状に形成されるととも
に、断面形状が下方に広がる台形をなす。すなわ
ち、上面2Aと下面2Bとは平行をなし、外側面
2Cは鉛直をなし、内側面2Dは下方に至るにつ
れその径を縮小する傾斜面に形成される。該バツ
クアツプ環2もゴム弾性層16と補強板17とを
交互に積層し一体的に成形してなる積層ゴム体よ
り形成される。該バツクアツプ環2には円周方向
に適宜間隔を保つて、鉛直方向に貫通する鉛プラ
グ(図示せず)を配することが可能である。
The back-up rubber support ring (hereinafter abbreviated as "back-up ring") 2 is formed in an annular shape, and has a trapezoidal cross-sectional shape that expands downward. That is, the upper surface 2A and the lower surface 2B are parallel to each other, the outer surface 2C is vertical, and the inner surface 2D is formed as an inclined surface whose diameter decreases toward the bottom. The backup ring 2 is also formed from a laminated rubber body made by laminating rubber elastic layers 16 and reinforcing plates 17 alternately and integrally molding them. The backup ring 2 can be provided with lead plugs (not shown) penetrating vertically at appropriate intervals in the circumferential direction.

該バツクアツプ環2は積層ゴム支承1の外周に
所定空間18を隔てて該積層ゴム支承1と同心状
に配され、その下面2Bを下部取付け板6に固設
される。バツクアツプ環2の内側傾斜面2Dの下
端は積層ゴム支承1の下端に当接され、積層ゴム
支承1の側面とバツクアツプ環2の内側傾斜面2
Dとは所定の角度αをなす。また、該バツクアツ
プ環2の高さは積層ゴム支承1の高さより所定間
隔β分だけ低くされている。このBは積層ゴム支
承1が角度αだけ傾斜したとき、上記構造Gの上
部取付け板5の下面5Aが該バツクアツプ環2の
上面2Aに当接する距離とされるか、あるいはそ
れ以上の距離に設定される。
The back-up ring 2 is arranged concentrically with the laminated rubber support 1 on the outer periphery of the laminated rubber support 1 with a predetermined space 18 in between, and its lower surface 2B is fixed to the lower mounting plate 6. The lower end of the inner inclined surface 2D of the backup ring 2 is brought into contact with the lower end of the laminated rubber bearing 1, and the side surface of the laminated rubber bearing 1 and the inner inclined surface 2D of the backup ring 2 are brought into contact with the lower end of the laminated rubber bearing 1.
D forms a predetermined angle α. Further, the height of the backup ring 2 is lower than the height of the laminated rubber support 1 by a predetermined distance β. This B is set to be the distance at which the lower surface 5A of the upper mounting plate 5 of the structure G comes into contact with the upper surface 2A of the backup ring 2 when the laminated rubber bearing 1 is tilted by the angle α, or is set to a distance greater than that. be done.

この実施例の弾性免震支持装置Hは次のように
作動する。
The elastic seismic isolation support device H of this embodiment operates as follows.

常時においては、鉛プラグ入り積層ゴム支承1
の積層ゴム体10は上部構造Gの荷重を下部構造
Bに伝達支持する。鉛プラグ11は荷重支持には
関与しない。風荷重あるいは微弱地震に対して
は、鉛プラグ11がその弾性域において抵抗し、
水平方向の揺れを阻止する。
Under normal conditions, laminated rubber bearings with lead plugs 1
The laminated rubber body 10 transmits and supports the load of the upper structure G to the lower structure B. The lead plug 11 does not participate in load support. The lead plug 11 resists wind loads or weak earthquakes in its elastic region,
Prevents horizontal shaking.

