JPH05206145A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05206145A
JPH05206145A JP1451092A JP1451092A JPH05206145A JP H05206145 A JPH05206145 A JP H05206145A JP 1451092 A JP1451092 A JP 1451092A JP 1451092 A JP1451092 A JP 1451092A JP H05206145 A JPH05206145 A JP H05206145A
Authority
JP
Japan
Prior art keywords
polysilicon film
back surface
heat treatment
silicon substrate
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1451092A
Other languages
Japanese (ja)
Inventor
Haruhide Fuse
玄秀 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP1451092A priority Critical patent/JPH05206145A/en
Publication of JPH05206145A publication Critical patent/JPH05206145A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To provide a semiconductor device having a substrate, on the back surface of which is deposited polysilicon having a high gettering effect. CONSTITUTION:A first polysilicon film on a wafer is used for gettering during a high-temperature heat treatment at 1050 deg.C. After the polysilicon film is removed, a second polysilicon film 8 is deposited on the back surface of the wafer to increase the effect of the next gettering. According to this method, the gettering effect on iron atoms is improved by 50% compared with the case where the first polysilicon is not removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方
法、特に半導体シリコン基板のゲッタリング方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of gettering a semiconductor silicon substrate.

【0002】[0002]

【従来の技術】半導体シリコン基板中の重金属ゲッタリ
ングの方法として、半導体シリコン基板に直接ポリシリ
コンを堆積することによりゲッタリングする方法が、1
991年第38回応用物理学関連技術講演会30p−Z
L−11等において報告されている。
2. Description of the Related Art As a method of gettering heavy metals in a semiconductor silicon substrate, there is a method of gettering by directly depositing polysilicon on the semiconductor silicon substrate.
991 38th Applied Physics Conference 30p-Z
It has been reported in L-11 and the like.

【0003】図7および図8は、従来の半導体装置の製
造方法を示す工程断面図である。図7は、半導体シリコ
ン基板1の両面に酸化膜2を形成し、表面にレジスト膜
を形成して、裏面の酸化膜2を湿式エッチング法により
除去し、その後、両面に、1μm程度の厚さの裏面ポリ
シリコン膜3および表面ポリシリコン膜4を堆積する工
程を示す。図8は、裏面にレジストを形成して、表面の
ポリシリコン膜4を除去し、高温長時間熱処理により、
ウェル層6,7の形成を行なう工程である。ここで、5
は裏面ポリシリコン膜3上に形成された裏面酸化膜であ
る。
7 and 8 are process sectional views showing a conventional method for manufacturing a semiconductor device. In FIG. 7, an oxide film 2 is formed on both surfaces of a semiconductor silicon substrate 1, a resist film is formed on the front surface, and the oxide film 2 on the back surface is removed by a wet etching method. The step of depositing the backside polysilicon film 3 and the frontside polysilicon film 4 of FIG. In FIG. 8, a resist is formed on the back surface, the polysilicon film 4 on the surface is removed, and heat treatment is performed at high temperature for a long time.
This is a step of forming the well layers 6 and 7. Where 5
Is a backside oxide film formed on the backside polysilicon film 3.

【0004】その状態にて、超LSI形成のプロセスを
行なう。この方法により、ポリシリコン膜3中に重金属
が取り込まれ、表面素子形成部分への電気的特性への影
響が減少する。なお、この方法に加えて、裏面のポリシ
リコン膜の形成方法には、両面にポリシリコン堆積後、
表面のポリシリコン膜を研磨することによって形成する
方法も用いられている。
In that state, a process for forming a VLSI is performed. By this method, the heavy metal is taken into the polysilicon film 3, and the influence on the electrical characteristics of the surface element forming portion is reduced. In addition to this method, the method for forming the polysilicon film on the back surface is as follows.
A method of forming a polysilicon film on the surface by polishing is also used.

【0005】[0005]

【発明が解決しようとする課題】従来の方法において
は、ポリシリコン膜堆積後に1050℃を越える熱処理
を行なうことにより、ポリシリコン膜の粒径は成長し、
そのために、この結晶粒に存在する結晶粒界が減少し
て、ゲッタリング効果は減少するという問題点がある。
In the conventional method, the grain size of the polysilicon film grows by performing a heat treatment at over 1050 ° C. after depositing the polysilicon film,
Therefore, there is a problem that the crystal grain boundaries existing in the crystal grains are reduced and the gettering effect is reduced.

【0006】また、高温の熱処理に用いる電気炉の炉心
管はSiC製であるために、石英に比べて重金属汚染に
弱い。そのために熱処理中における重金属汚染が起り易
い。さらに、CMOSLSIのウェルのドライブインな
どの高温熱処理が終了後において、比較的低温の熱処理
においても重金属が半導体シリコン基板の表面側に拡散
してしまうと電気特性の劣化につながるため、十分な裏
面ゲッタリング層が必要となる。ここで高温熱処理時に
形成されていたポリシリコン膜を残しておくことは高温
熱処理により、裏面のポリシリコン中にゲッターされた
重金属を工程の最後まで裏面に残しておくこととなり汚
染源をつねに半導体シリコン基板の裏に持っていること
になってしまい、重大な欠陥を生み出す原因となる。
Further, since the core tube of the electric furnace used for the high temperature heat treatment is made of SiC, it is more susceptible to heavy metal contamination than quartz. Therefore, heavy metal contamination is likely to occur during the heat treatment. Further, after the high temperature heat treatment such as the drive-in of the well of the CMOS LSI is completed, even if the heat treatment is performed at a relatively low temperature, if the heavy metal diffuses to the front surface side of the semiconductor silicon substrate, the electrical characteristics are deteriorated, so that a sufficient back surface getter is obtained. A ring layer is required. Here, to leave the polysilicon film formed during the high temperature heat treatment, the high temperature heat treatment causes the heavy metal gettered in the polysilicon on the back surface to remain on the back surface until the end of the process. Being held on the back of, it causes a serious defect.

【0007】[0007]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、これらの問題に鑑みなされたもので、半導体
シリコン基板の裏面に第1のポリシリコン膜を堆積する
工程と、1050℃を越える第1の熱処理を行なう工程
と、前記第1の熱処理後に前記第1のポリシリコン膜を
除去する工程と、前記半導体シリコン基板の裏面に第2
のポリシリコン膜を堆積する工程と備えたものである。
The method of manufacturing a semiconductor device according to the present invention has been made in view of these problems. The step of depositing a first polysilicon film on the back surface of a semiconductor silicon substrate and 1050.degree. A step of performing a first heat treatment that exceeds the first heat treatment step, a step of removing the first polysilicon film after the first heat treatment, and a second step on the back surface of the semiconductor silicon substrate.
And a step of depositing a polysilicon film.

【0008】[0008]

【作用】本発明は、上記した構成により、高温時にグレ
インが成長し、重金属を多く含んだポリシリコン膜を除
去することによって、重金属の大部分を除いてしまい、
再度グレイン寸法の小さくゲッタリング効果の高いポリ
シリコン膜を裏面に形成することによりゲッタリング効
果を高める。
According to the present invention, with the above structure, the grains grow at a high temperature, and by removing the polysilicon film containing a large amount of heavy metal, most of the heavy metal is removed.
The gettering effect is enhanced by forming again a polysilicon film having a small grain size and a high gettering effect on the back surface.

【0009】[0009]

【実施例】図1から図4は、本発明の一実施例における
半導体装置の製造方法の工程断面図である。半導体シリ
コン基板1の裏面に直接第1のポリシリコン膜を形成す
る。この時、表面は酸化膜2を介して、表面ポリシリコ
ン膜4が形成される(図1)。次に、表面ポリシリコン
膜4を除去し、表面にウェル層6,7を形成のため、ボ
ロンあるいはリン原子をイオン注入で、半導体シリコン
基板1に導入する。そして基板内部に深いウェル層6,
7を形成するため、熱拡散を1200℃で10時間程度
行なう(図2)。この後、裏面の第1のポリシリコン膜
3をケミカルドライエッチング法のようなシリコンと酸
化膜の高選択エッチング方法を用いて、半導体シリコン
基板1の基板シリコン表面までのエッチングを行なう
(図3)。この後、再度全面に酸化膜を形成後、裏面に
形成された酸化膜を除去して、両面にポリシリコン膜を
堆積する。そして表面側のポリシリコン膜のみを除去
し、裏面に第2のポリシリコン膜8だけを残す。その後
の工程において、この第2のポリシリコン膜8形成後
に、第2のポリシリコン膜8中に不純物が拡散しないよ
うに、その表面に酸化膜9を形成しておく(図4)。
1 to 4 are sectional views showing steps in a method of manufacturing a semiconductor device according to an embodiment of the present invention. A first polysilicon film is formed directly on the back surface of the semiconductor silicon substrate 1. At this time, the surface polysilicon film 4 is formed on the surface through the oxide film 2 (FIG. 1). Next, the surface polysilicon film 4 is removed, and boron or phosphorus atoms are ion-implanted into the semiconductor silicon substrate 1 to form the well layers 6 and 7 on the surface. And the deep well layer 6 inside the substrate
In order to form No. 7, thermal diffusion is performed at 1200 ° C. for about 10 hours (FIG. 2). After that, the first polysilicon film 3 on the back surface is etched up to the substrate silicon surface of the semiconductor silicon substrate 1 by using a highly selective etching method of silicon and an oxide film such as a chemical dry etching method (FIG. 3). .. After that, an oxide film is formed on the entire surface again, the oxide film formed on the back surface is removed, and a polysilicon film is deposited on both surfaces. Then, only the polysilicon film on the front surface side is removed, and only the second polysilicon film 8 is left on the back surface. In a subsequent process, after forming the second polysilicon film 8, an oxide film 9 is formed on the surface of the second polysilicon film 8 to prevent impurities from diffusing into the second polysilicon film 8 (FIG. 4).

【0010】また、裏面の第2のポリシリコン膜8表面
に窒化膜を形成しておくことによって、ウェットエッチ
ング時の裏面の酸化膜9の除去を防ぐことができる。こ
の時には、窒化膜と第2のポリシリコン膜8の間には酸
化膜を含んでいても影響が少ない。これらの方法により
工程数の増加はあるが、簡単な方法で、大きな効果を持
つゲッタリング層の形成が可能となり、実用的な価値は
極めて高い。
Further, by forming a nitride film on the surface of the second polysilicon film 8 on the back surface, removal of the oxide film 9 on the back surface during wet etching can be prevented. At this time, even if an oxide film is included between the nitride film and the second polysilicon film 8, the influence is small. Although the number of steps is increased by these methods, a gettering layer having a great effect can be formed by a simple method, and its practical value is extremely high.

【0011】図5には、このゲッタリングにより半導体
シリコン基板1中の鉄のゲッタリングの効果を示す。図
中の10は、従来法に相当するものであり、ポリシリコ
ン膜を形成後に、1100℃の高温熱処理工程を加えた
ポリシリコン膜中の鉄の分布をSIMSにて評価したも
のである。
FIG. 5 shows the effect of gettering of iron in the semiconductor silicon substrate 1 by this gettering. Reference numeral 10 in the figure corresponds to the conventional method, and the distribution of iron in the polysilicon film subjected to the high temperature heat treatment step at 1100 ° C. after forming the polysilicon film is evaluated by SIMS.

【0012】また、図6には、最大950℃の熱処理し
か加えていないポリシリコン膜を用いた時のポリシリコ
ン膜中への鉄の分布を示す結果である。なお、鉄の故意
汚染は、鉄を含む溶液をウェーハ表面に塗布して熱拡散
したものである。なお、一般に1050℃未満の温度の
場合には、ポリシリコン膜の粒成長は0.5μm径以下
であり、ゲッタリング効果の低減は少なかった。また、
ポリシリコン膜中に不純物を1019cm-2以下で高濃度
にドーピングすると、ゲッタリング効果が低下する。ま
た、裏面のポリシリコン膜堆積前に半導体シリコン基板
1の裏面の自然酸化膜を除去すると、半導体シリコン基
板1からの結晶成長の影響で、結晶粒の成長が起こり、
ポリシリコン膜の重金属のゲッタリング効果が低下す
る。この発明の方法で作成した試料について、鉄をスピ
ンコートにて、故意に汚染を行なったときのゲッタリン
グの効果を裏面のポリシリコン中の鉄の量を定量測定す
ることで評価した。その結果、最初のポリシリコン膜を
そのままにして、CMOS素子の製造工程を行なったも
のでは、裏面のポリシリコン膜中に汚染した鉄の30パ
ーセントが検出された。それに対して、本発明の結果に
おいては、50パーセントの鉄が裏面にゲッタリングさ
れており、本発明の効果は非常に大きかった。つまり、
最初に除去したポリシリコン膜中の量と合わせると80
パーセントの鉄を除去できたことになる。
FIG. 6 is a result showing the distribution of iron in the polysilicon film when using the polysilicon film to which only the heat treatment at a maximum of 950 ° C. was applied. The intentional contamination of iron is that a solution containing iron is applied to the surface of the wafer and thermally diffused. In general, when the temperature is less than 1050 ° C., the grain growth of the polysilicon film was 0.5 μm or less, and the gettering effect was not significantly reduced. Also,
If the polysilicon film is doped with impurities at a high concentration of 10 19 cm -2 or less, the gettering effect is lowered. If the natural oxide film on the back surface of the semiconductor silicon substrate 1 is removed before the polysilicon film on the back surface is deposited, crystal grains grow due to the influence of crystal growth from the semiconductor silicon substrate 1.
The gettering effect of the heavy metal of the polysilicon film is reduced. With respect to the sample prepared by the method of the present invention, the effect of gettering when iron was intentionally contaminated by spin coating was evaluated by quantitatively measuring the amount of iron in the polysilicon on the back surface. As a result, 30% of iron contaminated in the polysilicon film on the back surface was detected in a CMOS device manufacturing process in which the first polysilicon film was left as it was. On the other hand, in the result of the present invention, 50% of iron was gettered on the back surface, and the effect of the present invention was very large. That is,
The total amount in the polysilicon film removed first is 80
It means that we have been able to remove the percentage of iron.

【0013】高温の熱処理においても、高温熱処理に続
いて起る比較的低温の熱処理においても、重金属のゲッ
タリング効果が十分に得られる。高温熱処理時に形成し
ていた裏面ポリシリコン膜を高温熱処理後に一端除去
し、再度裏面にポリシリコン膜を形成し、その後の熱処
理工程におけるゲッタリング効果を高めるものである。
それと同時に高温熱処理時にゲッターされた重金属汚染
層を除去できる効果がある。
The gettering effect of the heavy metal can be sufficiently obtained in both the high temperature heat treatment and the relatively low temperature heat treatment that follows the high temperature heat treatment. The back surface polysilicon film formed during the high temperature heat treatment is removed after the high temperature heat treatment and the polysilicon film is formed again on the back surface to enhance the gettering effect in the subsequent heat treatment step.
At the same time, there is an effect that the gettered heavy metal contamination layer can be removed during the high temperature heat treatment.

