JPH0520498B2 - - Google Patents

Info

Publication number
JPH0520498B2
JPH0520498B2 JP60203925A JP20392585A JPH0520498B2 JP H0520498 B2 JPH0520498 B2 JP H0520498B2 JP 60203925 A JP60203925 A JP 60203925A JP 20392585 A JP20392585 A JP 20392585A JP H0520498 B2 JPH0520498 B2 JP H0520498B2
Authority
JP
Japan
Prior art keywords
powder
powder material
melting
metallic chromium
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60203925A
Other languages
Japanese (ja)
Other versions
JPS6263659A (en
Inventor
Shinichi Tamura
Hatsuo Taira
Tetsuo Uchibayashi
Kazunori Sakata
Masahiro Tamamaki
Soichi Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60203925A priority Critical patent/JPS6263659A/en
Publication of JPS6263659A publication Critical patent/JPS6263659A/en
Publication of JPH0520498B2 publication Critical patent/JPH0520498B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は酸化クロムを含む酸化物粉末を溶融後
固化し、粉砕、分級することにより溶射用粉末材
料を製造するにあたり、特に粉末材料中の金属ク
ロムの含有量を0.5wt%以下にする溶射用粉末材
料の製造方法に関するものである。 (従来の技術) 金属等の素材表面にセラミツク粉末を溶射被覆
し、セラミツクスの特性を生かして、耐摩耗性、
耐熱性並びに耐食性等を向上させるセラミツク溶
射技術が発達してきている。セラミツク粉末の中
でも酸化クロムは融点が高く高硬度でありかつ化
学的に安定であるので酸化クロムを含む溶射皮膜
は保護皮膜として優れた性能が期待されうる。 溶射用粉末材料の製造方法の一つとして、原料
を溶融後、固化し、粉砕、分級することからなる
溶射用粉末材料の製造方法がある。 この方法により得られた粉末材料はバインダー
を必要とせず、粒子強度及び密度の高い優れた溶
射用粉末材料である。特に酸化クロムを含有する
酸化物は難焼結材が多いため上記方法を用いて製
造された溶射用粉末材料が推奨される。 しかし、酸化クロムは高温において酸素を放出
し、金属クロムを生成しやすい性質を持つている
ため、上記の溶融工程においては通常1〜5wt%
の金属クロムが生成する。この金属クロムは溶射
用粉末材料の製造上除去し難く、最終的にも混入
した金属クロムの大部分がそのまま溶射皮膜中に
残留することが避けられなかつた。この金属クロ
ムの存在は、酸化クロムを含む酸化物粉末の溶射
皮膜として必要とされる特性、つまり酸化クロム
の高温における金属とのぬれ性の悪さ、高硬度、
耐摩耗性並びに耐食性を著く劣化させる。 例えば溶融法によつて製造したCr2O3−Al2O3
系粉末材料を溶射した皮膜は高温における耐摩耗
性、金属とのぬれ性の悪さ、耐熱スポーリング性
を備えているため、鋼板等を連続焼鈍するための
搬送用ハースロールの溶射被覆に用いられた優れ
た性能を発揮する。しかし中には鋼板の付着物又
は鉄粉がハースロール表面に凝着堆積していわゆ
るビルドアツプを形成し、鋼板がハースロール上
を搬送される間に、その表面が傷つけられて鋼板
の品質が低下する現象がしばしば見受けられる。
このビルドアツプメカニズムの主たる要因とし
て、種々検討が成された結果、溶射皮膜中の金属
クロムが高温下で鋼材と反応するためであること
が判明した。 また、低温下における耐化学腐食用の保護皮膜
としても、酸化クロムを含有する溶射皮膜は優れ
た性能を発揮する。しかしこの皮膜中に化学腐食
に対して弱い金属クロムが存在すると、皮膜中に
通常存在する気孔を通じて、溶液並びに融体が容
易に浸透し腐食が生じ、溶射皮膜が本来有する耐
化学腐食性を著しく劣化させることが判明してい
る。 以上の例からも判るように、酸化クロムを含有
するセラミツク溶射皮膜中において金属クロムは
明らかに酸化クロムを含有する溶射材料が有する
本来の特性を著しく低下させる不純物として存在
しており、優れた溶射皮膜を製造するためには、
金属クロムの含有量を0.5wt%以下、好ましくは
0.1wt%以下とする必要性があることが確められ
た。 (発明が解決しようとする問題点) 本発明は、酸化クロムを含有するセラミツク溶
射皮膜中の夾雑成分に着目して検討した結果、従
来の溶射皮膜以上の性能が発揮できる溶射皮膜を
形成しうる粉末材料を製造するための方法を提供
するものである。 (問題点を解決するための手段) 本発明における溶射用粉末材料の製造方法は、
酸化クロムを含む酸化物粉末を溶融後固化し、粉
砕、分級する製造過程において、夾雑成分である
金属クロムの生成量を0.5wt%以下、好ましくは
0.1wt%以下に低減すべく、本発明の第1の特徴
(第1項発明)に従つて溶融時または溶融後の融
液と酸素含有ガスを接触させることにより、融液
中の金属クロムの生成を抑制するかもしくは低減
させることからなる。 さらに本発明の第2の特徴は、前記の如く酸素
含有ガスと接触させることにより、金属クロムの
生成が抑制され、もしくは金属クロムの含有量が
低減された融液を固化し、次いで粉砕分級する過
程において、さらに金属クロムの含有量を低減す
るため、粉砕、分級された粉末材料を高温酸化雰
囲気中で焙焼することからなる。かかる方法によ
つて粉末材料中の金属クロム含有量をより効果的
に減少させることができる。 本発明において融液と酸素含有ガスを接触させ
る態様としては、酸化クロム粉末を含む酸化物粉
末を例えば電気炉で溶融時に酸素を吹き込むか、
又は溶融後に酸素含有ガス雰囲気中で鋳造する
か、あるいは溶融後に融液を圧縮空気で吹き飛ば
す方法等があげられる。 本発明において、酸素含有ガスと接触させた融
液を固化し、次いで粉砕、分級して得られた粉末
材料を高温酸化雰囲気中で焙焼する方法としては
該粉末材料を5〜100μm、好ましくは10〜50μm
の粒径に調整して、空気中で1100〜1300℃で焙焼
し、該粉末材料に含まれる金属クロムを酸化処理
し、之によつて粉末材料中の金属クロム含有量を
0.5wt%以下に低減せしめる。 焙焼すべき粉末材料の粒径の限定理由並びに好
ましい焙焼温度について以下に述べる。 焙焼すべき粉末材料中に粒径が5μm未満の粒子
が存在する場合及び1300℃を超える温度での焙焼
は焼結が促進して、一次粒子への解砕が困難とな
り、好ましい方法ではない。又、粒径が100μmを
超える粒子が存在する場合及び1100℃未満の温度
での焙焼は、焙焼時間を大幅に延長しなければな
らず、また粒子中に取り込まれた金属クロムを完
全に酸化することが出来ないので、これも又好ま
しくない。 次に本発明による製品の品質検査の結果を表1
に示す。この検査は溶射用粉末材料中に含有され
る金属クロムの量を分析するための方法である。 試薬特級の塩酸と純水との1:1(体積比)の
溶液、50c.c.中に試料を浸し、一昼夜放置した後、
15分間煮沸し、冷却、ろ過した後、ろ過水を原子
吸光分析装置で定量分析を行い金属クロムの量を
算出した。 実施例 1 純度99%以上の市販のAl2O350wt%と純度99%
以上の市販のCr2O350wt%を混合しアーク式電気
炉で溶融し、溶融開始から溶融が終わるまで融液
に酸素を1分間当り20の割合で吹き込み続け、
固化した後、粉砕、分級して10〜50μmの粒径の
表−1に示す粉末材料(1)を得た。 比較例1(従来例) 実施例1と同様の純度、同様の配合比で混合し
たAl2O3とCr2O3を従来法に従つてアーク式電気
炉にて溶融後固化したものを、粉砕、分級して10
〜50μmの粒径の表−1に示す粉末材料(2)を得た。 実施例 2 純度99%以上の市販のAl2O350wt%と純度99%
以上の市販のCr2O350wt%を混合しアーク式電気
炉で溶融し、溶融開始から溶融が終わるまで融液
に酸素を1分間当り20の割合で吹き込み続け、
固化した後、粉砕、分級して10〜50μmの粒径の
粉末材料を得た。次にこの粉末を空気中において
1200℃で3時間焙焼し、200メツシユのフルイで
解砕及び精製し表−1に示す粉末材料(3)を得た。 粉末材料中の金属クロム量は表−1の通りであ
る。
(Industrial Application Field) The present invention produces a powder material for thermal spraying by melting and solidifying oxide powder containing chromium oxide, pulverizing it, and classifying it. In particular, the content of metallic chromium in the powder material is reduced to 0.5 The present invention relates to a method for producing powder material for thermal spraying in which the amount is reduced to below wt%. (Conventional technology) Ceramic powder is thermally sprayed onto the surface of materials such as metals, making use of the characteristics of ceramics to improve wear resistance and
Ceramic thermal spraying technology has been developed to improve heat resistance and corrosion resistance. Among ceramic powders, chromium oxide has a high melting point, high hardness, and is chemically stable, so a thermal spray coating containing chromium oxide can be expected to have excellent performance as a protective coating. One of the methods for producing a powder material for thermal spraying is a method for producing a powder material for thermal spraying, which comprises melting a raw material, solidifying it, pulverizing it, and classifying it. The powder material obtained by this method does not require a binder and is an excellent thermal spray powder material with high particle strength and density. In particular, since many oxides containing chromium oxide are difficult to sinter, powder materials for thermal spraying produced using the above method are recommended. However, since chromium oxide has the property of releasing oxygen at high temperatures and easily forming metallic chromium, it is usually used at 1 to 5 wt% in the above melting process.
of metallic chromium is produced. This metallic chromium is difficult to remove in the production of thermal spray powder materials, and it is inevitable that most of the mixed metallic chromium will remain in the thermal spray coating in the end. The presence of this metallic chromium has the characteristics required for a thermal spray coating of oxide powder containing chromium oxide, namely, chromium oxide's poor wettability with metals at high temperatures, high hardness,
Significantly deteriorates wear resistance and corrosion resistance. For example, Cr 2 O 3 −Al 2 O 3 produced by the melting method
Coatings made from thermally sprayed powder materials have high abrasion resistance at high temperatures, poor wettability with metals, and heat spalling resistance, so they are used as thermal spray coatings on conveyor hearth rolls for continuous annealing of steel plates, etc. Demonstrates excellent performance. However, in some cases, deposits on the steel plate or iron powder adhere and accumulate on the surface of the hearth roll, forming so-called build-up, and while the steel plate is being conveyed on the hearth roll, the surface is damaged and the quality of the steel plate deteriorates. This phenomenon is often observed.