地震時においては、強制振動力に対して上・下
部構造G,Bが水平方向に互いに相対変位し、積
層ゴム支承1はこの振動変位に追従するとともに
積層ゴム体10の水平ばね特性によりこの振動変
位の上部構造Gへの伝達を防止する。また、積層
ゴム体10中に埋め込まれた鉛プラグ11の塑性
変形で地震エネルギーを吸収し、加速度を減衰さ
せるとともに相対変位を抑制し、免震作用をな
す。
During an earthquake, the upper and lower structures G and B are horizontally displaced relative to each other due to the forced vibration force, and the laminated rubber bearing 1 follows this vibrational displacement and absorbs this vibration due to the horizontal spring characteristics of the laminated rubber body 10. Preventing the transmission of displacements to the superstructure G. In addition, plastic deformation of the lead plug 11 embedded in the laminated rubber body 10 absorbs earthquake energy, attenuates acceleration and suppresses relative displacement, providing a seismic isolation effect.

このとき、積層ゴム支承1の周囲にはバツクア
ツプ環2が付加されているので、上・下部構造
G,Bの大きな相対変位を許容することができ
る。すなわち、丈高があり中実断面の従来型の積
層ゴム体は、第3図aに示すように、上・下部構
造G,Bの相対変位を受けて、水平方向の変位が
ある程度進むと、上面と下面との投影的な重なり
Sが殆んど無くなるか、もしくは全く無くなり、
ここに上載荷重Pにより転倒モーメントが生じて
荷重支持能力を無くしてしまうことになる。この
従来型の履歴特性すなわちせん断力F−変位δ特
性(第1象限)を示すと、第3図cのQのように
なる。すなわち、水平方向への変位δがある値a
を越えるところから積層ゴム体のせん断力が低下
し、この結果、エネルギー吸収能力が著しく低下
することとなる。
At this time, since a backup ring 2 is added around the laminated rubber support 1, a large relative displacement between the upper and lower structures G and B can be tolerated. That is, as shown in Fig. 3a, when a conventional laminated rubber body with a height and a solid cross section undergoes a certain degree of horizontal displacement under the relative displacement of the upper and lower structures G and B, The projectional overlap S between the upper surface and the lower surface is almost eliminated or completely eliminated,
Here, an overturning moment is generated due to the overload P, and the load supporting capacity is lost. The history characteristic of this conventional type, that is, the shear force F-displacement δ characteristic (first quadrant) is shown as Q in FIG. 3c. That is, the horizontal displacement δ is a certain value a
The shearing force of the laminated rubber body decreases from the point where it exceeds this, resulting in a significant decrease in energy absorption ability.

これに対して、本実施例の免震装置Hによれ
ば、振動が小変位の間は積層ゴム体10のみで上
載荷重Pを支える。そして、第3図bに示すよう
に、積層ゴム支承1の上面の荷重中心が下面より
外れる(変位しこれを中変位という)になると
(換言すれば積層ゴム支承1が角度αだけ傾斜す
ると)、積層ゴム支承1の側面とバツクアツプ環
2の内側傾斜面2Dとが衝接し、以後積層ゴム支
承1並びにバツクアツプ環2を介して荷重が支持
される。すなわち、本免震装置Hの上面と下面と
の投影的重なりSが十分に確保されて積層ゴム体
10の荷重作用点は免震装置Hの下面に含まれる
ようになるので、上載荷重Pによる転倒モーメン
トが働かない。また、バツクアツプ環2は積層ゴ
ム支承1と同等の積層ゴム構成によるので、両者
は同等のせん断剛性を有し、中変位以降の変位も
小変位における履歴特性の延長傾向を示し、許容
変形量に至るまで履歴特性の定まつたエネルギー
吸収性能を得ることとなる。
On the other hand, according to the seismic isolation device H of this embodiment, the superimposed load P is supported only by the laminated rubber body 10 while the vibration is at a small displacement. As shown in Fig. 3b, when the load center on the upper surface of the laminated rubber bearing 1 becomes displaced (displaced, and this is called intermediate displacement) from the lower surface (in other words, when the laminated rubber bearing 1 is tilted by an angle α) The side surface of the laminated rubber bearing 1 and the inner inclined surface 2D of the backup ring 2 collide with each other, and the load is thereafter supported through the laminated rubber bearing 1 and the backup ring 2. In other words, the projected overlap S between the upper and lower surfaces of the seismic isolation device H is sufficiently secured, and the load application point of the laminated rubber body 10 is included in the lower surface of the seismic isolation device H, so that the overlapping load P The overturning moment does not work. In addition, since the back-up ring 2 has the same laminated rubber structure as the laminated rubber bearing 1, both have the same shear rigidity, and the displacements after medium displacement also show a tendency to extend the hysteresis characteristics at small displacements, and the allowable deformation amount This results in energy absorption performance with fixed hysteresis characteristics.

