JPH05188001A - Time-resolved light emission measuring device - Google Patents

Time-resolved light emission measuring device

Info

Publication number
JPH05188001A
JPH05188001A JP233592A JP233592A JPH05188001A JP H05188001 A JPH05188001 A JP H05188001A JP 233592 A JP233592 A JP 233592A JP 233592 A JP233592 A JP 233592A JP H05188001 A JPH05188001 A JP H05188001A
Authority
JP
Japan
Prior art keywords
light
time
measured
axis
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP233592A
Other languages
Japanese (ja)
Other versions
JP2991260B2 (en
Inventor
Aaru Jiyunakaa Maheshiyu
R ジュナカー マヘシュ
Eiichi Yamaguchi
栄一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4002335A priority Critical patent/JP2991260B2/en
Publication of JPH05188001A publication Critical patent/JPH05188001A/en
Application granted granted Critical
Publication of JP2991260B2 publication Critical patent/JP2991260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To obtain a time-resolved light emission measuring device where the time-resolution is higher than that of the conventional device, and which is inexpensive and highly stable. CONSTITUTION:The laser beam 6 is diffracted by 90 deg. by a grating 8, and as a result, the wave packet of the laser beam in a certain time has the time delay relative to the X-axis direction (in the direction where the laser beam 6 advances). On the other hand, the beam to be measured 7 is reflected by 90 deg. by a mirror 9, and has no time delay relative to the X-axis direction. These beams are made incident on a filter 12 through a cylindrical lens 10 and a non-linear optical element 11, and the beam having the energy which is proportional to the product between the intensity of the laser beam 6 and that of the beam to be measured 7 and is equal to the sum of the respective energy is emitted. That means that the time axis of the beam to be measured is converted to the space axis. Then, the beam is made incident on a photodetector 13 and the time axis of the beam to be measured is converted to the X-axis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パルスレーザ光照射後
の物質からの発光の時間応答を測定する時間分解発光測
定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a time-resolved luminescence measuring device for measuring the time response of light emitted from a substance after irradiation with pulsed laser light.

【0002】[0002]

【従来の技術】図4は時間分解発光測定装置の従来例
(ストリークカメラ)の構成図である。
2. Description of the Related Art FIG. 4 is a block diagram of a conventional example (streak camera) of a time-resolved luminescence measuring device.

【0003】測定すべき物質から発光した光21が光カ
ソード22に照射されると、光電子が発生し、グリッド
23によって加速されたあと、その電子はスイープ電極
25の間を通過する。スイープ電圧発生器24によりス
イープ電極25に−2kVから2kVの掃引電圧を印加
すると、各時刻に応じた電子がマイクロチャネルプレー
ト26の垂直軸上の各点に入射する。マイクロチャネル
プレート26で電子は増倍されたのち、蛍光スクリーン
27で再び光に変換される。こうして、発光の時間変化
が蛍光スクリーン27上に記録される。
When the photocathode 22 is irradiated with the light 21 emitted from the substance to be measured, photoelectrons are generated and accelerated by the grid 23, and then the electrons pass between the sweep electrodes 25. When a sweep voltage of −2 kV to 2 kV is applied to the sweep electrode 25 by the sweep voltage generator 24, electrons corresponding to each time are incident on each point on the vertical axis of the microchannel plate 26. The electrons are multiplied by the microchannel plate 26 and then converted into light again by the fluorescent screen 27. Thus, the temporal change of the light emission is recorded on the fluorescent screen 27.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の時間分
解発光測定装置では、スイープ電圧発生器の安定性が時
間軸情報の正確さを決定するが、スイープ電圧発生器が
レーザ光からの信号によってトリガーをかけられるため
に、ジッターを本質的に除去することができず、そのた
め時間軸の分解能が最高5ピコ秒にとどまっていた。
In the above-mentioned conventional time-resolved luminescence measuring device, the stability of the sweep voltage generator determines the accuracy of the time axis information, but the sweep voltage generator uses the signal from the laser light. Since the trigger was applied, the jitter could not be essentially removed, and the resolution on the time axis remained at a maximum of 5 picoseconds.

