JPH0520490B2 - - Google Patents

Info

Publication number
JPH0520490B2
JPH0520490B2 JP31313786A JP31313786A JPH0520490B2 JP H0520490 B2 JPH0520490 B2 JP H0520490B2 JP 31313786 A JP31313786 A JP 31313786A JP 31313786 A JP31313786 A JP 31313786A JP H0520490 B2 JPH0520490 B2 JP H0520490B2
Authority
JP
Japan
Prior art keywords
niobium
acid
dissolution
roasting
mixed acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31313786A
Other languages
Japanese (ja)
Other versions
JPS63162827A (en
Inventor
Masafumi Chikasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Kasei Co Ltd
Original Assignee
Chugai Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Kasei Co Ltd filed Critical Chugai Kasei Co Ltd
Priority to JP61313137A priority Critical patent/JPS63162827A/en
Publication of JPS63162827A publication Critical patent/JPS63162827A/en
Publication of JPH0520490B2 publication Critical patent/JPH0520490B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、錫、チタン、鉄等とニオブとの合金
からニオブを収率良く溶解抽出する方法に関し、
殊に溶解抽出操作時における水素の発生を無くし
て爆発の危険を解消するの共に、ニオブの不働態
化を阻止してニオブの回収率を高めることのでき
る処理方法に関するものである。 [従来の技術] 金属ニオブは鋼材に少量添加することによつて
結合力の強い炭化物を形成し、結晶粒の微細化、
強度の向上、耐熱性の向上等に寄与するので、高
温耐熱鋼材を得るための合金元素として極めて有
用なものであり、その他の各種金属材料への微量
添加元素としての需要も漸増する傾向が見られ
る。またニオブ化合物は電子工業用材料や光学ガ
ラス用材料等としても幅広い用途を有している。 ニオブを含む原鉱石としてはパイロクロア、コ
ロンバイト、タンタライト、ストルベライト等が
知られており、これらのニオブ含有鉱石からニオ
ブを得る方法としては、原鉱石を破砕した後アル
カリ溶融し、ニオブ酸塩として抽出後酸で処理し
ニオブ酸として回収する方法が実施されており、
また本願出願人らの出願に係る特開昭59−205430
号公報に開示されている如くニオブを可溶性塩化
物として溶出させる方法も開発されている。 ところが最近ニオブに対する供給形態が一変
し、ニオブ含有鉱石の中で最も重要なバイロクロ
ア等については、鉱石として供給されるのではな
くNb−Fe等の合金として供給される様になつて
おり、そうなるとニオブ含有合金からニオブをい
かにうまく回収するかということがより重要にな
つてくる。 [発明が解決しようとする問題点] 本発明者らはこの様な状況変化に対処するた
め、Nb−Fe,Nb−Sn,Nb−Ti等のニオブ含有
合金から高純度のニオブを収率良く回収すること
のできる方法を確立しようとして色々研究を進め
てきた。その結果、ニオブ含有合金を弗化水素酸
と硫酸との混酸によつて溶解した後ニオブ化合物
を分離する方法を採用すれば、かなりの収率でニ
オブが回収されることを知つた。そこでこの回収
法を実用化すべく更に研究を進めるうち、次の様
な問題に遭遇した。即ち第1の問題は、ニオブ含
有合金を前述の混酸に溶解させるとき、下記
[]式の反応によつて大量の水素が発生するが、 M+HF+H2SO4 =Mn++F-+SO4 2-+3/2・H2↑ ……[] (Mは金属元素を表わす) 水素は空気に対して7〜72%という極めて広範
囲の爆発組成を構成するため非常に危険であり、
安全性の点で問題がある。 しかも金属ニオブは上記混酸との反応によつて
表面に不働態被膜を形成して溶解が阻害されると
いう難点もあり、当初期待されたほどの回収率を
得ることができなかつた。 本発明はこの様な事情に鑑みてなされたもので
あり、その目的は、混酸を用いた溶解処理法に見
られる上記の様な問題点を解消し、水素発生によ
る爆発の危険を解消し得るばかりでなく、不働態
被膜の形成をなくすことによつてニオブの溶解を
促進し、高純度のニオブを高収率で安全に回収す
ることのできる方法を提供しようとするものであ
る。 [問題点を解決するための手段] 上記の目的を達成することのできた本発明処理
法の構成は、ニオブ含有合金を焙焼酸化した後、
弗化水素酸と硫酸との混酸を用いて、水素の発生
およびニオブの不働態化を生ずることなくニオブ
を溶解抽出するところに要旨を有するものであ
る。 [作用] ニオブ含有合金としてフエロニオブを使用する
場合を例にとつて本発明の作用を詳細に説明す
る。 フエロニオブに関するJIS規格は次表に示す通
りである。
[Industrial Application Field] The present invention relates to a method for dissolving and extracting niobium from an alloy of tin, titanium, iron, etc. and niobium with good yield.
In particular, the present invention relates to a treatment method that eliminates the risk of explosion by eliminating the generation of hydrogen during dissolution and extraction operations, and that can also prevent passivation of niobium and increase the recovery rate of niobium. [Prior art] When metal niobium is added in small amounts to steel materials, it forms carbides with strong bonding strength, making crystal grains finer and