なお、積層ゴム支承1が角度α傾斜したとき、
同時的に上部取付け板5の下面5Aがバツクアツ
プ環2の上面2Aに当接するようにした場合、こ
れ以降のバツクアツプ環2の変形は上部取付け板
5によつて拘束され、その接圧面積の増大と相ま
つて更に良好な履歴特性を得ることができる。こ
の結果、本実施例の履歴特性は第3図cのRで示
されるように、せん断力の低下は全くなく、許容
変形量に至るまでほぼ直線的な増加を示すことと
なる。なお、バツクアツプ環2に鉛プラグを配し
たものにあつては、第3図cの破線R′で示すよ
うに更に大きな履歴特性を得ることができる。
Note that when the laminated rubber bearing 1 is tilted at an angle α,
If the lower surface 5A of the upper mounting plate 5 is brought into contact with the upper surface 2A of the backup ring 2 at the same time, the subsequent deformation of the backup ring 2 will be restrained by the upper mounting plate 5, and the contact pressure area will increase. In combination with this, even better history characteristics can be obtained. As a result, as shown by R in FIG. 3c, the hysteresis characteristics of this example show no decrease in shear force at all, and a nearly linear increase until the allowable deformation amount is reached. In addition, in the case where a lead plug is arranged in the backup ring 2, an even greater hysteresis characteristic can be obtained as shown by the broken line R' in FIG. 3c.

第4図a,bはこの免震装置の他の実施例を示
す。図において、先の実施例と同等の部材につい
ては同一の符号が付されている。
Figures 4a and 4b show other embodiments of this seismic isolation device. In the figures, the same reference numerals are given to the same members as in the previous embodiment.

この実施例の免震装置Iにおいてはバツクアツ
プ環が直円筒体を採る点を特徴とする。すなわ
ち、この免震装置Iの中心部に配される積層ゴム
支承1は先の実施例と同一の構成よりなり、この
積層ゴム支承1に一定空間18を隔ててバツクア
ツプ環3が下部取付け板6に固設されている。バ
ツクアツプ環3は直円筒体を採るほかは実質的に
先の実施例の構成に準じる。積層ゴム支承1の下
端とバツクアツプ環3の内側面の上端とを結ぶ角
度は先の実施例と同じ角度αをなすように配され
る。
The seismic isolation device I of this embodiment is characterized in that the backup ring has a right cylindrical body. That is, the laminated rubber bearing 1 disposed at the center of this seismic isolation device I has the same configuration as the previous embodiment, and a back-up ring 3 is attached to the lower mounting plate 6 with a certain space 18 in between. It is fixedly installed. The backup ring 3 has substantially the same structure as that of the previous embodiment except that it is a right cylindrical body. The angle connecting the lower end of the laminated rubber support 1 and the upper end of the inner surface of the backup ring 3 is the same angle α as in the previous embodiment.

上・下部構造G,Bに介装されたこの免震装置
Iが履歴特性を喪失し始める位置(換言すれば積
層ゴム支承1が角度αだけ傾斜する位置)からバ
ツクアツプ環3に当接し、許容変形量に至るまで
積層ゴム支承1とバツクバツクアツプ環3とでP
−δ効果の発現を抑え、協働して上部構造Gの荷
重を支え、かつ、直線的な履歴特性を発揮するこ
ととなる(第4図b参照)。
This seismic isolation device I installed in the upper and lower structures G and B comes into contact with the backup ring 3 from the position where the hysteresis characteristics start to be lost (in other words, the position where the laminated rubber bearing 1 is inclined by the angle α), and the permissible P between the laminated rubber bearing 1 and the back-up ring 3 up to the amount of deformation.
This suppresses the expression of the −δ effect, supports the load of the superstructure G in cooperation, and exhibits a linear hysteresis characteristic (see FIG. 4b).