【0005】本発明の目的は、従来装置の10倍以上の
時間分解能を有し、かつ従来装置より安価で、安定性の
高い時間分解発光測定装置を提供することにある。
An object of the present invention is to provide a time-resolved luminescence measuring device which has a time resolution 10 times or more that of a conventional device, is cheaper than the conventional device, and has high stability.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の時間分解発光測定装置は、レーザ光を反射
するグレーティングと、前記レーザ光の照射によって試
料から発光した、測定すべき光を前記レーザ光と平行に
入射し、90゜の角度で反射するとともに、前記グレー
ティングで反射されたレーザ光を透過させる鏡と、前記
鏡で反射された、測定すべき光と、前記鏡を透過したレ
ーザ光の和をしぼる円筒レンズと、前記円筒レンズによ
ってしぼられた光を入射し、励起レーザ光のエネルギー
とルミネサンス光のエネルギーの和のエネルギーを持つ
光を通過させる非線形光学素子と、前記非線形光学素子
を通過した光を入力し、レーザ光の強度と、測定すべき
光の強度の積に比例し、そのエネルギーの和のエネルギ
ーを持つ光のみを射出するフィルターと、前記フィルタ
ーから射出された光を入射し、前記グレーティングに入
射するレーザ光の進む方向と平行な直線上の位置に変換
する光検出器とを有する。
In order to achieve the above object, the time-resolved luminescence measuring apparatus of the present invention comprises a grating for reflecting laser light and a light to be measured emitted from a sample by irradiation of the laser light. Is incident in parallel with the laser beam and is reflected at an angle of 90 ° and transmits the laser beam reflected by the grating, the light to be measured reflected by the mirror, and the mirror. And a non-linear optical element that allows the light squeezed by the cylindrical lens to enter and transmits light having the energy of the sum of the energy of the excitation laser light and the energy of the luminescence light, The light that has passed through the optical element is input, and only the light that has the energy of the sum of its energy is proportional to the product of the laser light intensity and the intensity of the light to be measured. It has a filter for output, incident light emitted from the filter, and a photodetector for converting the position on the straight line parallel to the direction of travel of the laser beam incident on the grating.

【0007】[0007]

【作用】レーザ光はグレーティングによって90°の回
折を受け、その結果、ある時刻の光の波束は、x軸方向
(レーザ光の進む方向)に対して時間遅れを持つ。一
方、測定すべき光は鏡によって90°に反射され、x軸
方向に対して時間遅れを持たない。これら光は円筒レン
ズ、非線形光学素子を経てフィルターに入射し、レーザ
光と測定すべき光の強度の積に比例し、そのエネルギー
の和のエネルギーを持つ光がフィルターから射出され
る。すなわち、測定すべき光の時間軸が空間軸に変換さ
れたことになる。この後、光は光検出器に入射し、測定
すべき光の時間軸がx軸に変換される。
The laser light is diffracted by 90 ° by the grating, and as a result, the wave packet of the light at a certain time has a time delay with respect to the x-axis direction (the traveling direction of the laser light). On the other hand, the light to be measured is reflected by the mirror at 90 ° and has no time delay in the x-axis direction. These lights enter the filter through the cylindrical lens and the non-linear optical element, and are proportional to the product of the intensity of the laser light and the light to be measured, and the light having the energy of the sum of the energy is emitted from the filter. That is, the time axis of the light to be measured is converted into the spatial axis. After this, the light enters the photodetector, and the time axis of the light to be measured is converted into the x axis.

【0008】このとき、時間分解能は、レーザ光のパル
ス幅とグレーティングの精度で決定され、0.3ピコ
秒、Δλ=15Åのレーザパルスと1613ライン/m
mのグレーティングを用いた時、0.4ピコ秒となる。
At this time, the time resolution is determined by the pulse width of the laser beam and the accuracy of the grating, and 0.3 picoseconds, Δλ = 15Å laser pulse and 1613 lines / m 2.
When using a grating of m, it becomes 0.4 picoseconds.

【0009】このように、本発明は、グレーティングと
鏡と非線形光学素子とを組みあわせ、レーザ光自身で時
間掃引を行ない、電気的掃引を必要としないので、ジッ
ターの全くない時間分解光検出ができる。
As described above, according to the present invention, since the laser light itself performs time sweep by combining the grating, the mirror, and the non-linear optical element and does not require electrical sweep, time-resolved light detection without any jitter is possible. it can.

【0010】[0010]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0011】図1は本発明の一実施例の時間分解発光測
定装置の構成図、図2は図1の破線で囲まれた部分の拡
大図、図3はグレーティング8の作用の説明図である。
FIG. 1 is a block diagram of a time-resolved luminescence measuring apparatus according to an embodiment of the present invention, FIG. 2 is an enlarged view of a portion surrounded by a broken line in FIG. 1, and FIG. 3 is an explanatory view of the action of a grating 8. ..

【0012】パルス幅が0.3ピコ秒、波長が620n
m、300μJ/パルスのパルスレーザ1から出射され
たレーザ光6はビームスプリッタ2で反射光と透過光に
分けられる。ビームスプリッタ2で反射されたレーザ光
6はビームスプリッタ2を透過し、レンズ4によって試
料5に照射される。レーザ光6の照射によって試料5か
ら発光した、測定すべき光7はビームスプリッタ2で反
射され、レーザ光6と平行に進む。この方向をx軸とす
る。ビームスプリッタ2を透過したレーザ光6はディレ
イライン3を経た後、グレーティング8に入射する。レ
ーザ光6はグレーティング8によって90°の回折を受
け、その結果、ある時刻の光の波束は、図2の点線のよ
うにx軸方向に対して時間遅れを持つ。一方、測定すべ
き光7は鏡9によって90°に反射されるが、これは、
x軸方向に対して遅れを持たない。これは、図3に示す
ように、A+A’=B+B’であり、光路長A,A’の
光路を進む光の方が光路長B,B’の光路を進む光より
も早く進み、かくして時間軸を空間軸に直すことができ
る。これらレーザ光6と、測定すべき光7の和は円筒レ
ンズ10によってしぼられた後、非線形光学素子11に
入射する。非線形光学素子11を通過した光のエネルギ
ーは励起レーザ光のエネルギーとルミネサンス光のエネ
ルギーの和となる。非線形光学素子11の直ぐ後に配置
されたフィルター12はレーザ光およびそれ以下のエネ
ルギーを持つ光を透過しないので、フィルター12から
は結局、レーザ光6の強度と測定すべき光7の強度の積
に比例し、そのエネルギーの和のエネルギーをもつ光の
みが射出される。この光は光検出器13で検出され、測
定すべき光7の時間軸がx軸に変換されて記録される。
光検出器13としてはフォトディテクターアレイまた
は、マイクロチャネルプレートと蛍光スクリーンなどが
ある。非線形光学素子11としてはKTP、KDP、B
BOなどがある。
The pulse width is 0.3 picoseconds and the wavelength is 620n.
The laser light 6 emitted from the pulse laser 1 of m, 300 μJ / pulse is divided into reflected light and transmitted light by the beam splitter 2. The laser beam 6 reflected by the beam splitter 2 passes through the beam splitter 2 and is irradiated onto the sample 5 by the lens 4. The light 7 to be measured emitted from the sample 5 by the irradiation of the laser light 6 is reflected by the beam splitter 2 and travels in parallel with the laser light 6. This direction is the x-axis. The laser beam 6 transmitted through the beam splitter 2 passes through the delay line 3 and then enters the grating 8. The laser light 6 is diffracted by 90 ° by the grating 8, and as a result, the wave packet of light at a certain time has a time delay with respect to the x-axis direction as shown by the dotted line in FIG. On the other hand, the light 7 to be measured is reflected by the mirror 9 at 90 °, which is
There is no delay in the x-axis direction. This is, as shown in FIG. 3, A + A ′ = B + B ′, and the light traveling along the optical paths with the optical path lengths A and A ′ travels faster than the light traveling along the optical paths with the optical path lengths B and B ′, thus You can turn the axis into a spatial axis. The sum of the laser light 6 and the light 7 to be measured is squeezed by the cylindrical lens 10 and then enters the nonlinear optical element 11. The energy of the light that has passed through the nonlinear optical element 11 is the sum of the energy of the excitation laser light and the energy of the luminescence light. Since the filter 12 arranged immediately after the non-linear optical element 11 does not transmit the laser light and light having energy lower than that, the filter 12 eventually determines the product of the intensity of the laser light 6 and the intensity of the light 7 to be measured. Only light that is proportional and has the sum of its energies is emitted. This light is detected by the photodetector 13, and the time axis of the light 7 to be measured is converted into the x axis and recorded.
The photodetector 13 includes a photodetector array, a microchannel plate and a fluorescent screen. As the non-linear optical element 11, KTP, KDP, B
There is BO etc.

【0013】ここで、結晶軸11を適当にえらんでやる
と、測定すべき光7の周波数成分は光検出器13面内の
x軸に垂直な軸上に分解することが可能である。
Here, if the crystal axis 11 is properly selected, the frequency component of the light 7 to be measured can be decomposed on the axis perpendicular to the x axis in the plane of the photodetector 13.

【0014】なお、非線形光学素子11とフィルター1
2の間またはフィルター12と光検出器13の間にも円
筒レンズを設けることにより、光検出器13で検出され
る光の感度が上がる。
The nonlinear optical element 11 and the filter 1
By providing a cylindrical lens between the two or between the filter 12 and the photodetector 13, the sensitivity of the light detected by the photodetector 13 is increased.

【0015】[0015]

【発明の効果】以上説明したように本発明は、下記のよ
うな効果がある。 (1)請求項1の発明は、グレーティングと鏡と非線形
光学素子を組合せ、レーザ光自身を用いて時間掃引を行
なうことにより、測定すべき光の時間軸をx軸に変換す
ることが可能になり、ジッターの全くない時間分解光検
出ができる。 (2)請求項2の発明は、非線形光学素子と光検出器の
間に円筒レンズを設けることにより、光検出器で検出さ
れ光の感度が上がる。
As described above, the present invention has the following effects. (1) The invention of claim 1 makes it possible to convert the time axis of the light to be measured into the x axis by combining the grating, the mirror, and the non-linear optical element and performing the time sweep using the laser light itself. Therefore, time-resolved light detection with no jitter is possible. (2) According to the second aspect of the invention, the sensitivity of light detected by the photodetector is increased by providing the cylindrical lens between the nonlinear optical element and the photodetector.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の時間分解発光測定装置の構
成図である。
FIG. 1 is a configuration diagram of a time-resolved luminescence measuring device according to an embodiment of the present invention.

【図2】図1の破線で囲まれた部分の拡大図である。FIG. 2 is an enlarged view of a portion surrounded by a broken line in FIG.

【図3】グレーティング8の作用の説明図である。FIG. 3 is an explanatory diagram of an operation of the grating 8.

【図4】時間分解発光測定装置の従来例の構成図であ
る。
FIG. 4 is a configuration diagram of a conventional example of a time-resolved luminescence measuring device.

【符号の説明】[Explanation of symbols]

1 パルスレーザ 2 ビームスプリッタ 3 ディレイライン 4 レンズ 5 試料 6 レーザ光 7 測定すべき光 8 グレーティング 9 鏡 10 円筒レンズ 11 非線形光学素子 12 フィルター 13 光検出器 1 pulse laser 2 beam splitter 3 delay line 4 lens 5 sample 6 laser light 7 light to be measured 8 grating 9 mirror 10 cylindrical lens 11 nonlinear optical element 12 filter 13 photodetector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光を反射するグレーティングと、 前記レーザ光の照射によって試料から発光した、測定す
べき光を前記レーザ光と平行に入射し、90゜の角度で
反射するとともに、前記グレーティングで反射されたレ
ーザ光を透過させる鏡と、 前記鏡で反射された、測定すべき光と、前記鏡を透過し
たレーザ光の和をしぼる円筒レンズと、 前記円筒レンズによってしぼられた光を入射し、励起レ
ーザ光のエネルギーとルミネサンス光のエネルギーの和
のエネルギーを持つ光を通過させる非線形光学素子と、 前記非線形光学素子を通過した光を入力し、レーザ光の
強度と、測定すべき光の強度の積に比例し、そのエネル
ギーの和のエネルギーを持つ光のみを射出するフィルタ
ーと、 前記フィルターから射出された光を入射し、前記グレー
ティングに入射するレーザ光の進む方向と平行な直線上
の位置に変換する光検出器とを有する時間分解発光測定
装置。
1. A grating that reflects laser light, and light to be measured emitted from a sample upon irradiation with the laser light is incident parallel to the laser light and reflected at an angle of 90 °. A mirror that transmits the reflected laser light, a cylindrical lens that narrows the sum of the light to be measured, which is reflected by the mirror, and the laser light that has passed through the mirror, and the light squeezed by the cylindrical lens is incident. A non-linear optical element that passes light having an energy of the sum of the energy of the excited laser light and the energy of luminescence light, and the intensity of the laser light and the intensity of the light to be measured by inputting the light that has passed through the non-linear optical element. And a filter that emits only light having an energy that is the sum of the energy of the filter and the light that is emitted from the filter. Time-resolved luminescence measurement device having a light detector for converting the laser beam position on the direction and parallel straight line travel of incident on the coating.
【請求項2】 前記非線形光学素子と前記光検出器の間
に円筒レンズが設けられている請求項1記載の時間分解
発光測定装置。
2. The time-resolved luminescence measurement device according to claim 1, wherein a cylindrical lens is provided between the nonlinear optical element and the photodetector.
JP4002335A 1992-01-09 1992-01-09 Time-resolved luminescence measurement device Expired - Fee Related JP2991260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4002335A JP2991260B2 (en) 1992-01-09 1992-01-09 Time-resolved luminescence measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4002335A JP2991260B2 (en) 1992-01-09 1992-01-09 Time-resolved luminescence measurement device

Publications (2)

Publication Number Publication Date
JPH05188001A true JPH05188001A (en) 1993-07-27
JP2991260B2 JP2991260B2 (en) 1999-12-20

Family

ID=11526440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4002335A Expired - Fee Related JP2991260B2 (en) 1992-01-09 1992-01-09 Time-resolved luminescence measurement device

Country Status (1)

Country Link
JP (1) JP2991260B2 (en)

Also Published As

Publication number Publication date
JP2991260B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
US6008899A (en) Apparatus and method for optical pulse measurement
JPH07306140A (en) Optical array detector and ccd camera which are disassembledin time for frequency-region fluorescence measurement and/orphosphorescence measurement
US4958231A (en) Electro-optical streak camera
CN110440918B (en) Space high-resolution optical fiber fluorescence spectrum imaging and positioning method and system
US3565567A (en) Method of and apparatus for measuring the presence and/or concentration of an element in an atomic vapor
US4988859A (en) Optical waveform measuring device
JPS5811567B2 (en) Back ground
JPH02262038A (en) Optical-waveform measuring apparatus
US5071249A (en) Light waveform measuring apparatus
US5168164A (en) Optical waveform measuring device
JP2991260B2 (en) Time-resolved luminescence measurement device
US4967144A (en) Electrical signal observing device for converting an electrical signal to be measured into an optical intensity waveform
JPH0617866B2 (en) Time-resolved absorption measuring device
JPH09218155A (en) Two-dimensional fluorescence lifetime measuring method and device
CN114001823B (en) Method and device for measuring characteristics of double-color ultrashort laser pulse
JP2007271288A (en) Laser excitation ultrasonic image device
JP3661501B2 (en) Modulation and fast time-resolved spectroscopy
US5308971A (en) Measurement apparatus and techniques for ultrashort events using electron photoemission with a superlinear photoemission active element
JPH06102086A (en) Laser measuring device
JPH05288681A (en) Apparatus for coherent anti-stokes' raman scattering spectroscopy
KR20030054084A (en) Method of laser-induced plasma atomic emission spectroscopy and apparatus thereof
JP3300422B2 (en) Optical waveform measurement device
JPH0262806B2 (en)
JPH09229859A (en) Apparatus and method for measuring life of fluorescence
WO2021038743A1 (en) Spectroscopic measurement device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees