JPH05191167A - Reference voltage generating circuit - Google Patents

Reference voltage generating circuit

Info

Publication number
JPH05191167A
JPH05191167A JP4020481A JP2048192A JPH05191167A JP H05191167 A JPH05191167 A JP H05191167A JP 4020481 A JP4020481 A JP 4020481A JP 2048192 A JP2048192 A JP 2048192A JP H05191167 A JPH05191167 A JP H05191167A
Authority
JP
Japan
Prior art keywords
circuit
equation
drain
resistor
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4020481A
Other languages
Japanese (ja)
Other versions
JP3104365B2 (en
Inventor
Katsuharu Kimura
克治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP04020481A priority Critical patent/JP3104365B2/en
Priority to US07/974,709 priority patent/US5373226A/en
Priority to GB9223807A priority patent/GB2261535B/en
Priority to GB9518407A priority patent/GB2291512B/en
Priority to GB9608050A priority patent/GB2298724B/en
Publication of JPH05191167A publication Critical patent/JPH05191167A/en
Application granted granted Critical
Publication of JP3104365B2 publication Critical patent/JP3104365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Abstract

PURPOSE:To provide a reference voltage generating circuit suitable for a CMOS integrated circuit. CONSTITUTION:MOS transistors TRs M1 to M3 and M11 to M15 are provided. TRs M1 and M2 have capability ratio 1:K1 and form a current mirror circuit having a peaking characteristic and form a constant voltage circuit 1 for driving of the TR M3 and negative feedback. TRs M11 and M12 form a current mirror circuit having a peaking characteristic and are driven by a simple current mirror circuit (M13 and M14) having capability ratio K2:1. TRs M14 and M15 form a simple current mirror circuit having capability ratio 1:K3 and forms a constant current circuit 2 which drives the constant voltage circuit 1. The peaking characteristic of the circuit consisting of TRs M1 and M2 and that consisting of TRs M11 and M12 are so set that the temperature characteristic is cancelled. Consequently, the temperature characteristic of an output voltage VOUT is approximately eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、定電圧回路において基
準電圧の発生に用いられる基準電圧発生回路に係り、特
にCMOS集積回路化に好適な基準電圧発生回路に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reference voltage generating circuit used for generating a reference voltage in a constant voltage circuit, and more particularly to a reference voltage generating circuit suitable for a CMOS integrated circuit.

【0002】[0002]

【従来の技術】周知のように、従来の基準電圧発生回路
は、バイポーラトランジスタで構成されるワイドラー・
バンドギャップリファレンス回路が一般的であり、FE
T(具体的にはMOSトランジスタ)だけで構成した実
用的な基準電圧発生回路は知られていない。
2. Description of the Related Art As is well known, a conventional reference voltage generating circuit is a wide-angle transistor composed of bipolar transistors.
A bandgap reference circuit is common, and FE
A practical reference voltage generating circuit composed of only T (specifically, a MOS transistor) is not known.

【0003】[0003]

【発明が解決しようとする課題】しかし、MOSトラン
ジスタにも種々の利点があり、CMOS集積回路上に実
現できる基準電圧発生回路の開発が望まれている。その
際に注意すべきことは、温度特性が良好でなければなら
ないが、MOSトランジスタでは、製造偏差が大きく、
且つ、温度特性がバイポーラのように直線的ではなく曲
線的であるので、これらの特性をいかに制御するかが問
題となる。
However, the MOS transistor has various advantages, and it is desired to develop a reference voltage generating circuit which can be realized on a CMOS integrated circuit. At that time, it should be noted that the temperature characteristic must be good, but in the MOS transistor, the manufacturing deviation is large,
Moreover, since the temperature characteristic is not linear like the bipolar one but curved, how to control these characteristics becomes a problem.