Since it contributes to improved strength and heat resistance, it is extremely useful as an alloying element for obtaining high-temperature heat-resistant steel materials, and demand for its use as a trace additive element in various other metal materials is also gradually increasing. It will be done. Niobium compounds also have a wide range of uses, including as materials for the electronic industry and materials for optical glass. Pyrochlore, columbite, tantalite, struberite, etc. are known as raw ores containing niobium, and the method for obtaining niobium from these niobium-containing ores is to crush the raw ores and then melt them with alkali to form niobate. As a method of extraction, treatment with acid and recovery as niobic acid has been carried out.
Also, Japanese Patent Application Laid-Open No. 59-205430 filed by the applicants of the present application
A method for eluting niobium as a soluble chloride has also been developed, as disclosed in the above publication. However, recently the supply format for niobium has changed completely, and the most important niobium-containing ores, such as virochlore, are no longer supplied as ores but as alloys such as Nb-Fe. How to effectively recover niobium from containing alloys becomes more important. [Problems to be solved by the invention] In order to cope with such changes in the situation, the present inventors have developed a method for producing high-purity niobium in good yield from niobium-containing alloys such as Nb-Fe, Nb-Sn, and Nb-Ti. Various studies have been carried out in an attempt to establish methods that can recover it. As a result, it was found that niobium can be recovered in a considerable yield by adopting a method in which the niobium compound is separated after dissolving the niobium-containing alloy with a mixed acid of hydrofluoric acid and sulfuric acid. As we continued our research to put this recovery method into practical use, we encountered the following problems. That is, the first problem is that when a niobium-containing alloy is dissolved in the above-mentioned mixed acid, a large amount of hydrogen is generated by the reaction of the following formula [], but M+HF+H 2 SO 4 =M n+ +F - +SO 4 2- +3 /2・H 2 ↑ ...[] (M represents a metal element) Hydrogen is extremely dangerous because it has an extremely wide explosive composition of 7-72% compared to air.
There is a problem in terms of safety. Furthermore, metal niobium has the disadvantage that it forms a passive film on its surface due to its reaction with the mixed acid, inhibiting dissolution, and it has not been possible to obtain the recovery rate that was originally expected. The present invention was made in view of these circumstances, and its purpose is to eliminate the above-mentioned problems found in the dissolution treatment method using mixed acids, and to eliminate the risk of explosion due to hydrogen generation. In addition, the present invention aims to provide a method that can accelerate the dissolution of niobium by eliminating the formation of a passive film and safely recover high-purity niobium in high yield. [Means for solving the problems] The structure of the treatment method of the present invention that can achieve the above object is that after roasting and oxidizing the niobium-containing alloy,
The gist of this method is to dissolve and extract niobium using a mixed acid of hydrofluoric acid and sulfuric acid without generating hydrogen or passivating niobium. [Operation] The operation of the present invention will be explained in detail by taking as an example the case where ferronniobium is used as the niobium-containing alloy. The JIS standards for ferroniobium are shown in the table below.