As a result of various studies, it was found that the main cause of this build-up mechanism is that metallic chromium in the thermal spray coating reacts with the steel material at high temperatures. Additionally, thermal sprayed coatings containing chromium oxide exhibit excellent performance as protective coatings for chemical corrosion resistance at low temperatures. However, if metallic chromium, which is susceptible to chemical corrosion, is present in this coating, solutions and melts can easily penetrate through the pores normally present in the coating, causing corrosion, significantly reducing the inherent chemical corrosion resistance of the thermal spray coating. It has been shown to cause deterioration. As can be seen from the above examples, metallic chromium clearly exists as an impurity in ceramic thermal spray coatings containing chromium oxide, which significantly reduces the original properties of the thermal spray material containing chromium oxide. To produce the film,
The content of metallic chromium should be 0.5wt% or less, preferably
It was confirmed that there is a need to keep the content below 0.1wt%. (Problems to be Solved by the Invention) As a result of studies focusing on impurities in ceramic sprayed coatings containing chromium oxide, the present invention has found that it is possible to form a thermal sprayed coating that can exhibit better performance than conventional thermal sprayed coatings. A method for manufacturing a powder material is provided. (Means for solving the problems) The method for producing a powder material for thermal spraying in the present invention includes:
In the manufacturing process of melting, solidifying, crushing, and classifying oxide powder containing chromium oxide, the amount of metallic chromium, which is an impurity component, is kept to 0.5 wt% or less, preferably
In order to reduce the amount of metallic chromium in the melt to 0.1wt% or less, by bringing the melt during or after melting into contact with oxygen-containing gas according to the first feature of the present invention (Section 1 invention), the amount of metallic chromium in the melt is reduced to 0.1wt% or less. It consists of suppressing or reducing the production. Furthermore, the second feature of the present invention is to solidify the melt in which the production of metallic chromium is suppressed or the content of metallic chromium is reduced by bringing it into contact with an oxygen-containing gas as described above, and then crushing and classifying the melt. The process consists of roasting the crushed and classified powder material in a high temperature oxidizing atmosphere in order to further reduce the content of metallic chromium. By such a method, the metallic chromium content in the powder material can be reduced more effectively. In the present invention, the melt and the oxygen-containing gas may be brought into contact by blowing oxygen into the oxide powder containing the chromium oxide powder in an electric furnace, for example, or
