JPH05206565A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH05206565A
JPH05206565A JP13932091A JP13932091A JPH05206565A JP H05206565 A JPH05206565 A JP H05206565A JP 13932091 A JP13932091 A JP 13932091A JP 13932091 A JP13932091 A JP 13932091A JP H05206565 A JPH05206565 A JP H05206565A
Authority
JP
Japan
Prior art keywords
layer
plane
algaas
gaas
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13932091A
Other languages
Japanese (ja)
Inventor
Toshiaki Fukunaga
敏明 福永
Kenji Watanabe
賢司 渡辺
Takeshi Takamori
毅 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP13932091A priority Critical patent/JPH05206565A/en
Publication of JPH05206565A publication Critical patent/JPH05206565A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser long in service life by a method wherein a light trapping structure is formed only out stripes. CONSTITUTION:A normal mesa stripe is provided in a <0-11> direction on an N-Si (100) substrate 1 cut off a <0-11> direction by 3 deg., a silicon nitride film 2 is laminated thereon, and then the film 2 is removed off from the upside of the normal mesa. Then, by a selective growth technique where an organic metal vapor growth method is employed, an N-GaAs layer 3 of stripe structure surrounded with a (111) A plane, a (1-1-1) A plane, a (-111) B plane, and a (100) plane is formed. In succession, an N-AlGaAs clad layer 4, a GRIN-AlGaAs layer 5, a GaAs single quantum well active layer 6, a GRIN-AlGaAs layer 7, a P-AlGaAs clad layer 8, and a P-GaAs contact layer 9 are grown through a molecular beam epitaxial method. Then, the P-GaAs contact layer 9 is exposed, and electrodes 11 and 12 are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコン(Si)基板
の電子回路と化合物半導体の光デバイスを融合させた光
電子集積回路の実現に重要な役割をになう半導体レーザ
素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device which plays an important role in realizing an optoelectronic integrated circuit in which an electronic circuit of a silicon (Si) substrate and an optical device of a compound semiconductor are fused.

【0002】[0002]

【従来の技術】従来、この種の半導体レーザ素子として
は、チェン 他 「アプライド・フィジックス・レター
ズ」第51巻,17号(1987年)第1320〜13
21頁「シリコン(100)基板上の低閾値(室温で6
00A/cm2 以下)GaAs/AlGaAsレーザ」
〔H.Z.Chen et al.「AppliedP
hysics Letters」vol.51 No.
17(1987)P.1320〜1321 「Low−
threshold(〜600A/cm2 atroom
temperature)GaAs/AlGaAs
laserson Si(100)」〕に記載されるも
のがあった。
2. Description of the Related Art Conventionally, as a semiconductor laser device of this type, Chen et al., "Applied Physics Letters", Vol. 51, No. 17, (1987), 1320-1213.
Page 21, "Low threshold on silicon (100) substrates (6 at room temperature
00A / cm 2 or less) GaAs / AlGaAs laser "
[H. Z. Chen et al. "AppliedP
hysics Letters "vol. 51 No.
17 (1987) P. 1320-1321 "Low-
threshold (~ 600A / cm 2 at room
temperature) GaAs / AlGaAs
laserson Si (100) ”].

【0003】即ち、分子線エピタキシャル(MBE)法
によって、n型Si(100)基板上に、バッファ層、
n−AlGaAsクラッド層、アルミニウムの組成を連
続的に変化させて屈折率に傾斜をつけたAlGaAs−
GRIN層、GaAs単一量子井戸活性層、AlGaA
s−GRIN層、p−AlGaAsクラッド層、p−G
aAsコンタクト層からなるレーザ構造を成長させ、半
導体レーザ素子を形成していた。
That is, by a molecular beam epitaxial (MBE) method, a buffer layer, an n-type Si (100) substrate,
n-AlGaAs clad layer, AlGaAs with a graded refractive index by continuously changing the composition of aluminum
GRIN layer, GaAs single quantum well active layer, AlGaA
s-GRIN layer, p-AlGaAs cladding layer, p-G
A semiconductor laser device was formed by growing a laser structure composed of an aAs contact layer.