【0014】[0014]

【発明の効果】以上、本発明によれば、第1のポリシリ
コン膜を高温で処理することで、ゲッタリング能力は減
少する。このために、一旦除去して後に再度第2のポリ
シリコン膜を形成することによって、重金属の汚染を低
減でき、電気特性の劣化を抑えた高性能素子を形成でき
る。
As described above, according to the present invention, the gettering ability is reduced by processing the first polysilicon film at a high temperature. Therefore, by removing once and then forming the second polysilicon film again, the contamination of heavy metals can be reduced, and a high-performance element with suppressed deterioration of electrical characteristics can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の製造方法の一実施例を示
す第1工程断面図
FIG. 1 is a sectional view of a first step showing an embodiment of a method for manufacturing a semiconductor device of the present invention.

【図2】本発明の半導体装置の製造方法の一実施例を示
す第2工程断面図
FIG. 2 is a sectional view of a second step showing an embodiment of a method for manufacturing a semiconductor device of the present invention.

【図3】本発明の半導体装置の製造方法の一実施例を示
す第3工程断面図
FIG. 3 is a sectional view of a third step showing the embodiment of the method for manufacturing the semiconductor device of the present invention.

【図4】本発明の半導体装置の製造方法の一実施例を示
す第4工程断面図
FIG. 4 is a sectional view of a fourth step showing the embodiment of the method for manufacturing the semiconductor device of the present invention.

【図5】本発明の半導体シリコン基板中の鉄のゲッタリ
ングの効果を示す図
FIG. 5 is a diagram showing the effect of gettering of iron in the semiconductor silicon substrate of the present invention.

【図6】本発明のポリシリコン膜中への鉄の分布を示す
FIG. 6 is a diagram showing the distribution of iron in the polysilicon film of the present invention.

【図7】従来の半導体装置の製造方法の一例を示す第1
工程断面図
FIG. 7 shows a first example of a conventional method for manufacturing a semiconductor device.
Process cross section

【図8】従来の半導体装置の製造方法の一例を示す第2
工程断面図
FIG. 8 shows a second example of a conventional method for manufacturing a semiconductor device.
Process cross section

【符号の説明】[Explanation of symbols]

1 半導体シリコン基板 2 酸化膜 3 第1の裏面ポリシリコン膜 4 表面ポリシリコン膜 5,9 裏面酸化膜 6,7 ウェル層 8 第2の裏面ポリシリコン 1 Semiconductor Silicon Substrate 2 Oxide Film 3 First Backside Polysilicon Film 4 Surface Polysilicon Film 5,9 Backside Oxide Film 6,7 Well Layer 8 Second Backside Polysilicon

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】半導体シリコン基板の裏面にポリシリコン
膜を堆積する工程と、1050℃を越える第1の熱処理
を行なう工程と、前記第1の熱処理後で、第2の高温熱
処理を行なう前に前記ポリシリコン膜を除去する工程と
を備えた半導体装置の製造方法。
1. A step of depositing a polysilicon film on a back surface of a semiconductor silicon substrate, a step of performing a first heat treatment at a temperature higher than 1050 ° C., and a step of performing a second high temperature heat treatment after the first heat treatment. And a step of removing the polysilicon film.
【請求項2】半導体シリコン基板の裏面に第1のポリシ
リコン膜を堆積する工程と、1050℃を越える第1の
熱処理を行なう工程と、前記第1の熱処理後に前記第1
のポリシリコン膜を除去する工程と、前記半導体シリコ
ン基板の裏面に第2のポリシリコン膜を堆積する工程と
備えた半導体装置の製造方法。
2. A step of depositing a first polysilicon film on the back surface of a semiconductor silicon substrate, a step of performing a first heat treatment exceeding 1050 ° C., and a step of performing the first heat treatment after the first heat treatment.
And a step of depositing a second polysilicon film on the back surface of the semiconductor silicon substrate.
【請求項3】第1および第2のポリシリコン膜中の不純
物が1019cm-2以下である請求項1または請求項2記
載の半導体装置の製造方法。
3. The method for manufacturing a semiconductor device according to claim 1, wherein the impurities in the first and second polysilicon films are 10 19 cm −2 or less.
【請求項4】半導体シリコン基板の裏面に形成した第2
のポリシリコン膜の表面に酸化膜あるいは窒化膜を形成
する請求項2記載の半導体装置の製造方法。
4. A second surface formed on the back surface of a semiconductor silicon substrate.
3. The method of manufacturing a semiconductor device according to claim 2, wherein an oxide film or a nitride film is formed on the surface of the polysilicon film.
【請求項5】半導体シリコン基板の裏面の第1のポリシ
リコン膜の堆積前に前記半導体シリコン基板の裏面に自
然酸化膜を備えた請求項1または2記載の半導体装置の
製造方法。
5. The method of manufacturing a semiconductor device according to claim 1, wherein a natural oxide film is provided on the back surface of the semiconductor silicon substrate before depositing the first polysilicon film on the back surface of the semiconductor silicon substrate.
JP1451092A 1992-01-30 1992-01-30 Manufacture of semiconductor device Pending JPH05206145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1451092A JPH05206145A (en) 1992-01-30 1992-01-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1451092A JPH05206145A (en) 1992-01-30 1992-01-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05206145A true JPH05206145A (en) 1993-08-13

Family

ID=11863077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1451092A Pending JPH05206145A (en) 1992-01-30 1992-01-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05206145A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245968A (en) * 2008-03-28 2009-10-22 Oki Semiconductor Co Ltd Manufacturing method of semiconductor device
JP2010040638A (en) * 2008-08-01 2010-02-18 Sumco Corp Method of manufacturing soi substrate
JP2010232539A (en) * 2009-03-27 2010-10-14 Canon Inc Method of manufacturing semiconductor device, and method of manufacturing photoelectric conversion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245968A (en) * 2008-03-28 2009-10-22 Oki Semiconductor Co Ltd Manufacturing method of semiconductor device
JP2010040638A (en) * 2008-08-01 2010-02-18 Sumco Corp Method of manufacturing soi substrate
JP2010232539A (en) * 2009-03-27 2010-10-14 Canon Inc Method of manufacturing semiconductor device, and method of manufacturing photoelectric conversion device

Similar Documents

Publication Publication Date Title
JP2006344937A (en) Method of fabricating low-defect strained epitaxial germanium film on silicon
US5897362A (en) Bonding silicon wafers
JP2002184960A (en) Manufacturing method of soi wafer and soi wafer
JP3454033B2 (en) Silicon wafer and manufacturing method thereof
JP3085184B2 (en) SOI substrate and manufacturing method thereof
JP3285723B2 (en) Semiconductor heat treatment jig and surface treatment method thereof
JP3080501B2 (en) Silicon wafer manufacturing method
JPH05206145A (en) Manufacture of semiconductor device
JP3116487B2 (en) Method for manufacturing semiconductor epitaxial substrate
JP4344517B2 (en) Semiconductor substrate and manufacturing method thereof
JP3042659B2 (en) Method for oxidizing semiconductor wafer
JP2004152920A (en) Method of manufacturing semiconductor device and method of managing semiconductor manufacturing process
JPH06216137A (en) Semiconductor device and manufacture thereof
JP3001513B2 (en) Manufacturing method of semiconductor wafer
JPS5927529A (en) Fabrication of semiconductor device wafer
JP4826993B2 (en) Method for producing p-type silicon single crystal wafer
JP2708175B2 (en) Method for manufacturing InSb planar photovoltaic element
JPH06196459A (en) Manufacture of semiconductor silicon wafer
JPH05235006A (en) Epitaxial wafer forming method
JPH08306699A (en) Manufacture of semiconductor device
JPS61154132A (en) Manufacture of semiconductor device
JP3282265B2 (en) Method for manufacturing semiconductor device
JPH03173131A (en) Manufacture of semiconductor device
JPS628018B2 (en)
JPH04352422A (en) Manufacture of semiconductor device