本考案は上記実施例に限定されるものではな
く、本考案の基本的技術思想の範囲内で種々設計
変更が可能である。すなわち、以下の態様は本考
案の技術的範囲内に包含されるものである。
The present invention is not limited to the above-mentioned embodiments, and various design changes can be made within the scope of the basic technical idea of the present invention. That is, the following aspects are included within the technical scope of the present invention.

叙上の各実施例では、円筒体を示したが、四
角筒体もしくは多角筒体であつてもよい。
In each of the embodiments described above, a cylindrical body is shown, but it may be a square cylinder or a polygonal cylinder.

積層ゴム支承1は鉛プラグ入りのものを示し
たが、鉛プラグの封入されていない積層ゴム体
のみであつてもよい。
Although the laminated rubber bearing 1 is shown as containing a lead plug, it may be composed of only a laminated rubber body without a lead plug enclosed therein.

ハ 考案の効果 本考案の弾性免震支持装置は上記構成よりなる
ので、大変形に対しても安定して構造物を支持
し、かつエネルギー吸収能が大きいので、垂直荷
重が小さく水平変位の大きな構造物系へのこの種
の免震支持装置の適用が可能となる。更にまた、
中変位から許容変形量に至るまでの履歴特性は小
変位時からの直線的延長となり、この種免震支持
装置の合理的な設計が可能となる。
C. Effects of the invention Since the elastic seismic isolation support device of the invention has the above configuration, it can stably support structures even against large deformations, and has a large energy absorption capacity, so it can handle small vertical loads and large horizontal displacements. This type of seismic isolation support device can be applied to structural systems. Furthermore,
The hysteresis characteristics from medium displacement to allowable deformation amount are linear extensions from the time of small displacement, making it possible to rationally design this type of seismic isolation support device.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の弾性免震支持装置の実施例を示
し、第1図はその一実施例の設置状態にある縦断
面図(第2図の−線断面図)、第2図は第1
図の−線断面図、第3図はこの免震支持装置
の作用説明図、第4図は他の実施例の縦断面図及
び作用図である。 G……上部構造、B……下部構造、1……積層
ゴム支承、2……バツクアツプ積層ゴム支承環、
10……積層ゴム体、12,16……ゴム弾性
層、13,17……補強板。
The drawings show an embodiment of the elastic seismic isolation support device of the present invention, and FIG. 1 is a longitudinal cross-sectional view of one embodiment in the installed state (cross-sectional view taken along the line - in FIG. 2), and FIG.
3 is an explanatory view of the action of this seismic isolation support device, and FIG. 4 is a longitudinal sectional view and an action view of another embodiment. G... Upper structure, B... Lower structure, 1... Laminated rubber bearing, 2... Backup laminated rubber bearing ring,
10... Laminated rubber body, 12, 16... Rubber elastic layer, 13, 17... Reinforcement plate.

Claims (1)