【0004】例えば、図2に示すように、GaAs(2
μm)上に、n−AlGaAsクラッド層としてのA
0.5 Ga0.5 As(1.5μm)、AlGaAs−
GRIN層としてのAl0.5 Ga0.5 As〜Al0.2
0.8 As(1750Å)、GaAs単一量子井戸活
性層としてのGaAs(70Å)、AlGaAs−G
RIN層としてのAl0.5 Ga0.5 As〜Al0.2 Ga
0.8 As(1750Å)、p−AlGaAsクラッド
層としてのAl0.5 Ga0.5 As(1.5μm)、p
−GaAsコンタクト層としてのGaAs(0.4μ
m)を順次成長させる。
For example, as shown in FIG.
μm) on top of A as an n-AlGaAs cladding layer
l 0.5 Ga 0.5 As (1.5 μm), AlGaAs-
Al 0.5 Ga 0.5 As to Al 0.2 G as GRIN layer
a 0.8 As (1750Å), GaAs (70Å) as a GaAs single quantum well active layer, AlGaAs-G
Al 0.5 Ga 0.5 As to Al 0.2 Ga as RIN layer
0.8 As (1750 Å), Al 0.5 Ga 0.5 As (1.5 μm) as p-AlGaAs cladding layer, p
-GaAs as a GaAs contact layer (0.4 μ
m) are successively grown.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
半導体レーザ素子は、Si基板に格子整合しない化合物
半導体をSi基板の全面に形成しているため、結晶欠陥
が多く、素子の寿命が非常に短いという問題点があっ
た。本発明は、以上述べた結晶欠陥に伴う問題点を除去
し、Si基板上に形成され、結晶欠陥の発生を軽減でき
ると共に、ドーパントの極性を面方位によりコントロー
ルして電流の閉じ込める構造を持ち、同時に各原子のマ
イグレーションの面方位依存性の差により、光の閉じ込
め構造を持つ信頼性の高い、しかも寿命の長い半導体レ
ーザ素子を提供することを目的とする。
However, in the above-mentioned semiconductor laser device, since the compound semiconductor which is not lattice-matched to the Si substrate is formed on the entire surface of the Si substrate, there are many crystal defects and the life of the device is very short. There was a problem. The present invention eliminates the problems associated with crystal defects described above, is formed on a Si substrate, can reduce the occurrence of crystal defects, and has a structure for confining the current by controlling the polarity of the dopant by the plane orientation, At the same time, it is an object of the present invention to provide a highly reliable semiconductor laser device having a light confinement structure and having a long life due to the difference in the plane orientation dependence of the migration of each atom.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、半導体レーザ素子において、(111)
側面を持つ順メサストライプを構成したSi(100)
基板上への有機金属気相成長法による成長速度の面方位
依存性を利用したストライプ上へのみの選択成長膜を基
板として、分子線エピタキシャル成長法により両極性ド
ーパントの極性を制御することによって電流閉じ込めの
ための逆バイアス構造を持たせるとともに、各原子のマ
イグレーションの面方位依存性の差により光の閉じ込め
構造をストライプ上にのみ形成するようにしたものであ
る。
In order to achieve the above object, the present invention provides a semiconductor laser device comprising a (111)
Si (100) with a regular mesa stripe with sides
Current confinement by controlling the polarities of ambipolar dopants by molecular beam epitaxy using the selective growth film only on stripes as a substrate, utilizing the plane orientation dependence of the growth rate by metalorganic vapor phase epitaxy on the substrate. In addition to having a reverse bias structure for, the optical confinement structure is formed only on the stripe due to the difference in the plane orientation dependence of the migration of each atom.