【表】 上記規格を満足するものとして現在最も一般的
なのはアルミテルミツト法によつて製造されるフ
エロニオブであり、パイロクロアを原料鉱石とし
てこの方法によつて製造されるフエロニオブは大
体次の様な組成を有している。 Nb+Ta:65重量%(このうちTaは約0.20重量
%) Al : 3% Fe :30% Si,P,S,Sn:0.2%以下 ところでニオブは化学的に非常に安定な元素で
あり、塩酸や硝酸にはほとんど溶解しないが、濃
硫酸と煮沸すると徐々に溶解し、弗化水素酸には
常温でも徐々に溶解する。しかしニオブに対して
最も強い溶解力を有しているのは硫酸と弗化水素
酸との混酸であるが、この場合は前述の様な問題
があり、工業的規模での実施については断念せざ
るを得なかつた。 そこで上記の様な問題点を生ずることなくニオ
ブをうまく溶解させることはできないかと考え
様々の実験を進めるうち、ニオブ含有合金を一旦
焙焼し酸化物に変換しておけば、混酸で処理する
時に水素の発生が起こらず、また表面に不働態被
膜が形成される様なこともなく、ニオブを安全に
しかも極めて効率良く溶解せしめ得ることが確認
された。 この理由は次の様に考えることができる。 即ちニオブ含有合金を焙焼酸化すると、それに
伴う体積膨張によつて被処理物表面に微細て亀裂
が入つて前記混酸の浸入を促進すると共に、生成
した金属酸化物の溶解は下記[]式の反応によ
つて進行する。 MOx+HF+H2SO4 →Mn-+F-+SO4 2-+mH2O 即ち金属の溶解に伴つて生成する酸素が水素と
反応して水素を水に変換するため、水素の発生防
止と溶解促進の目的が同時に達成されるものと考
えられる。焙焼酸化の具体的な条件は特に限定さ
れないが、最も一般的なのは600〜1200℃、より
好ましくは700〜900℃であり、焙焼雰囲気ガスと
しては酸素、空気その他の酸化性ガスを採用する
ことができるが、最も経済的なのは空気である。
この焙焼酸化によりニオブ以外の合金元素も酸化
物に変化され、そのときの体積膨張によつて表面
に亀裂が入りながらニオブ含有合金の中心部方向
へ酸化が進行していく。従つて焙焼酸化が完結し
た時点では表層部はもとより中心部まで亀裂が入
り、その後に行なわれる混酸浸入による溶解をす
みやかに進行させることができる。これらのこと
からも理解される様に、ニオブ含有合金は焙焼に
先立つて破砕し細粒化しておいた方が焙焼を短時
間で済ませることができ、且つその後の混酸によ
る溶解時間も短縮されるので好ましい。上記の如
くして得られる焙焼酸化物の溶解に用いられる混
酸は、硫酸と弗化水素酸との混合物であり、これ
らの酸はJIS K8819及びJIS K8951あるいはこれ
らに準ずるもののすべてが使用可能である。これ
らの酸の混合比率は重量比で硫酸1に対して弗化
水素酸1〜5、より好ましくは2〜4であり、こ
の好適範囲を外れるときは酸化ニオブの溶解に長
時間を要するばかりでなく十分な溶解が達成され
ず、ニオブ回収率の低下につながつてくる。尚混
酸による溶解は発熱反応であり、積極的に加熱し
なくとも液温は上昇するが、適度に加温して溶解
を促進させることも勿論有効である。 上記の様にして得た混酸溶液からNb塩のみを
単離する方法は常法に従つて行なえばよく、たと
えばりん酸トリブチルを用いた抽出法等が採用さ
れ得る。その後常法に従つて金属ニオブに変換す
ればよい。 尚上記ではフエロニオブの処理を代表例として
説明したが、Nb−Sn合金、Nb−Ti合金、Nb−
Ta合金等のニオブ含有合金の処理する場合も実
質的に同一であり、高純度のニオブを高収率で回
収することができる。 [実施例] 実施例 1 ブラジル産フエロニオブ(Nb:64.7%、Fe:
28.8%、Al:3.5%)を粉砕して電気炉へ装入し、
空気雰囲気下800℃で8時間焙焼することにより、
Nb:46.2%、Fe:20.5%、Al:2.5%からなる金
属酸化物を得た。この酸化物1.0Kgを、47%
HF195mlと96%H2SO41763mlとの混酸中に加え、
6時間攪拌した。次いでデカンテーシヨンにより
上澄液を取り、これにりん酸トリブチル5300ml加
えて混合した後静置した。溶液は水相とりん酸ト
リブチル相に分離するので、りん酸トリブチル相
のみを分取して別の容器に移し、これに水4250ml
を加えた後アンモニア水でPH8.5に調整した。生
成した沈殿を遠心分離器で分離し、ケーキ状物を
乾燥機により110℃で20時間乾燥した後箱型焙焼
炉へ移し、800℃で6時間焙焼した。得られた酸
化物の重量は416gであり、酸化ニオブとしての
純度は99.2%でタンタル含有量は57ppmであつ
た。この酸化ニオブを常法に従つて還元すると高
純度のニオブを得ることができる。 この処理によつて得られたニオブの回収率は96
%であり、焙焼酸化を省略した他は上記と全く同
様に処理した場合のニオブ回収率(91%)に比べ
て収率は5%向上し、且つ溶解工程で水素の発生
は全く認められなかつた。 実施例 2 Nb−Sn合金(Sn:19.7%、残部:実質的に
Nb)を粉砕した後800℃で7時間焙焼し、Nb:
57.0%とSn:13.9%を含む酸化物を得た。この酸
化物10Kgを、実施例1で用いたのと同じ配合組成
の混酸52.7中に加え、6時間攪拌した。この間
水素の発生は全く認められなかつた。以下実施例
1と同様にしてりん酸トリブチルによりニオブ化
合物を抽出することによりニオブを98.1%の回収
率で回収することができ、酸化焙焼のみを省略し
た比較法の場合の回収率(90.4%)に比べて収率
は約8%向上した。 [発明の効果] 本発明は以上の様に構成されており、ニオブ含
有合金から高純度のニオブ化合物を高収率で回収
し得ることになつた。しかもこの方法であれば溶
解工程で全く水素を発生することがないので爆発
の危険がなく、安全性の高い工業的処理法として
実用化することができる。
[Table] Currently, the most common type of ferroniobium that satisfies the above standards is ferroniobium produced by the aluminium-thermite method.Ferroniobium produced by this method using pyrochlore as a raw material ore generally has the following composition. have. Nb + Ta: 65% by weight (of which Ta is approximately 0.20% by weight) Al: 3% Fe: 30% Si, P, S, Sn: 0.2% or less By the way, niobium is a very stable element chemically, and it It hardly dissolves in nitric acid, but gradually dissolves when boiled with concentrated sulfuric acid, and gradually dissolves in hydrofluoric acid even at room temperature. However, the