【実用新案登録請求の範囲】 1 上部構造と下部構造との間に介装され、ゴム
弾性層と補強板とを交互に積層してなる積層ゴ
ム支承と、前記積層ゴム支承の外周に一定空間
を存して配されたゴム弾性層と補強板とを交互
に積層した環状のバツクアツプ積層ゴム支承環
とからなり、 前記積層ゴム支承が通常位置にあるとき、該
積層ゴム支承の側面及び上部構造の下面と前記
バツクアツプ積層ゴム支承環の内側面及び上面
との間に間隙が形成され、 前記積層ゴム支承が水平方向に変位したと
き、該積層ゴム支承の荷重中心がその下面より
外れ始めたときから、少なくとも該積層ゴム支
承の側面と前記バツクアツプ積層ゴム支承環の
内側面とが衝接してなる、 ことを特徴とする弾性免震支持装置。 2 積層ゴム支承の内部に鉛プラグが封入されて
なる実用新案登録請求の範囲第1項に記載の弾
性免震支持装置。 3 バツクアツプ積層ゴム支承環の内部に鉛プラ
グが封入されてなる実用新案登録請求の範囲第
1項または第2項に記載の弾性免震支持装置。
[Scope of Claim for Utility Model Registration] 1. A laminated rubber bearing interposed between an upper structure and a lower structure and consisting of alternately laminated rubber elastic layers and reinforcing plates, and a certain space around the outer periphery of the laminated rubber bearing. an annular back-up laminated rubber bearing ring in which rubber elastic layers and reinforcing plates are alternately laminated, and when the laminated rubber bearing is in the normal position, the side and upper structure of the laminated rubber bearing When a gap is formed between the lower surface of the back-up laminated rubber bearing ring and the inner and upper surfaces of the back-up laminated rubber bearing ring, and when the laminated rubber bearing is displaced in the horizontal direction, the load center of the laminated rubber bearing begins to deviate from its lower surface. An elastic seismic isolation support device comprising: at least a side surface of the laminated rubber bearing and an inner surface of the back-up laminated rubber bearing ring. 2. The elastic seismic isolation support device as set forth in claim 1 of the utility model registration claim, in which a lead plug is sealed inside a laminated rubber bearing. 3. The elastic seismic isolation support device according to claim 1 or 2, wherein a lead plug is sealed inside a back-up laminated rubber bearing ring.
JP11851787U 1987-08-01 1987-08-01 Expired - Lifetime JPH0520808Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11851787U JPH0520808Y2 (en) 1987-08-01 1987-08-01

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11851787U JPH0520808Y2 (en) 1987-08-01 1987-08-01

Publications (2)

Publication Number Publication Date
JPS6423506U JPS6423506U (en) 1989-02-08
JPH0520808Y2 true JPH0520808Y2 (en) 1993-05-28

Family

ID=31362945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11851787U Expired - Lifetime JPH0520808Y2 (en) 1987-08-01 1987-08-01

Country Status (1)

Country Link
JP (1) JPH0520808Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132933A1 (en) * 2014-03-06 2015-09-11 株式会社アシックス Cushion structure and shoes using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752903Y2 (en) * 1989-01-30 1995-12-06 動力炉・核燃料開発事業団 Fail-safe device for seismic isolation structure
JP5766926B2 (en) * 2010-09-24 2015-08-19 三井造船株式会社 Quay crane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132933A1 (en) * 2014-03-06 2015-09-11 株式会社アシックス Cushion structure and shoes using same
JP5985111B2 (en) * 2014-03-06 2016-09-06 株式会社アシックス Cushioning structure and shoes using the same
US10383391B2 (en) 2014-03-06 2019-08-20 Asics Corporation Shock absorbing structure and shoe to which the shock absorbing structure is applied

Also Published As

Publication number Publication date
JPS6423506U (en) 1989-02-08

Similar Documents

Publication Publication Date Title
US5797228A (en) Seismic isolation bearing
US5761856A (en) Vibration isolation apparatus
JPH06323355A (en) Frictional damper protecting support to dynamic action
US10619700B2 (en) Seismic isolation apparatus
JP3205393U (en) Seismic isolation device
US5373670A (en) Shakeproof bearing
US5161338A (en) Laminated rubber support assembly
JPH0520808Y2 (en)
JP2001182776A (en) Base isolation bearing unit
JP4061818B2 (en) Seismic isolation device
JP2002070943A (en) Slip support device for base isolation
JPH0520807Y2 (en)
JP3713645B2 (en) Seismic isolation device using laminated rubber
JPS62146371A (en) Earthquakeproof device
JP3018288B2 (en) Sliding elastic bearing device for structures
JP2000002783A (en) Three-dimensional base isolation structure for building
JP2801693B2 (en) Laminated rubber bearing
JP2526557B2 (en) Seismic isolation support device
KR200360336Y1 (en) Bearing for high damping elastomers
JPH069259Y2 (en) Elastic seismic isolation support device
JPS6332278Y2 (en)
JPH0439968Y2 (en)
JP2001074094A (en) Base isolation device
JP3021447U (en) Seismic isolation device
JPH09328819A (en) Elasto-plastic damper