【0007】[0007]

【作用】本発明によれば、n型半導体に対する成長技術
である有機金属気相成長(MOVPE)法によるSi
(100)基板上へのGaAsのマスクレス選択成長技
術を用いて、(111)側面を有する順メサストライプ
上に、(111)B面、(111)A面と(100)面
を有するn型GaAsを選択成長して、格子不整合によ
り生じる結晶欠陥を低減した基板上に、MBE成長法に
より量子井戸を活性層とするダブルヘテロ構造を形成
し、MBE成長法による原子のマイグレーションの面方
位による違いと、Siドーパンの導電性の面方位依存性
により、屈折率導波機構と電流狭窄機構とを持つ半導体
レーザ素子を上記のストライプ上にのみ作り付ける。即
ち、Si基板上にMOVPE法及びMBE成長法によ
り、狭いストライプ領域に選択的に半導体レーザを形成
しているために、結晶欠陥の発生を軽減できると共に、
ドーパントの極性を面方位によりコントロールして電流
の閉じ込める構造を持ち、同時に各原子のマイグレーシ
ョンの面方位依存性の差により、光の閉じ込め構造を持
つ信頼性の高い半導体レーザ素子を簡単に得ることがで
きる。
According to the present invention, Si produced by metalorganic vapor phase epitaxy (MOVPE) is a growth technique for n-type semiconductors.
Using a maskless selective growth technique of GaAs on a (100) substrate, an n-type having a (111) B plane, a (111) A plane and a (100) plane on a forward mesa stripe having a (111) side plane. A double heterostructure having a quantum well as an active layer is formed by the MBE growth method on a substrate in which GaAs is selectively grown and crystal defects caused by lattice mismatch are reduced. Due to the difference and the plane orientation dependence of the conductivity of the Si dopant, a semiconductor laser device having a refractive index guiding mechanism and a current constriction mechanism is formed only on the stripe. That is, since the semiconductor laser is selectively formed in the narrow stripe region on the Si substrate by the MOVPE method and the MBE growth method, the occurrence of crystal defects can be reduced and
It has a structure in which the polarity of the dopant is controlled by the plane orientation to confine the current, and at the same time, due to the difference in the plane orientation dependence of the migration of each atom, it is possible to easily obtain a highly reliable semiconductor laser device having a light confinement structure. it can.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照しながら
詳細に説明する。図1は本発明の実施例を示す半導体レ
ーザ素子の製造工程断面図である。まず、図1(a)に
示すように、〈0−11〉方向に3°オフカットしたn
−Si(100)基板1に、通常のフォトリソグラフィ
ー技術とKOHとH2 Oの混合溶液による化学エッチン
グにより、〈0−11〉方向に、幅5μm程度で、高さ
3μm程度の順メサストライプを設ける。この時、Si
の順メサ側面は(111)面と(1−1−1)面により
形成される。引続き、プラズマ化学気相堆積(PCV
D)法により、窒化シリコン絶縁膜2を200nm程度
積層し、通常のフォトリソグラフィー技術と化学エッチ
ングにより、順メサ上部の窒化シリコン絶縁膜2を完全
に除去する。この時、メサ側面の窒化シリコン絶縁膜2
の一部を除去してもよい。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a sectional view of a semiconductor laser device manufacturing process showing an embodiment of the present invention. First, as shown in FIG. 1A, n cut off by 3 ° in the <0-11> direction is used.
On the Si (100) substrate 1, a normal photolithography technique and chemical etching with a mixed solution of KOH and H 2 O were used to form a forward mesa stripe with a width of about 5 μm and a height of about 3 μm in the <0-11> direction. Set up. At this time, Si
The normal mesa side surface of is formed by the (111) plane and the (1-1-1) plane. Continued plasma chemical vapor deposition (PCV
The silicon nitride insulating film 2 is laminated to a thickness of about 200 nm by the method D), and the silicon nitride insulating film 2 on the upper part of the forward mesa is completely removed by the usual photolithography technique and chemical etching. At this time, the silicon nitride insulating film 2 on the side surface of the mesa
May be partially removed.

【0009】次に、図1(b)に示すように、2段階有
機金属気相成長法を用いた選択成長技術により、2μm
程度n−GaAs層3を成長させる。該2段階有機金属
気相成長では、Si(111)面及び(1−1−1)面
の順メサ側面には成長せず、Si(100)面上にのみ
(111)A面、(1−1−1)A面、(−111)B
面、(−1−1−1)B面と(100)面により囲まれ
たn−GaAs層3のストライプ構造が形成される。
Next, as shown in FIG. 1B, 2 μm is formed by a selective growth technique using a two-step metal organic chemical vapor deposition method.
The n-GaAs layer 3 is grown to a degree. In the two-step metalorganic vapor phase epitaxy, the Si (111) plane and the (1-1-1) plane do not grow on the regular mesa side surfaces, but only on the Si (100) plane, the (111) A plane, (1 -1-1) A surface, (-111) B
Plane, the stripe structure of the n-GaAs layer 3 surrounded by the (-1-1-1) B plane and the (100) plane is formed.

【0010】次いで、図1(c)に示すように、n−G
aAs層3を選択成長した基板上に、MBE成長法を用
いてn−AlGaAsクラッド層4(1.5μm程
度)、アンドープのGRIN−AlGaAs層5(0.
1μm程度)、アンドープのGaAs単一量子井戸活性
層6、アンドープのGRIN−AlGaAs層7(0.
1μm程度)、p−AlGaAsクラッド層8(1.5
μm程度)、p−GaAsコンタクト層9(0.5μm
程度)を成長させる。この時、n−GaAs層3の下部
の窒化シリコン絶縁膜2上には、III 族原子の分子線ビ
ームが到達しないために成長が起こらないので、局所的
なストライプ領域にのみ半導体レーザが構築され、結晶
欠陥の発生を抑えることができる。
Next, as shown in FIG. 1C, n-G
On the substrate on which the aAs layer 3 was selectively grown, an n-AlGaAs cladding layer 4 (about 1.5 μm) and an undoped GRIN-AlGaAs layer 5 (0.
1 μm), an undoped GaAs single quantum well active layer 6, and an undoped GRIN-AlGaAs layer 7 (0.
1 μm), p-AlGaAs cladding layer 8 (1.5
μm), p-GaAs contact layer 9 (0.5 μm)
Grow). At this time, since the molecular beam of group III atoms does not reach the silicon nitride insulating film 2 below the n-GaAs layer 3, no growth occurs, so that the semiconductor laser is constructed only in the local stripe region. The occurrence of crystal defects can be suppressed.

【0011】更に、MBE成長法では、成長速度の面方
位依存性により、(111)A面と(100)面の境界
付近では(111)Aより高次の(N11)A面(Nは
3以下の整数)が生じ、これら面でのGaのマイグレー
ションが大きいために、AlGaAsのAlの組成が大
きくなるので、電流も流れにくくなり、屈折率導波機構
も作り付けることができる。
Further, in the MBE growth method, due to the plane orientation dependence of the growth rate, the (N11) A plane (N is 3) higher than (111) A near the boundary between the (111) A plane and the (100) plane. (The following integers) occur, and the migration of Ga on these surfaces is large, so that the Al composition of AlGaAs is large, so that it is difficult for current to flow and a refractive index guiding mechanism can be built.

【0012】また、n−AlGaAsクラッド層4のド
ーピング原子として、Siを用いることにより、(10
0)面ではn型で、(N11)A面ではp型の導電性を
示すので、電流狭窄も実現できる。次に、図1(d)に
示すように、ポリイミドによりストライプ領域を埋め込
み、酸素プラズマを用いたアッシングにより、p−Ga
Asコンタクト層9の(100)面を露出させ、p側電
極11を形成する。次に、裏面にn側電極12を形成す
る。次に、ドライエッチングあるいはへき開によってレ
ーザ端面を形成する。ストライプ領域以外の、成長層は
必要なら取り除いてもよい。
Further, by using Si as a doping atom of the n-AlGaAs cladding layer 4, (10
Since the (0) plane exhibits n-type conductivity and the (N11) A plane exhibits p-type conductivity, current confinement can also be realized. Next, as shown in FIG. 1D, the stripe region was filled with polyimide, and p-Ga was formed by ashing using oxygen plasma.
The (100) surface of the As contact layer 9 is exposed and the p-side electrode 11 is formed. Next, the n-side electrode 12 is formed on the back surface. Next, the laser end face is formed by dry etching or cleavage. The growth layer other than the stripe region may be removed if necessary.