Alternatively, methods include casting in an oxygen-containing gas atmosphere after melting, or blowing away the melt with compressed air after melting. In the present invention, the method of roasting the powder material obtained by solidifying the melt brought into contact with an oxygen-containing gas, pulverizing and classifying the powder material in a high temperature oxidizing atmosphere is to reduce the powder material to a thickness of 5 to 100 μm, preferably 10~50μm
The particle size is adjusted to a particle size of
Reduce it to 0.5wt% or less. The reason for limiting the particle size of the powder material to be roasted and the preferred roasting temperature will be described below. If there are particles with a particle size of less than 5 μm in the powder material to be roasted, and if roasting is performed at a temperature exceeding 1300°C, sintering will be accelerated and it will be difficult to disintegrate into primary particles, so this is not the preferred method. do not have. In addition, if particles with a particle size exceeding 100 μm are present and roasting at a temperature below 1100°C, the roasting time must be significantly extended, and the metallic chromium incorporated in the particles must be completely removed. This is also undesirable since it cannot be oxidized. Next, Table 1 shows the results of quality inspection of products according to the present invention.
Shown below. This test is a method for analyzing the amount of metallic chromium contained in thermal spray powder materials. After soaking the sample in 50 c.c. of a 1:1 (volume ratio) solution of reagent-grade hydrochloric acid and pure water, and leaving it for a day and night,
After boiling for 15 minutes, cooling, and filtering, the filtered water was quantitatively analyzed using an atomic absorption spectrometer to calculate the amount of metallic chromium. Example 1 50wt% of commercially available Al 2 O 3 with a purity of 99% or more and a purity of 99%
The above commercially available Cr 2 O 3 50wt% was mixed and melted in an electric arc furnace, and oxygen was continuously blown into the melt at a rate of 20% per minute from the start of melting until the end of melting.
After solidification, it was crushed and classified to obtain powder material (1) shown in Table 1 with a particle size of 10 to 50 μm. Comparative Example 1 (Conventional Example) Al 2 O 3 and Cr 2 O 3 mixed with the same purity and the same blending ratio as in Example 1 were melted and solidified in an electric arc furnace according to the conventional method. Crush and classify 10
A powder material (2) shown in Table 1 with a particle size of ~50 μm was obtained. Example 2 Commercially available Al 2 O 3 50wt% with purity of 99% or more and purity of 99%
The above commercially available Cr 2 O 3 50wt% was mixed and melted in an electric arc furnace, and oxygen was continuously blown into the melt at a rate of 20% per minute from the start of melting until the end of melting.
After solidification, it was crushed and classified to obtain a powder material with a particle size of 10 to 50 μm. Next, put this powder in the air
It was roasted at 1200°C for 3 hours, crushed and purified using a 200 mesh sieve to obtain powder material (3) shown in Table 1. The amount of metallic chromium in the powder material is shown in Table-1.

【表】 実施例1より得た材料(1)は、金属クロム量が
0.3%と、本発明での限定範囲を満足している。
又実施例2によつて得られた材料(3)は金属クロム
量が極めて少ない。 (発明の効果) 上記表からも明らかなように、酸化クロムを含
む酸化物粉末原料から、溶融、固化、粉砕、分級
の工程により得られる溶射用粉末中の金属クロム
の含有量を有利に低減することができる。
[Table] Material (1) obtained from Example 1 has a metal chromium content of
The content is 0.3%, which satisfies the limited range of the present invention.
Further, the material (3) obtained in Example 2 has an extremely small amount of metallic chromium. (Effects of the invention) As is clear from the above table, the content of metallic chromium in the thermal spray powder obtained from the oxide powder raw material containing chromium oxide through the steps of melting, solidification, pulverization, and classification is advantageously reduced. can do.

Claims (1)

【特許請求の範囲】 1 酸化クロム粉末を含む酸化物粉末を溶融後固
化し、粉砕、分級することによつて溶射用粉末材
料を製造するに当たり、前記溶融後の融液と酸素
含有ガスを接触させて、該融液中の金属クロムの
含有量を0.5wt%以下に低減させることを特徴と
する溶射用粉末材料の製造方法。 2 酸化クロム粉末を含む酸化物粉末を溶融後固
化し、粉砕、分級することによつて溶射用粉末材
料を製造するに当たり、前記溶融後の融液と酸素
含有ガスを接触させた後固化し、次いで粉砕、分
級により5〜100μmの粒径の粉末材料を得、この
粉末材料を高温酸化雰囲気中で焙焼することによ
り該粉末中の金属クロムの含有量を0.5wt%以下
に低減させることを特徴とする溶射用粉末材料の
製造方法。
[Claims] 1. In producing a powder material for thermal spraying by melting and solidifying oxide powder including chromium oxide powder, pulverizing and classifying it, the melt after melting is brought into contact with an oxygen-containing gas. and reducing the content of metallic chromium in the melt to 0.5 wt% or less. 2. In producing a powder material for thermal spraying by melting and solidifying oxide powder including chromium oxide powder, pulverizing and classifying, the melt is brought into contact with an oxygen-containing gas and then solidified, Next, a powder material with a particle size of 5 to 100 μm is obtained by crushing and classification, and the content of metallic chromium in the powder is reduced to 0.5 wt% or less by roasting this powder material in a high-temperature oxidizing atmosphere. Features: A method for producing a powder material for thermal spraying.
JP60203925A 1985-09-14 1985-09-14 Production of powdery material for thermal spraying Granted JPS6263659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60203925A JPS6263659A (en) 1985-09-14 1985-09-14 Production of powdery material for thermal spraying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60203925A JPS6263659A (en) 1985-09-14 1985-09-14 Production of powdery material for thermal spraying

Publications (2)

Publication Number Publication Date
JPS6263659A JPS6263659A (en) 1987-03-20
JPH0520498B2 true JPH0520498B2 (en) 1993-03-19

Family

ID=16481964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60203925A Granted JPS6263659A (en) 1985-09-14 1985-09-14 Production of powdery material for thermal spraying

Country Status (1)

Country Link
JP (1) JPS6263659A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410470B1 (en) * 2000-04-24 2002-06-25 Saint-Gobain Industrial Ceramics, Inc. Thermal spray powder process

Also Published As

Publication number Publication date
JPS6263659A (en) 1987-03-20

Similar Documents

Publication Publication Date Title
CN101522342B (en) Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof
JP2002503764A (en) Aluminide sheet manufacturing method by thermomechanical processing of aluminide powder
CA1215865A (en) Copper base spinodal alloy strip and process for its preparation
JPS61130451A (en) Aluminum/iron/vanadium alloy having high strength at high temperature
WO2002090022A1 (en) Spherical rhenium powder
FR2668478A1 (en) SIALON MATRIX REFRACTORY MATERIALS AND PROCESS FOR PREPARING SIALON MATRIX.
IE52603B1 (en) Process for the production of amorphous metal alloys based on iron,phosphorus,carbon and chromium
JPS63274736A (en) Niobium alloy
JPS6289803A (en) Powdery particle for fine granular hard alloy and its production
US4851193A (en) High temperature aluminum-base alloy
JP2001503105A (en) Coated powder and method for producing the same
JPH0660386B2 (en) Metal semi-finished product and manufacturing method thereof
US4793969A (en) Process for producing tungsten heavy alloy sheet using high temperature processing techniques
JPS61502546A (en) Zinc soluble metal powder and its manufacturing method
JPH0520498B2 (en)
JPH0520499B2 (en)
CA2410805C (en) Method for preparing reinforced platinum material
JPH0317899B2 (en)
JPH0651895B2 (en) Heat-resistant aluminum powder metallurgy alloy
US2159604A (en) Metallic article
JPH0520500B2 (en)
JPS6263662A (en) Production of powdery material for thermal spraying
DE10064056B9 (en) A process for producing a sintered body of high-hardness, high-chromium-content cast iron
JPH0742530B2 (en) Manufacturing method of low oxygen alloy compact
JPS63150822A (en) Manufacture of contact alloy for vacuum valve