strongest dissolving power for niobium is a mixed acid of sulfuric acid and hydrofluoric acid, but in this case, there are problems as mentioned above, and implementation on an industrial scale has been abandoned. I had no choice. Therefore, I thought it would be possible to dissolve niobium without causing the problems mentioned above, and after conducting various experiments, I found that if the niobium-containing alloy was first roasted and converted into an oxide, then it would be possible to dissolve niobium successfully when treated with a mixed acid. It was confirmed that niobium could be dissolved safely and extremely efficiently without generating hydrogen or forming a passive film on the surface. The reason for this can be considered as follows. That is, when a niobium-containing alloy is roasted and oxidized, the accompanying volumetric expansion causes fine cracks on the surface of the object to be treated, which promotes the penetration of the mixed acid, and the dissolution of the generated metal oxide is as follows: Proceeds by reaction. MOx + HF + H 2 SO 4 →M n- +F - +SO 4 2- +mH 2 O In other words, the oxygen generated as the metal dissolves reacts with hydrogen and converts hydrogen into water, so the purpose is to prevent hydrogen generation and promote dissolution. It is considered that both of the following are achieved at the same time. The specific conditions for roasting and oxidation are not particularly limited, but the most common temperature is 600 to 1200°C, more preferably 700 to 900°C, and oxygen, air, or other oxidizing gas is used as the roasting atmosphere gas. However, the most economical option is air.
Through this roasting and oxidation, alloying elements other than niobium are also converted into oxides, and the oxidation progresses toward the center of the niobium-containing alloy while cracking the surface due to volumetric expansion. Therefore, when the roasting and oxidation is completed, cracks appear not only in the surface layer but also in the center, and the subsequent dissolution by infiltration of the mixed acid can proceed promptly. As can be understood from these facts, if the niobium-containing alloy is crushed and made into fine particles before roasting, the roasting process can be completed in a shorter time, and the time required for subsequent dissolution by mixed acid can also be shortened. It is preferable because The mixed acid used to dissolve the roasted oxide obtained as described above is a mixture of sulfuric acid and hydrofluoric acid, and all of these acids can be JIS K8819, JIS K8951, or equivalent. be. The mixing ratio of these acids is 1 to 1 part sulfuric acid to 1 to 5 parts by weight, more preferably 2 to 4 parts by weight of hydrofluoric acid; if it is out of this preferred range, it will simply take a long time to dissolve the niobium oxide. Otherwise, sufficient dissolution is not achieved, leading to a decrease in the niobium recovery rate. Note that dissolution by a mixed acid is an exothermic reaction, and the liquid temperature rises even without active heating, but it is of course effective to promote dissolution by heating appropriately. The method for isolating only the Nb salt from the mixed acid solution obtained as described above may be carried out according to a conventional method, for example, an extraction method using tributyl phosphate or the like may be employed. Thereafter, it may be converted into metallic niobium according to a conventional method. In addition, although the treatment of ferroniobium was explained above as a typical example, treatment of Nb-Sn alloy, Nb-Ti alloy, Nb-
The treatment of niobium-containing alloys such as Ta alloys is substantially the same, and high-purity niobium can be recovered in high yield. [Example] Example 1 Ferroniobium from Brazil (Nb: 64.7%, Fe:
28.8%, Al: 3.5%) is crushed and charged into an electric furnace.
By roasting at 800℃ for 8 hours in an air atmosphere,
A metal oxide consisting of Nb: 46.2%, Fe: 20.5%, and Al: 2.5% was obtained. 1.0Kg of this oxide, 47%
Add to mixed acid of 195 ml of HF and 1763 ml of 96% H 2 SO 4 ,
Stirred for 6 hours. Next, the supernatant liquid was removed by decantation, 5300 ml of tributyl phosphate was added thereto, mixed, and left to stand still. The solution will separate into an aqueous phase and a tributyl phosphate phase, so separate only the tributyl phosphate phase, transfer it to another container, and add 4250 ml of water to it.
After adding , the pH was adjusted to 8.5 with aqueous ammonia. The generated precipitate was separated using a centrifuge, and the cake-like material was dried in a drier at 110°C for 20 hours, then transferred to a box roasting furnace and roasted at 800°C for 6 hours. The weight of the obtained oxide was 416 g, the purity as niobium oxide was 99.2%, and the tantalum content was 57 ppm. High purity niobium can be obtained by reducing this niobium oxide according to a conventional method. The recovery rate of niobium obtained by this treatment was 96
%, the yield was 5% higher than the niobium recovery rate (91%) obtained when the process was carried out in exactly the same manner as above except that the roasting and oxidation was omitted, and no hydrogen generation was observed during the dissolution process. Nakatsuta. Example 2 Nb-Sn alloy (Sn: 19.7%, remainder: substantially
After grinding Nb), it was roasted at 800℃ for 7 hours, and Nb:
An oxide containing Sn: 57.0% and Sn: 13.9% was obtained. 10 kg of this oxide was added to 52.7 g of a mixed acid having the same composition as used in Example 1, and stirred for 6 hours. During this period, no hydrogen generation was observed. By extracting the niobium compound with tributyl phosphate in the same manner as in Example 1, niobium can be recovered with a recovery rate of 98.1%, and the recovery rate in the case of a comparative method in which only oxidation roasting is omitted (90.4%). ), the yield was improved by about 8%. [Effects of the Invention] The present invention is configured as described above, and a high purity niobium compound can be recovered at a high yield from a niobium-containing alloy. Moreover, this method does not generate any hydrogen during the melting process, so there is no risk of explosion, and it can be put to practical use as a highly safe industrial treatment method.

Claims (1)

【特許請求の範囲】[Claims] 1 ニオブ含有合金を焙焼酸化した後、弗化水素
酸と硫酸との混酸を用いてニオブを溶解抽出する
ことを特徴とするニオブ含有合金の処理方法。
1. A method for treating a niobium-containing alloy, which comprises roasting and oxidizing the niobium-containing alloy, and then dissolving and extracting niobium using a mixed acid of hydrofluoric acid and sulfuric acid.
JP61313137A 1986-12-25 1986-12-25 Treatment of niobium-containing alloy Granted JPS63162827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61313137A JPS63162827A (en) 1986-12-25 1986-12-25 Treatment of niobium-containing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61313137A JPS63162827A (en) 1986-12-25 1986-12-25 Treatment of niobium-containing alloy

Publications (2)

Publication Number Publication Date
JPS63162827A JPS63162827A (en) 1988-07-06
JPH0520490B2 true JPH0520490B2 (en) 1993-03-19

Family

ID=18037543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61313137A Granted JPS63162827A (en) 1986-12-25 1986-12-25 Treatment of niobium-containing alloy

Country Status (1)

Country Link
JP (1) JPS63162827A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5570335B2 (en) * 2010-07-16 2014-08-13 Dowaエコシステム株式会社 Niobium recovery method
DE102011000955A1 (en) * 2011-02-25 2012-08-30 Deutsche Edelstahlwerke Gmbh Process for the recovery of hard material particles
JP5103541B2 (en) * 2011-03-31 2012-12-19 三井金属鉱業株式会社 Niobium separation and purification method and production method
CN111485122B (en) * 2020-04-20 2022-05-17 北京工业大学 Method for recycling niobium from waste NbTaZr alloy

Also Published As

Publication number Publication date
JPS63162827A (en) 1988-07-06

Similar Documents

Publication Publication Date Title
KR100960055B1 (en) A method of producing titanium from a titanium-containing metal or TiO2-containing material, and a method of recovering titanium from ilmenite or TiO2-containing material
US4985069A (en) Induction slag reduction process for making titanium
EP0011475B1 (en) Recovery of tungsten values from tungsten-bearing materials
US2992095A (en) Process of separating niobium and tantalum values in oxidic ores and of producing pure niobium
EP2480497B1 (en) Method for producing high purity silicon
CN113186399B (en) Method for extracting tantalum and niobium
Ebrahimfar et al. Purification of metallurgical-grade silicon by acid leaching
US2700606A (en) Production of vanadium metal
JPH03500063A (en) Production method of zero-valent titanium from alkali metal fluorotitanate
JPH0520490B2 (en)
JP4183926B2 (en) Method for recovering tantalum / niobium from tantalum / niobium-containing carbide materials
US4178176A (en) Recovery of iron and titanium metal values
US2407752A (en) Process of separating hard constituents from sintered hard metals
US3740199A (en) Ore separation process
AU2022238127B2 (en) Method for liquefying niobium and tantalum, and method for producing niobium solution and tantalum solution
JP3315083B2 (en) How to remove uranium contamination from magnesium fluoride slag
US2735748A (en) Process for recovery of tungsten values
US2532102A (en) Production of ammonium beryllium fluoride
JP3467546B2 (en) Recovery of niobium metal
Biswas et al. Processing of ilmenite through salt-water vapour roasting and leaching
Bose Pyrometallurgy of Niobium, Tantalum and Vanadium—Development Work at Bhabha Atomic Research Centre
US2816122A (en) Method of recovering thorium
JP2004224619A (en) Method for refining crude oxide of tantalum and/or niobium
JPH0320445B2 (en)
US1153594A (en) Method of treating tungsten ores.