【0013】ここで、n型半導体に対する成長技術であ
る有機金属気相成長(MOVPE)法によるSi(10
0)基板上へのGaAsのマスクレス選択成長技術につ
いては、〔橋本他 ジャーナル・オブ・アプライド・フ
ィジックス、第66巻、第11号(1989)、第55
36〜5541頁「V溝を有するSi基板上へのAlG
aAsの選択成長及び光学的特性」〔A.Hashim
oto et al.(Journal of App
lied Physics vol.66,No.11
1989年12月1日 P.5536〜5541)
「Selective growth and opt
ical properties ofan AlGa
As layer on V−grooved Si
substrates」〕によって示されている。
Here, Si (10) by the metal organic chemical vapor deposition (MOVPE) method, which is a growth technique for n-type semiconductors, is used.
0) For maskless selective growth technology of GaAs on a substrate, see [Hashimoto et al., Journal of Applied Physics, Vol. 66, No. 11 (1989), No. 55.
Pages 36-5541 "AlG on Si substrate with V-grooves"
selective growth and optical characteristics of aAs [A. Hashim
oto et al. (Journal of App
lied Physics vol. 66, no. 11
December 1, 1989 P. 5536-5541)
"Selective grow and opt
ical properties of fan AlGa
As layer on V-grooved Si
substates "].

【0014】このMOVPE法を用いて、(111)側
面を有する順メサストライプ上に、(111)B面、
(111)A面と(100)面を有するn型GaAsを
選択成長して、格子不整合により生じる結晶欠陥を低減
した基板上に、MBE法により量子井戸を活性層とする
ダブルヘテロ構造を形成し、MBE成長法による原子の
マイグレーションの面方位による違いと、Siドーパン
の導電性の面方位依存性により、屈折率導波機構と電流
狭窄機構とを持つ半導体レーザ素子を上記のストライプ
上にのみ作り付けるようにしている。
Using this MOVPE method, a (111) B plane, a (111) B plane, on a forward mesa stripe having a (111) side plane,
A n-type GaAs having a (111) A plane and a (100) plane is selectively grown to form a double hetero structure using a quantum well as an active layer on a substrate in which crystal defects caused by lattice mismatch are reduced. However, a semiconductor laser device having a refractive index guiding mechanism and a current constriction mechanism is formed only on the above stripes due to the difference in the plane orientation of the migration of atoms by the MBE growth method and the plane orientation dependence of the conductivity of Si Dopan. I try to build it.

【0015】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

【0016】[0016]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、Si基板上にMOVPE法及びMBE成長法に
より、狭いストライプ領域に選択的に半導体レーザを形
成しているために、結晶欠陥の発生を軽減できると共
に、ドーパントの極性を面方位によりコントロールして
電流の閉じ込め構造を持ち、同時に各原子のマイグレー
ションの面方位依存性の差により、光の閉じ込め構造を
持つ信頼性の高い、寿命の長い半導体レーザ素子を簡単
に実現することができる。
As described above in detail, according to the present invention, the semiconductor laser is selectively formed in the narrow stripe region on the Si substrate by the MOVPE method and the MBE growth method. While reducing the occurrence of defects, it has a current confinement structure by controlling the polarity of the dopant by the plane orientation, and at the same time, the reliability of having a light confinement structure due to the difference in the plane orientation dependence of the migration of each atom, A semiconductor laser device having a long life can be easily realized.

【0017】更に、放熱性のよい大口径のSi基板を利
用し、先進的な微細加工技術によるSiの大規模集積電
子回路としての優れた特性と化合物半導体の発光素子を
Si基板上に集積化し、光の超並列性を利用した、高度
な光情報処理及び光通信等の広い分野に応用できる。
Further, a large-diameter Si substrate having good heat dissipation is used, and excellent characteristics as a large-scale integrated electronic circuit of Si by an advanced microfabrication technique and a light emitting device of a compound semiconductor are integrated on the Si substrate. It can be applied to a wide range of fields such as advanced optical information processing and optical communication utilizing the super parallelism of light.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す半導体レーザ素子の製造
工程断面図である。
FIG. 1 is a sectional view of a manufacturing process of a semiconductor laser device showing an embodiment of the present invention.

【図2】従来の半導体レーザ素子の構成を示す図であ
る。
FIG. 2 is a diagram showing a configuration of a conventional semiconductor laser device.

【符号の説明】[Explanation of symbols]

1 n−Si(100)基板 2 窒化シリコン絶縁膜 3 n−GaAs層 4 n−AlGaAsクラッド層 5,7 GRIN−AlGaAs層 6 GaAs単一量子井戸活性層 8 p−AlGaAsクラッド層 9 p−GaAsコンタクト層 1 n-Si (100) substrate 2 Silicon nitride insulating film 3 n-GaAs layer 4 n-AlGaAs clad layer 5, 7 GRIN-AlGaAs layer 6 GaAs single quantum well active layer 8 p-AlGaAs clad layer 9 p-GaAs contact layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (111)側面を持つ順メサストライプ
を構成したSi(100)基板上への有機金属気相成長
法による成長速度の面方位依存性を利用したストライプ
上へのみの選択成長膜を基板として、分子線エピタキシ
ャル成長法により両極性ドーパントの極性を制御するこ
とによって電流閉じ込めのための逆バイアス構造を有す
るとともに、各原子のマイグレーションの面方位依存性
の差により光の閉じ込め構造をストライプ上にのみ形成
して成る半導体レーザ素子。
1. A selective growth film only on a stripe utilizing the plane orientation dependence of the growth rate by metalorganic vapor phase epitaxy on a Si (100) substrate having a forward mesa stripe having (111) side faces. As a substrate, it has a reverse bias structure for current confinement by controlling the polarities of the bipolar dopants by molecular beam epitaxial growth method, and the light confinement structure is stripe-shaped due to the difference in the plane orientation dependence of the migration of each atom. A semiconductor laser device formed only on the.
JP13932091A 1991-06-12 1991-06-12 Semiconductor laser element Withdrawn JPH05206565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13932091A JPH05206565A (en) 1991-06-12 1991-06-12 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13932091A JPH05206565A (en) 1991-06-12 1991-06-12 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH05206565A true JPH05206565A (en) 1993-08-13

Family

ID=15242566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13932091A Withdrawn JPH05206565A (en) 1991-06-12 1991-06-12 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH05206565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982205B2 (en) * 2006-01-12 2011-07-19 National Institute Of Advanced Industrial Science And Technology III-V group compound semiconductor light-emitting diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982205B2 (en) * 2006-01-12 2011-07-19 National Institute Of Advanced Industrial Science And Technology III-V group compound semiconductor light-emitting diode

Similar Documents

Publication Publication Date Title
JPH09129974A (en) Semiconductor laser device
JP3982985B2 (en) Manufacturing method of semiconductor laser device
US5271028A (en) Semiconductor laser device
JPH021386B2 (en)
JPH07249838A (en) Semiconductor laser and its manufacture
JP3078004B2 (en) Manufacturing method of semiconductor laser
JP2001077465A (en) Semiconductor laser and manufacture thereof
JPH05267797A (en) Light-emitting semiconductor diode
JPH05206565A (en) Semiconductor laser element
JP2000252587A (en) Semiconductor laser and its manufacturing method
JP2699662B2 (en) Semiconductor laser and manufacturing method thereof
JP2554192B2 (en) Semiconductor laser manufacturing method
JP2810254B2 (en) Method for manufacturing semiconductor laser device
JP2547459B2 (en) Semiconductor laser device and manufacturing method thereof
JPS62179790A (en) Semiconductor laser
JPH04186687A (en) Semiconductor laser
JPS6252984A (en) Self-aligning current constriction type semiconductor light emitting element
JPH11126945A (en) Manufacture of strained semiconductor crystal and manufacture of semiconductor laser using it
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JPH04144294A (en) Semiconductor laser
JP3139888B2 (en) Semiconductor laser device
JPH05267168A (en) Manufacture of semiconductor device
JP3215213B2 (en) Semiconductor laser device and method of manufacturing the same
JP2000223779A (en) Nitride-based semiconductor laser device and its manufacture
JPH0443690A (en) Semiconductor laser element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903