【0004】本発明の目的は、CMOS集積回路化に好
適な構成の基準電圧発生回路を提供することにある。
An object of the present invention is to provide a reference voltage generating circuit having a structure suitable for forming a CMOS integrated circuit.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明の基準電圧発生回路は次の如き構成を有す
る。即ち、本発明の基準電圧発生回路は、電界効果トラ
ンジスタ(FET)で構成される基準電圧発生回路であ
って; この基準電圧発生回路は、定電流回路とこの定
電流回路で駆動されその接続端に電圧を出力する定電圧
発生回路とからなり; 前記定電圧発生回路は、ソース
が直接接地され、ゲートが第1の抵抗を介して前記定電
流回路の出力側に接続され、ドレインが直接又は第2の
抵抗を介して前記第1の抵抗に接続される第1のFET
と; ソースが直接又は第3の抵抗を介して接地され、
ゲートが前記第1のFETのドレインに接続され、ドレ
インが第4の抵抗を介して前記定電流回路の出力側に接
続される第2のFETと; ソースが直接接地され、ゲ
ートが前記第2のFETのドレインに接続され、ドレイ
ンが前記定電流回路の出力側に接続される第3のFET
と; を備え、前記定電流回路は、ソースが直接接地さ
れ、ゲートとドレインが直接又は第5の抵抗を介して接
続される第4のFETと; ソースが直接又は第6の抵
抗を介して接地され、ゲートが前記第4のFETのドレ
インに接続される第5のFETと; FETで構成され
るカレントミラー回路であって前記第4及び第5のFE
TをK:1の電流比で駆動すると共に、前記定電圧回路
に駆動電流を供給するカレントミラー回路と; を備え
ることを特徴とするものである。
In order to achieve the above object, the reference voltage generating circuit of the present invention has the following configuration. That is, the reference voltage generating circuit of the present invention is a reference voltage generating circuit composed of field effect transistors (FETs); the reference voltage generating circuit is driven by the constant current circuit and its connection terminal. In the constant voltage generating circuit, the source is directly grounded, the gate is connected to the output side of the constant current circuit through the first resistor, and the drain is directly or A first FET connected to the first resistor via a second resistor
And; the source is grounded directly or via a third resistor,
A second FET whose gate is connected to the drain of the first FET and whose drain is connected to the output side of the constant current circuit via a fourth resistor; the source is directly grounded, and the gate is the second Third FET connected to the drain of the FET of which the drain is connected to the output side of the constant current circuit
And a fourth FET in which the source is directly grounded and the gate and the drain are connected directly or via a fifth resistor, and the source is directly or via a sixth resistor. A fifth mirror which is grounded and whose gate is connected to the drain of the fourth FET; and a current mirror circuit comprising the FETs, the fourth and fifth FEs
A current mirror circuit for driving T at a current ratio of K: 1 and supplying a drive current to the constant voltage circuit;

【0006】[0006]

【作用】次に、前記の如く構成される本発明の基準電圧
発生回路の作用を説明する。本発明では、定電圧回路及
びこれを駆動する定電流回路をFET(MOSトランジ
スタ)で構成すると共に、両回路のピーキング特性を温
度特性を相殺するように設定してあるので、出力電圧の
温度特性をほぼ0にできる。
Next, the operation of the reference voltage generating circuit of the present invention constructed as described above will be described. In the present invention, the constant voltage circuit and the constant current circuit for driving the constant voltage circuit are formed of FETs (MOS transistors), and the peaking characteristics of both circuits are set so as to cancel the temperature characteristics. Can be almost zero.

【0007】従って、本発明によれば、CM0S集積回
路化に好適な基準電圧発生回路を提供できる。
Therefore, according to the present invention, it is possible to provide a reference voltage generating circuit suitable for a CM0S integrated circuit.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、本発明の一実施例に係る基準電圧発生回
路を示す。この基準電圧発生回路は、3個のnチャネル
MOSトランジスタ(M1、M2、M3)を中心に構成
される定電圧回路1と、2個のnチャネルMOSトラン
ジスタ(M11、M12)と3個のpチャネルMOSト
ランジスタ(M13、M14、M15)とで構成される
定電流回路2とからなり、両者の接続端に定電圧VOUT
を出力する。要するに、CMOSの構成になっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a reference voltage generating circuit according to an embodiment of the present invention. This reference voltage generating circuit includes a constant voltage circuit 1 mainly composed of three n-channel MOS transistors (M1, M2, M3), two n-channel MOS transistors (M11, M12) and three p-channel transistors. A constant current circuit 2 composed of channel MOS transistors (M13, M14, M15) and a constant voltage V OUT at both connection terminals.
Is output. In short, it has a CMOS configuration.

【0009】定電圧回路1では、(第1の)トランジス
タM1は、ソースが直接接地され、ゲートが(第1の)
抵抗R1を介して定電流回路2の出力側(トランジスタ
M15のソース)に接続され、ドレインが(第2の)抵
抗R3を介して抵抗R1に接続それる。つまり、本実施
例では、ドレインは直列接続した抵抗R3及び同R1介
して定電流回路2の出力側に接続されるが、抵抗R3を
省略してドレインとゲートとを直接接続しても良い。ド
レイン・ゲート間に存在する内部抵抗を利用するのであ
る。
In the constant voltage circuit 1, the source of the (first) transistor M1 is directly grounded, and the gate thereof is (first).
The constant current circuit 2 is connected to the output side (source of the transistor M15) via the resistor R1, and the drain is connected to the resistor R1 via the (second) resistor R3. That is, in this embodiment, the drain is connected to the output side of the constant current circuit 2 via the resistors R3 and R1 connected in series, but the resistor R3 may be omitted and the drain and the gate may be directly connected. The internal resistance existing between the drain and the gate is used.

【0010】また、(第2の)トランジスタM2は、ソ
ースが直接接地され、ゲートがトランジスタM1のドレ
インに接続され、ドレインが(第4の)抵抗R2を介し
て定電流回路2の出力側(トランジスタM15のソー
ス)に接続される。なお、ソースは所定(第3の)抵抗
を介して接地しても良い。
The source of the (second) transistor M2 is directly grounded, the gate is connected to the drain of the transistor M1, and the drain is connected to the output side of the constant current circuit 2 via the (fourth) resistor R2 ( The source of the transistor M15). The source may be grounded via a predetermined (third) resistor.

【0011】また、(第3の)トランジスタM3は、ソ
ースが直接接地され、ゲートがトランジスタM2のドレ
インに接続され、ドレインが定電流回路2の出力側(ト
ランジスタM15のソース)に接続される。
The source of the (third) transistor M3 is directly grounded, the gate is connected to the drain of the transistor M2, and the drain is connected to the output side of the constant current circuit 2 (the source of the transistor M15).

【0012】そして、トランジスタM1と同M2は、ピ
ーキングカレントミラー回路を構成するが、両者間の能
力比はM1:M2=1:K1 となっている。
The transistors M1 and M2 form a peaking current mirror circuit, and the capacity ratio between them is M1: M2 = 1: K 1 .

【0013】定電流回路2では、(第4の)トランジス
タM11は、ソースが直接接地され、ゲートとドレイン
が(第5の)抵抗R11を介して接続される。なお、抵
抗R11は省略しても良い。また、(第5の)トランジ
スタM12は、ソースが直接接地され、ゲートがトラン
ジスタM11のドレインに接続される。なおソースは所
定(第6の)抵抗を介して接地してもよい。両トランジ
スタは、ピーキングカレントミラー回路を構成し、能力
比はM11:M12=1:K1 となっている。
In the constant current circuit 2, the source of the (fourth) transistor M11 is directly grounded, and the gate and drain thereof are connected via the (fifth) resistor R11. The resistor R11 may be omitted. The source of the (fifth) transistor M12 is directly grounded, and the gate is connected to the drain of the transistor M11. The source may be grounded via a predetermined (sixth) resistor. Both transistors form a peaking current mirror circuit, and the capacity ratio is M11: M12 = 1: K 1 .

【0014】また、トランジスタ(M13、M14)は
同(M11、M12)を駆動する(シンプル)カレント
ミラー回路であり、両者間の能力比は、M14:M13
=1:K2 となっている。また、トランジスタ(M1
4、M15)は定電圧回路1に駆動電流を供給する(シ
ンプル)カレントミラー回路であり、両者間の能力比
は、M14:M13=1:K3 となっている。以下図1
の構成に基づき回路動作を説明する。
The transistors (M13, M14) are (simple) current mirror circuits for driving the same (M11, M12), and the capability ratio between them is M14: M13.
= 1: K 2 . In addition, the transistor (M1
4, M15) is a (simple) current mirror circuit that supplies a drive current to the constant voltage circuit 1, and the capacity ratio between them is M14: M13 = 1: K 3 . Figure 1 below
The circuit operation will be described based on the configuration.

【0015】まず、定電圧回路1では、各トランジスタ
の駆動電流(ドレイン電流)をIi、ゲート・ソース間
電圧をVGSi とおくと、VOUT =VGS1 +R1・I1
またVGS1 −VGS2 =R3・I1 であるので、この両式
から出力電圧VOUT は数式1と求まる。一方、スレッシ
ョルド電圧をVTH、コンダクタンスをβとすると、駆動
電流I1 は数式2、駆動電流I2 は数式3である。従っ
て、数式1に数式2と同3を代入すると、出力電圧V
OUT は数式4と求まる。
First, in the constant voltage circuit 1, assuming that the driving current (drain current) of each transistor is I i and the gate-source voltage is V GSi , V OUT = V GS1 + R1 · I 1 ,
Further, since V GS1 −V GS2 = R3 · I 1 , the output voltage V OUT can be obtained from Equation 1 from these two equations. On the other hand, assuming that the threshold voltage is V TH and the conductance is β, the driving current I 1 is given by Equation 2 and the driving current I 2 is given by Equation 3. Therefore, by substituting Equation 2 and Equation 3 into Equation 1, the output voltage V
OUT can be obtained by Equation 4.

【0016】[0016]

【数1】 [Equation 1]

【0017】[0017]

【数2】 [Equation 2]

【0018】[0018]

【数3】 [Equation 3]

【0019】[0019]

【数4】 [Equation 4]

【0020】数式4において、駆動電流I1 及び同I2
は、いずれもルート(√)圧縮されているので、駆動電
流I1 及び同I2 が変化してもその変化幅は圧縮され
る。また、定電流回路2の出力電流をI0 とすると、こ
れはトランジスタM15のドレイン電流となり、数式5
となる。
In equation 4, the drive currents I 1 and I 2
Is root (√) compressed, the width of change is compressed even if the drive currents I 1 and I 2 change. When the output current of the constant current circuit 2 is I 0 , this becomes the drain current of the transistor M15,
Becomes

【0021】[0021]

【数5】 [Equation 5]

【0022】つまり、出力電圧VOUT の上昇に対しトラ
ンジスタM3のゲート電圧が上昇しドレイン電流I3
増加すると、数式5から、I1 +I2 の値が減ることに
なり、出力電圧VOUT の変化を打ち消すように負帰還が
かかる。従って、数式4で表される出力電圧VOUT は、
電流I1 及び同I2 の変化に対してほぼ一定値を取り得
る。トランジスタM1、同M2、同M3は定電圧回路と
なっているのである。
[0022] That is, with respect to increase of the output voltage V OUT when the drain current I 3 gate voltage increases of the transistor M3 is increased, from equation 5, it will be reducing the value of I 1 + I 2, the output voltage V OUT Negative feedback is applied so as to cancel the change. Therefore, the output voltage V OUT expressed by Equation 4 is
It can take a substantially constant value with respect to changes in the currents I 1 and I 2 . The transistors M1, M2, and M3 are constant voltage circuits.

【0023】ここで、トランジスタM3のコンダクタン
スをβ3 とすると、駆動電流(コレクタ電流)I3 は数
式6と表されるので、トランジスタM1及び同M2のコ
ンダクタンスβとトランジスタM3のコンダクタンスβ
3 が数式7の関係にあれば、トランジスタM3はコンダ
クタンスが大きくなり、直流利得が大きくなって出力電
圧VOUT のレギュレーションが良くなる。
Here, assuming that the conductance of the transistor M3 is β 3 , the drive current (collector current) I 3 is expressed by the equation 6, and therefore the conductance β of the transistors M1 and M2 and the conductance β of the transistor M3.
If 3 is in the relationship of Equation 7, the conductance of the transistor M3 is increased, the DC gain is increased, and the regulation of the output voltage V OUT is improved.

【0024】[0024]

【数6】 [Equation 6]

【0025】[0025]

【数7】 [Equation 7]

【0026】今、数式7が成立すると、電流I1 と同I
2 の関係に所謂ピーキング特性が現れて、電流I1 の上
昇と共に電流I2 も上昇し、次第に変化が小さくなり、
更には減少する。
Now, when the equation 7 is established, the current I 1 and the current I 1
The so-called peaking characteristic appears in the relationship of 2 , and the current I 2 rises as the current I 1 rises, and the change gradually decreases.
Furthermore, it decreases.

【0027】次に、定電流回路2では、トランジスタの
コンダクタンスをβとすると、トランジスタM11のコ
レクタ電流I11は数式8、トランジスタM12のコレク
タ電流I12は数式9、両トランジスタのゲート・ソース
間電圧の差は数式10、またM13とM14の電流比は
2 :1のカレントミラー回路であるので電流I11と同
12の関係は数式11となる。
Next, in the constant current circuit 2, assuming that the conductance of the transistor is β, the collector current I 11 of the transistor M11 is Formula 8, the collector current I 12 of the transistor M12 is Formula 9, and the gate-source voltage of both transistors is Of the current mirror circuit in which the current ratio between M13 and M14 is K 2 : 1 and the relationship between the currents I 11 and I 12 is expressed by Equation 11.

【0028】[0028]

【数8】 [Equation 8]

【0029】[0029]

【数9】 [Equation 9]

【0030】[0030]

【数10】 [Equation 10]

【0031】[0031]

【数11】 [Equation 11]

【0032】数式8〜同11を解くと、数式12が得ら
れ、結局数式13となる。
By solving the equations 8 to 11, the equation 12 is obtained, and the equation 13 is finally obtained.

【0033】[0033]

【数12】 [Equation 12]

【0034】[0034]

【数13】 [Equation 13]

【0035】そして、I11>0であるので、数式14と
なり、従ってI11は数式15、I12は数式16と求ま
る。
Since I 11 > 0, Equation 14 is obtained. Therefore, I 11 is obtained as Equation 15 and I 12 is obtained as Equation 16.

【0036】[0036]

【数14】 [Equation 14]

【0037】[0037]

【数15】 [Equation 15]

【0038】[0038]

【数16】 [Equation 16]

【0039】従って、出力電流I0 はI12のK3 倍とな
り、数式17と求まる。
Therefore, the output current I 0 becomes K 3 times I 12 and can be obtained by the following equation (17).

【0040】[0040]

【数17】 [Equation 17]

【0041】例えば、a、bを1以下の任意の定数とし
て、I1 とI0 の関係を定数aを用いて数式18、I2
とI0 の関係を定数bを用いて数式19とおくと、数式
5から電流I3 は数式20となるので、数式18と同1
9を数式4に代入すると、出力電圧VOUT は数式21と
なり、これに数式17を代入すると数式22となる。
For example, assuming that a and b are arbitrary constants of 1 or less, the relationship between I 1 and I 0 can be calculated by using the constant a in Equations 18 and I 2.
If the relationship between I and I 0 is set to Equation 19 using the constant b, the current I 3 becomes Equation 20 from Equation 5, and therefore the same as Equation 18.
By substituting 9 into Equation 4, the output voltage V OUT becomes Equation 21, and by substituting Equation 17 into this, Equation 22 is obtained.

【0042】[0042]

【数18】 [Equation 18]

【0043】[0043]

【数19】 [Formula 19]

【0044】[0044]

【数20】 [Equation 20]

【0045】[0045]

【数21】 [Equation 21]

【0046】[0046]

【数22】 [Equation 22]

【0047】ここで、数式7が成立し、ピーキング特性
が現れるように抵抗R3を設定すると、電流I1 と同I
2 と同I3 のそれぞれの比はほぼ一定となる。即ち、3
個のトランジスタ(M1、M2、M3)は定電流比分流
回路とみなせる。
When the resistor R3 is set so that the expression 7 is satisfied and the peaking characteristic appears, the current I 1 is the same as the current I 1.
The respective ratios of 2 and I 3 are almost constant. That is, 3
The transistors (M1, M2, M3) can be regarded as a constant current ratio shunt circuit.

【0048】このとき、数式22において、スレッショ
ルド電圧VTHは、低VTHプロセスでは約−2.7mV/
deg 、即ち数式23である(“文献「MOS Integrated C
irc-uits」W.M.Penney and L.Lau共著、VAN NOSTRAND C
OMPANY”による)。
At this time, in the equation 22, the threshold voltage V TH is about -2.7 mV / V in the low V TH process.
deg, that is, Equation 23 (“Reference“ MOS Integrated C
irc-uits '' WMPenney and L. Lau, VAN NOSTRAND C
OMPANY ”).

【0049】[0049]

【数23】 [Equation 23]

【0050】また、コンダクタンスβは、モビリティμ
n 、単位面積当たりのゲート酸化膜容量COX、ゲート幅
W、ゲート長Lを用いて、数式24と表されるが、μn
の温度特性の1次近似として数式25と表されるので、
1/β は数式26と表される。なお、β0 はβ(T
0 )を表す。
The conductance β is the mobility μ
n, the gate oxide film capacitance C OX per unit area, the gate width W, with a gate length L, is represented as Equation 24, mu n
Since it is expressed as Equation 25 as a first-order approximation of the temperature characteristic of,
1 / β is represented by Expression 26. Note that β 0 is β (T
0 ).

【0051】[0051]

【数24】 [Equation 24]

【0052】[0052]

【数25】 [Equation 25]

【0053】[0053]

【数26】 [Equation 26]

【0054】従ってT0 =300°Kとすると、数式2
6の温度微分値は数式27となる。なお、数式22にお
いて、抵抗の温度特性を│dβ/dT│》│dR11/d
T│として無視した。
Therefore, assuming that T 0 = 300 ° K, Equation 2
The temperature differential value of 6 is given by Expression 27. In Expression 22, the temperature characteristic of the resistance is represented by | dβ / dT | >> | dR 11 / d
I ignored it as T│.

【0055】[0055]

【数27】 [Equation 27]

【0056】数値例として、VTH=0.7V、VOUT
1.24Vとおくと、数式28となるので、数式23と
同27から出力電圧VOUT の温度微分値は数式29とな
り、出力電圧VOUT の温度特性は0となる。実際のデバ
イスパラメータを用いたSPICEシミュレーションに
おいても、dVOUT /dT≒0となるように、R11、
1 、K2 、K3 、R1、R2、R3を設定できる。
As numerical examples, V TH = 0.7V, V OUT =
Putting a 1.24V, since the equation 28, the temperature differential value of the output voltage V OUT from the equation 23 the 27 becomes Equation 29, the temperature characteristic of the output voltage V OUT becomes 0. Even in the SPICE simulation using the actual device parameters, R11, so that dV OUT / dT≈0
It can be set K 1, K 2, K 3 , R1, R2, R3.

【0057】[0057]

【数28】 [Equation 28]

【0058】[0058]

【数29】 [Equation 29]

【0059】図2にSPICEシミュレーションの結果
を示す。VDD>2.5Vでは、出力電圧VOUT の温度特
性はほぼ0となっていることが解る。なお、抵抗の温度
特性を0.0006/deg、定電流回路のトランジスタ(M1
1、M12)の(W/L)を(50μ/5μ)、定電圧
回路のトランジスタ(M1、M2)の(W/L)を(5
0μ/1.5μ)、トランジスタM3(W/L)を(1
50μ/1.5μ)、VTH=0.76V、R11=1.8
KΩ、R1=R2=3.0KΩ、R3=960Ω、K1
=2、K2 =4、K3 =2、tOX=280オングストロ
ームとした。
FIG. 2 shows the result of the SPICE simulation. It can be seen that the temperature characteristic of the output voltage V OUT is almost 0 when V DD > 2.5V. The temperature characteristic of the resistor is 0.0006 / deg, and the transistor (M1
(W / L) of (1, M12) is (50 μ / 5 μ), and (W / L) of the transistors (M1, M2) of the constant voltage circuit is (5
0μ / 1.5μ), transistor M3 (W / L) to (1
50 μ / 1.5 μ), V TH = 0.76 V, R11 = 1.8
KΩ, R1 = R2 = 3.0KΩ, R3 = 960Ω, K 1
= 2, K 2 = 4, K 3 = 2, and t ox = 280 Å.

【0060】なお、回路解析は省略するが、定電圧回路
1では、抵抗R3をM1のドレイン側から外しそれをM
2のソースに移設し、また定電流回路2では、抵抗R1
1ををM11のドレイン側から外しそれをM12のソー
スに移設し、この双方または一方を備えたものでも同様
の特性が得られる。
Although the circuit analysis is omitted, in the constant voltage circuit 1, the resistor R3 is removed from the drain side of M1 and is connected to M.
2 and the constant current circuit 2 has a resistor R1.
Similar characteristics can be obtained by removing 1 from the drain side of M11 and transferring it to the source of M12, and providing both or one of them.

【0061】[0061]

【発明の効果】以上説明したように、本発明の基準電圧
発生回路によれば、ピーキング特性を持つ定電圧回路及
びこれを駆動する定電流回路をFET(MOSトランジ
スタ)で構成し、両回路のピーキング特性を温度特性を
相殺するように設定できるので、温度特性をほぼ0にで
きる基準電圧発生回路をCM0S集積回路で実現できる
効果がある。
As described above, according to the reference voltage generating circuit of the present invention, the constant voltage circuit having the peaking characteristic and the constant current circuit for driving the constant voltage circuit are constituted by FETs (MOS transistors), and both circuits are formed. Since the peaking characteristic can be set so as to cancel the temperature characteristic, there is an effect that the reference voltage generating circuit that can make the temperature characteristic almost zero can be realized by the CM0S integrated circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る基準電圧発生回路の回
路図である。
FIG. 1 is a circuit diagram of a reference voltage generation circuit according to an embodiment of the present invention.

【図2】出力電圧の温度特性図(SPICEシミュレー
ション図)である。
FIG. 2 is a temperature characteristic diagram of output voltage (SPICE simulation diagram).

【符号の説明】[Explanation of symbols]

1 定電圧回路 2 定電流回路 M1〜M3 MOSトランジスタ M11〜M15 MOSトランジスタ K1 能力比 K2 能力比 K3 能力比1 constant voltage circuit 2 constant current circuit M1 to M3 MOS transistor M11 to M15 MOS transistor K 1 capacity ratio K 2 capacity ratio K 3 capacity ratio

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電界効果トランジスタ(FET)で構成
される基準電圧発生回路であって; この基準電圧発生
回路は、定電流回路とこの定電流回路で駆動されその接
続端に電圧を出力する定電圧発生回路とからなり; 前
記定電圧発生回路は、ソースが直接接地され、ゲートが
第1の抵抗を介して前記定電流回路の出力側に接続さ
れ、ドレインが直接又は第2の抵抗を介して前記第1の
抵抗に接続される第1のFETと; ソースが直接又は
第3の抵抗を介して接地され、ゲートが前記第1のFE
Tのドレインに接続され、ドレインが第4の抵抗を介し
て前記定電流回路の出力側に接続される第2のFET
と; ソースが直接接地され、ゲートが前記第2のFE
Tのドレインに接続され、ドレインが前記定電流回路の
出力側に接続される第3のFETと; を備え、前記定
電流回路は、ソースが直接接地され、ゲートとドレイン
が直接又は第5の抵抗を介して接続される第4のFET
と; ソースが直接又は第6の抵抗を介して接地され、
ゲートが前記第4のFETのドレインに接続される第5
のFETと; FETで構成されるカレントミラー回路
であって前記第4及び第5のFETをK:1の電流比で
駆動すると共に、前記定電圧回路に駆動電流を供給する
カレントミラー回路と; を備えることを特徴とする基
準電圧発生回路。
1. A reference voltage generating circuit comprising a field effect transistor (FET); the reference voltage generating circuit is a constant current circuit and a constant voltage circuit which is driven by the constant current circuit and outputs a voltage to a connection end thereof. In the constant voltage generation circuit, the source is directly grounded, the gate is connected to the output side of the constant current circuit via a first resistor, and the drain is directly or via a second resistor. A first FET connected to the first resistor through a source; the source is grounded directly or through a third resistor; and the gate is the first FE.
A second FET connected to the drain of T, the drain of which is connected to the output side of the constant current circuit through a fourth resistor.
And the source is directly grounded and the gate is the second FE.
A third FET connected to the drain of T, the drain of which is connected to the output side of the constant current circuit; and the constant current circuit has a source directly grounded, and a gate and drain directly or fifthly. 4th FET connected through a resistor
And; the source is grounded directly or via a sixth resistor,
A fifth gate whose gate is connected to the drain of the fourth FET
A current mirror circuit composed of FETs, which drives the fourth and fifth FETs at a current ratio of K: 1 and supplies a drive current to the constant voltage circuit; A reference voltage generation circuit comprising:
JP04020481A 1991-11-15 1992-01-09 Reference voltage generation circuit Expired - Fee Related JP3104365B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP04020481A JP3104365B2 (en) 1992-01-09 1992-01-09 Reference voltage generation circuit
US07/974,709 US5373226A (en) 1991-11-15 1992-11-12 Constant voltage circuit formed of FETs and reference voltage generating circuit to be used therefor
GB9223807A GB2261535B (en) 1991-11-15 1992-11-13 Constant voltage circuit and reference voltage generating circuit to be used therefor
GB9518407A GB2291512B (en) 1991-11-15 1992-11-13 Reference voltage generating circuit to be used for a constant voltage circuit formed of fets
GB9608050A GB2298724B (en) 1991-11-15 1992-11-13 Constant voltage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04020481A JP3104365B2 (en) 1992-01-09 1992-01-09 Reference voltage generation circuit

Publications (2)

Publication Number Publication Date
JPH05191167A true JPH05191167A (en) 1993-07-30
JP3104365B2 JP3104365B2 (en) 2000-10-30

Family

ID=12028320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04020481A Expired - Fee Related JP3104365B2 (en) 1991-11-15 1992-01-09 Reference voltage generation circuit

Country Status (1)

Country Link
JP (1) JP3104365B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408385B2 (en) 2005-05-02 2008-08-05 Seiko Epson Corporation Receiver circuit, differential signal receiver circuit, interface circuit, and electronic instrument
US7573336B2 (en) 2007-02-01 2009-08-11 Sharp Kabushiki Kaisha Power amplifier and multistage amplification circuit including same
US7633279B2 (en) 2005-03-04 2009-12-15 Elpida Memory, Inc. Power supply circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03110288U (en) * 1990-02-28 1991-11-12

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7633279B2 (en) 2005-03-04 2009-12-15 Elpida Memory, Inc. Power supply circuit
US7408385B2 (en) 2005-05-02 2008-08-05 Seiko Epson Corporation Receiver circuit, differential signal receiver circuit, interface circuit, and electronic instrument
US7573336B2 (en) 2007-02-01 2009-08-11 Sharp Kabushiki Kaisha Power amplifier and multistage amplification circuit including same

Also Published As

Publication number Publication date
JP3104365B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
US6570436B1 (en) Threshold voltage-independent MOS current reference
JP3940964B2 (en) Potential-current converter
US20040239423A1 (en) Transconductance control circuit of rail-to-rail differential input stages
JPH05191167A (en) Reference voltage generating circuit
Inokawa et al. A merged single-electron transistor and metal-oxide-semiconductor transistor logic for interface and multiple-valued functions
JP2797820B2 (en) Reference voltage generation circuit
JPS6119134B2 (en)
EP0618674A2 (en) Voltage-to-current conversion circuit
JP2765319B2 (en) Constant voltage circuit
JP2522468B2 (en) Reference voltage generation circuit
JP2876865B2 (en) Constant voltage circuit
JP2550871B2 (en) CMOS constant current source circuit
JP3972787B2 (en) Window comparator
JP2666620B2 (en) Temperature sensor circuit
US20010035776A1 (en) Fixed transconductance bias apparatus
JPH05127764A (en) Voltage regulator
JP2701331B2 (en) Bias circuit
JPH06152272A (en) Constant current circuit
JP2808855B2 (en) Constant voltage circuit
JPH05206754A (en) Reference voltage generating circuit
US7233175B2 (en) Amplitude limiting circuit
JP2927803B2 (en) Constant voltage generator
JP2956381B2 (en) Constant current source circuit
JPH07112136B2 (en) Differential input differential output amplifier
JP2772069B2 (en) Constant current circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees