JPH05186882A - High strength structural member - Google Patents

High strength structural member

Info

Publication number
JPH05186882A
JPH05186882A JP326192A JP326192A JPH05186882A JP H05186882 A JPH05186882 A JP H05186882A JP 326192 A JP326192 A JP 326192A JP 326192 A JP326192 A JP 326192A JP H05186882 A JPH05186882 A JP H05186882A
Authority
JP
Japan
Prior art keywords
structural member
intermediate layer
hard surface
surface layer
soft intermediate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP326192A
Other languages
Japanese (ja)
Inventor
Seiichi Koike
精一 小池
Takashi Iwasa
孝 岩佐
Shinji Okabe
伸治 岡部
Tsuyoshi Baba
剛志 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP326192A priority Critical patent/JPH05186882A/en
Publication of JPH05186882A publication Critical patent/JPH05186882A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To maintain the high strength of a high strength structural member obtd. by forming a hard surface layer on the body of an Al alloy member by local melting and alloying. CONSTITUTION:A soft middle layer 12 having lower hardness than a hard surface layer 10 is formed between the body 11 of an Al alloy member and the hard surface layer 10 in one body. The propagation of cracks generated in the hard surface layer 10 to the body 11 of the member can be hindered by the soft middle layer 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高強度構造部材、特に、
金属製部材本体に、局部溶融合金化処理により形成され
る硬質表面層を設けた高強度構造部材に関する。
FIELD OF THE INVENTION This invention relates to high strength structural members, especially
The present invention relates to a high-strength structural member in which a hard surface layer formed by local melting alloying treatment is provided on a metal member main body.

【0002】[0002]

【従来の技術】従来、この種構造部材においては、硬質
表面層が部材本体に直接接合されている。
2. Description of the Related Art Conventionally, in this type of structural member, a hard surface layer is directly bonded to the member body.

【0003】[0003]

【発明が解決しようとする課題】局部溶融合金化処理に
よる硬質表面層は非常に高い硬さを有する反面、高脆性
であるため、繰返し応力を受けるような使用環境下では
亀裂を発生し易い。この場合、亀裂が硬質表面層内にと
どまっていれば強度上問題はないが、従来のように硬質
表面層と部材本体とが直接接合されていると、硬質表面
層の亀裂が部材本体に容易に伝播して構造部材の強度が
損われる、という問題を生じる。
The hard surface layer formed by the local melting alloying treatment has a very high hardness, but is also highly brittle, so that cracks are likely to occur in a use environment where repeated stress is applied. In this case, if the crack remains in the hard surface layer, there is no problem in strength, but if the hard surface layer and the member body are directly bonded as in the conventional case, the crack of the hard surface layer is easy to the member body. And the strength of the structural member is impaired.

【0004】本発明は前記に鑑み、硬質表面層に発生し
た亀裂の部材本体への伝播を抑制して高強度を維持する
ことができるようにした前記構造部材を提供することを
目的とする。
In view of the above, it is an object of the present invention to provide the above-mentioned structural member capable of suppressing the propagation of cracks generated in the hard surface layer to the member body and maintaining high strength.

【0005】[0005]

【課題を解決するための手段】本発明は、金属製部材本
体に、局部溶融合金化処理により形成される硬質表面層
を設けた高強度構造部材において、前記部材本体と硬質
表面層との間に、それらと一体で、且つ前記硬質表面層
よりも低硬度の軟質中間層を介在させたことを特徴とす
る。
The present invention relates to a high-strength structural member comprising a metal member body provided with a hard surface layer formed by local melting alloying treatment, wherein the member body and the hard surface layer are provided between the member body and the hard surface layer. In addition, a soft intermediate layer which is integral with them and has a hardness lower than that of the hard surface layer is interposed.

【0006】[0006]

【実施例】図1は局部溶融合金化処理を示す。この処理
に当っては、微細な球状金属間化合物を分散させた金属
製母材、例えばAl合金製母材1を矢示方向へ移動さ
せ、その表面をオシレータ2より照射されるレーザビー
ム3により溶融すると共にその溶融池4に粉末供給機5
よりキャリヤガスによって硬質化合金粉末、例えばNi
合金粉末6を噴射し、同時にガス供給ノズル7よりシー
ルドガス8を噴射するものである。
EXAMPLE FIG. 1 shows a local melt alloying process. In this treatment, a metal base material in which a fine spherical intermetallic compound is dispersed, for example, an Al alloy base material 1 is moved in the direction of the arrow, and its surface is irradiated with a laser beam 3 emitted from an oscillator 2. The powder is supplied to the molten pool 4 while being melted.
More carrier gas hardened alloy powder, eg Ni
The alloy powder 6 is sprayed, and at the same time, the shield gas 8 is sprayed from the gas supply nozzle 7.

【0007】前記処理において、所定の条件を特定する
ことにより、図2に示す高強度構造部材9が得られる。
その部材9は部材本体11と硬質表面層10とを備え、
その部材本体11と硬質表面層10との間に、それら1
0,11と一体に軟質中間層12を有する。
In the above process, the high-strength structural member 9 shown in FIG. 2 is obtained by specifying the predetermined conditions.
The member 9 comprises a member body 11 and a hard surface layer 10,
Between the member body 11 and the hard surface layer 10,
It has a soft intermediate layer 12 integrally with 0 and 11.

【0008】硬質表面層10は、前記処理において溶融
池4が冷却したものであり、母材1とNi合金粉末6と
の合金化により形成される。
The hard surface layer 10 is obtained by cooling the molten pool 4 in the above treatment, and is formed by alloying the base material 1 and the Ni alloy powder 6.

【0009】また軟質中間層12は、前記処理による熱
影響により母材1に含まれた微細で、且つ球状の金属間
化合物が粗大化すると共に針状化または/および塊状化
することによって形成される。
The soft intermediate layer 12 is formed by coarsening and acicularization and / or agglomeration of the fine and spherical intermetallic compound contained in the base material 1 due to the heat effect of the above treatment. It

【0010】このように、粗大化した針状または/およ
び塊状の金属間化合物がマトリックスに分散すると、そ
の金属間化合物がマトリックスの影響を受け易くなるた
め金属組織が軟化し、軟質中間層12の硬度は硬質表面
層10のそれよりも低いことは当然のこととして部材本
体11の硬度よりも低くなり、これにより軟質中間層1
2は粘り強さを有する。
As described above, when the coarse needle-shaped and / or lump-shaped intermetallic compound is dispersed in the matrix, the intermetallic compound is easily affected by the matrix, so that the metal structure is softened and the soft intermediate layer 12 has a soft structure. Needless to say, the hardness is lower than that of the hard surface layer 10, and thus lower than the hardness of the member main body 11, whereby the soft intermediate layer 1
2 has tenacity.

【0011】前記のように構成すると、硬質表面層10
に亀裂が発生しても、その亀裂の部材本体11への伝播
を軟質中間層12により抑制して構造部材9の高強度を
維持することが可能となる。
When constituted as described above, the hard surface layer 10
Even if a crack is generated in the structural member 9, the propagation of the crack to the member body 11 can be suppressed by the soft intermediate layer 12, and the high strength of the structural member 9 can be maintained.

【0012】この亀裂伝播抑制効果を得るためには、軟
質中間層12の厚さtは0.2mm≦t≦0.8mmに設定
される。その理由は、軟質中間層12の厚さtが前記範
囲を逸脱すると、軟質中間層12による亀裂伝播抑制効
果が減退するからである。
In order to obtain this crack propagation suppressing effect, the thickness t of the soft intermediate layer 12 is set to 0.2 mm≤t≤0.8 mm. The reason is that if the thickness t of the soft intermediate layer 12 deviates from the above range, the effect of suppressing crack propagation by the soft intermediate layer 12 decreases.

【0013】軟質中間層12の厚さtは、局部溶融合金
化処理の条件および母材1に含まれる金属間化合物の量
によって変化する。
The thickness t of the soft intermediate layer 12 changes depending on the conditions of the local melt alloying treatment and the amount of the intermetallic compound contained in the base material 1.

【0014】例えば、前記処理において、レーザビーム
3の出力、Ni合金粉末6の供給量および母材1に含ま
れる金属間化合物の量をそれぞれ一定とした場合、軟質
中間層12の厚さtは母材1の移動速度、したがって処
理速度に依存する。この場合、処理速度が遅くなるに従
って軟質中間層12の厚さtは増加する。
For example, when the output of the laser beam 3, the supply amount of the Ni alloy powder 6 and the amount of the intermetallic compound contained in the base material 1 are constant in the above process, the thickness t of the soft intermediate layer 12 is It depends on the moving speed of the base material 1, and hence the processing speed. In this case, the thickness t of the soft intermediate layer 12 increases as the processing speed decreases.

【0015】一方、前記処理においてレーザビーム3の
出力、Ni合金粉末6の供給量および処理速度をそれぞ
れ一定とした場合、軟質中間層12の厚さtは母材1に
含まれる金属間化合物の量によって影響を受ける。この
場合、母材1に含まれる金属間化合物の量、したがっ
て、その体積分率Vfを15%≦Vf≦65%に設定す
ることにより、軟質中間層12の厚さtを前記範囲に収
めることができる。
On the other hand, when the output of the laser beam 3, the supply amount of the Ni alloy powder 6 and the processing speed are constant in the above processing, the thickness t of the soft intermediate layer 12 depends on the intermetallic compound contained in the base material 1. Affected by quantity. In this case, the thickness t of the soft intermediate layer 12 is set within the above range by setting the amount of the intermetallic compound contained in the base material 1, that is, the volume fraction Vf thereof to 15% ≦ Vf ≦ 65%. You can

【0016】以下、具体例について説明する。 I. 母材の製造 (i) Al−6重量%Cr−3重量%Fe−2重量%Z
rといった組成を有する溶湯を調製し、その溶湯を用
い、湯温1200℃、ノズルの直径2.8mmの条件下で
2 ガスアトマイズ法を適用して急冷凝固Al合金粉末
を製造し、次いで、そのAl合金粉末に分級処理を施し
て、粒径105μm以下の粉末を得た。
A specific example will be described below. I. Manufacture of base material (i) Al-6 wt% Cr-3 wt% Fe-2 wt% Z
A melt having a composition such as r is prepared, and the melt is used to produce a rapidly solidified Al alloy powder by applying a N 2 gas atomizing method under the conditions of a melt temperature of 1200 ° C. and a nozzle diameter of 2.8 mm. The Al alloy powder was classified to obtain a powder having a particle size of 105 μm or less.

【0017】(ii) 粒径105μm以下の前記Al合
金粉末を用い、加圧力4000kg/cm 2 の条件下でCI
P処理(冷間静水圧プレス処理)を行うことにより直径
78mm、長さ65mmの圧粉体を製造し、次いでその圧粉
体をArガス流通下で420℃に加熱して脱ガス処理を
行った。
(Ii) Al alloy having a grain size of 105 μm or less
Pressure of 4000kg / cm using gold powder 2CI under
Diameter by performing P treatment (cold isostatic press treatment)
78mm and 65mm length compacts are manufactured, and then the compacts
Degas by heating the body to 420 ° C under Ar gas flow
went.

【0018】(iii) 脱ガス後の圧粉体を用い、加熱温
度420℃、押出し圧力430ton 、押出し速度2mm/
min の条件下で熱間押出し加工を行い、直径32mmの押
出し材を製造し、その押出し材に機械加工を施して板状
母材1を得た。
(Iii) Using the degassed green compact, heating temperature 420 ° C., extrusion pressure 430 tons, extrusion speed 2 mm /
Hot extrusion was performed under the condition of min to produce an extruded material having a diameter of 32 mm, and the extruded material was machined to obtain a plate-shaped base material 1.

【0019】この母材1は、球状AlCrFe系金属間
化合物および球状AlZr系金属間化合物を含有し、そ
れら金属間化合物の体積分率VfはVf=40%であ
り、また平均粒径dはd=0.5〜2.0μmと微細で
あることが確認された。 II. 構造部材の製造 前記母材1に、図1に示す局部溶融合金化処理を施し
て、部材本体11、軟質中間層12および硬質表面層1
0を備えた構造部材9を製造した。
This base material 1 contains a spherical AlCrFe-based intermetallic compound and a spherical AlZr-based intermetallic compound, the volume fraction Vf of these intermetallic compounds is Vf = 40%, and the average particle diameter d is d. = 0.5 to 2.0 μm, it was confirmed to be fine. II. Manufacture of Structural Member The base material 1 is subjected to the local melt alloying treatment shown in FIG. 1 to obtain a member main body 11, a soft intermediate layer 12 and a hard surface layer 1.
A structural member 9 with 0 was manufactured.

【0020】処理条件は次の通りである。処理速度(母
材の移動速度):1000mm/min;レーザビーム:出
力3kW、ビーム直径3mm;キャリヤガス:Heガス、
供給量11.5リットル/min ;硬質化合金粉末:Ta
を25重量%含有するNi合金粉末、供給量6g/min
;シールドガス:Heガス、供給量20リットル/min
。硬質表面層10の組成は、重量比で、母材成分:N
i合金粉末=1:2であった。
The processing conditions are as follows. Processing speed (moving speed of base material): 1000 mm / min; laser beam: output 3 kW, beam diameter 3 mm; carrier gas: He gas,
Supply rate 11.5 liters / min; Hardened alloy powder: Ta
Alloy powder containing 25% by weight of iron, supply rate 6 g / min
; Shield gas: He gas, supply rate 20 liters / min
. The composition of the hard surface layer 10 is, by weight ratio, the base material component: N
The i alloy powder was 1: 2.

【0021】図3は、構造部材9における硬度分布を示
す。本図より、硬質表面層10の厚さは約1.3mm、軟
質中間層12の厚さは約0.3mmであり、また軟質中間
層12の硬度は硬質表面層10および部材本体11の硬
度よりも低いことが判る。この軟質中間層12は、検鏡
の結果、マトリックス中に粗大化した針状および塊状金
属間化合物が略均一に分散した金属組織を有することが
確認された。
FIG. 3 shows the hardness distribution in the structural member 9. From this figure, the thickness of the hard surface layer 10 is about 1.3 mm, the thickness of the soft intermediate layer 12 is about 0.3 mm, and the hardness of the soft intermediate layer 12 is the hardness of the hard surface layer 10 and the member body 11. It turns out that it is lower than. As a result of microscopic examination, it was confirmed that the soft intermediate layer 12 has a metal structure in which coarsened acicular and lumpy intermetallic compounds are substantially uniformly dispersed in the matrix.

【0022】図4,図5は、軟質中間層の厚さを異にす
る各種構造部材の疲労試験結果を示す。疲労試験には両
振方式の板曲げ疲労試験機が用いられた。また試験は常
温下で行われ、繰返し速度は25Hzに設定された。
4 and 5 show the results of fatigue tests of various structural members having different thicknesses of the soft intermediate layer. A double-vibration plate bending fatigue tester was used for the fatigue test. The test was performed at room temperature and the repetition rate was set to 25 Hz.

【0023】図4において、各線x1 〜x4 で示す各種
構造部材と、処理速度および軟質中間層の厚さとの関係
は表1の通りである。母材としては前記のものと同一の
ものが用いられ、また他の処理条件は前記と同一に設定
された。
In FIG. 4, the relationship between the various structural members indicated by the lines x 1 to x 4 , the processing speed and the thickness of the soft intermediate layer is as shown in Table 1. The same base material as described above was used, and the other processing conditions were set to the same as above.

【0024】[0024]

【表1】 図4、線x4 の構造部材は、表1から明らかなように図
3の構造部材に該当する。
[Table 1] The structural member of FIG. 4, line x 4 corresponds to the structural member of FIG. 3, as is apparent from Table 1.

【0025】図4、表1より軟質中間層の厚さの増加に
伴い、構造部材の疲労強度が向上することが判る。
It can be seen from FIG. 4 and Table 1 that the fatigue strength of the structural member is improved as the thickness of the soft intermediate layer is increased.

【0026】図5において、各点y1 〜y5 で示す各種
構造部材と、処理速度および軟質中間層の厚さとの関係
は表2の通りである。母材としては前記のものと同一の
ものが用いられ、また他の処理条件は前記と同一に設定
された。図5の疲労限は繰返し回数107 回における値
である。
In FIG. 5, the relationship between various structural members indicated by points y 1 to y 5 , the processing speed and the thickness of the soft intermediate layer is as shown in Table 2. The same base material as described above was used, and the other processing conditions were set to the same as above. The fatigue limit in FIG. 5 is a value when the number of repetitions is 10 7 .

【0027】[0027]

【表2】 図5、点y3 の構造部材は、表2から明らかなように図
3の構造部材に該当する。
[Table 2] The structural member at point y 3 in FIG. 5 corresponds to the structural member in FIG. 3 as is apparent from Table 2.

【0028】図5、表2から明らかなように軟質中間層
の厚さtが0.1mm≦t≦0.3mmであるときには、そ
の厚さtの増加に伴い構造部材の疲労強度は急激に向上
するが、軟質中間層の厚さtが0.3<t≦0.8mmに
なると構造部材の疲労強度は緩やかに低下し、さらに軟
質中間層の厚さtがt>0.8mmになると構造部材の疲
労強度は急激に低下する。
As is clear from FIG. 5 and Table 2, when the thickness t of the soft intermediate layer is 0.1 mm ≦ t ≦ 0.3 mm, the fatigue strength of the structural member rapidly increases as the thickness t increases. Although improved, when the thickness t of the soft intermediate layer becomes 0.3 <t ≦ 0.8 mm, the fatigue strength of the structural member gradually decreases, and when the thickness t of the soft intermediate layer becomes t> 0.8 mm. The fatigue strength of structural members drops sharply.

【0029】図4,図5から明らかなように、軟質中間
層の亀裂伝播抑制効果を得て構造部材の高強度を維持す
るためには、軟質中間層の厚さtを0.2mm≦t≦0.
8mmに設定することが必要であり、好ましくはt=0.
3mmである。
As is clear from FIGS. 4 and 5, in order to obtain the crack propagation suppressing effect of the soft intermediate layer and maintain the high strength of the structural member, the thickness t of the soft intermediate layer is 0.2 mm ≦ t. ≤0.
It is necessary to set it to 8 mm, preferably t = 0.
It is 3 mm.

【0030】図6は、母材における金属間化合物の体積
分率Vfと構造部材における軟質中間層の厚さとの関係
を示す。
FIG. 6 shows the relationship between the volume fraction Vf of the intermetallic compound in the base material and the thickness of the soft intermediate layer in the structural member.

【0031】金属間化合物の体積分率Vfの変化は、母
材の組成を変えることによって行われ、各構造部材を得
るための処理条件は図3の構造部材のそれと同一に設定
された。
The change in the volume fraction Vf of the intermetallic compound was performed by changing the composition of the base material, and the processing conditions for obtaining each structural member were set to be the same as those of the structural member of FIG.

【0032】図6において、各点z1 〜z7 で示す各種
構造部材と、母材の組成およびその金属間化合物の体積
分率Vfとの関係は表3の通りである。
Table 3 shows the relationship between various structural members indicated by points z 1 to z 7 in FIG. 6, the composition of the base material, and the volume fraction Vf of the intermetallic compound.

【0033】[0033]

【表3】 図6、点z3 の構造部材は、表3から明らかなように図
3の構造部材に該当する。
[Table 3] The structural member at point z 3 in FIG. 6 corresponds to the structural member in FIG. 3 as is apparent from Table 3.

【0034】図6から明らかなように、母材における金
属間化合物の体積分率Vfを15%≦Vf≦65%に設
定することによって、軟質中間層の厚さtを0.2mm≦
t≦0.8mmの範囲に収めることができる。
As is apparent from FIG. 6, by setting the volume fraction Vf of the intermetallic compound in the base material to be 15% ≦ Vf ≦ 65%, the thickness t of the soft intermediate layer is 0.2 mm ≦.
It can be set within the range of t ≦ 0.8 mm.

【0035】[0035]

【発明の効果】本発明によれば、部材本体と局部溶融合
金化処理による硬質表面層との間に、前記のような軟質
中間層を介在させることにより、その軟質中間層による
亀裂伝播抑制効果を得て、高強度を維持された構造部材
を提供することができる。
According to the present invention, by interposing the soft intermediate layer as described above between the member main body and the hard surface layer formed by the local melt alloying treatment, the effect of suppressing crack propagation by the soft intermediate layer. Therefore, it is possible to provide a structural member in which high strength is maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】局部溶融合金化処理の説明図である。FIG. 1 is an explanatory diagram of a local molten alloying process.

【図2】構造部材の断面図である。FIG. 2 is a sectional view of a structural member.

【図3】構造部材において、表面からの距離と硬さとの
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the distance from the surface and hardness in the structural member.

【図4】疲労試験において、繰返し回数と荷重振幅との
関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the number of repetitions and the load amplitude in a fatigue test.

【図5】疲労試験において、軟質中間層の厚さと疲労限
との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the thickness of the soft intermediate layer and the fatigue limit in a fatigue test.

【図6】母材における金属間化合物の体積分率と構造部
材における軟質中間層の厚さとの関係を示すグラフであ
る。
FIG. 6 is a graph showing the relationship between the volume fraction of the intermetallic compound in the base material and the thickness of the soft intermediate layer in the structural member.

【符号の説明】[Explanation of symbols]

1 母材 9 構造部材 10 硬質表面層 11 部材本体 12 軟質中間層 1 Base Material 9 Structural Member 10 Hard Surface Layer 11 Member Main Body 12 Soft Intermediate Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬場 剛志 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Baba 1-4-1 Chuo, Wako City, Saitama Prefecture Honda R & D Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属製部材本体(11)に、局部溶融合
金化処理により形成される硬質表面層(10)を設けた
高強度構造部材において、前記部材本体(11)と硬質
表面層(10)との間に、それら(10,11)と一体
で、且つ前記硬質表面層(10)よりも低硬度の軟質中
間層(12)を介在させたことを特徴とする高強度構造
部材。
1. A high-strength structural member comprising a metal member body (11) provided with a hard surface layer (10) formed by local melt alloying treatment, wherein the member body (11) and the hard surface layer (10). ), A soft intermediate layer (12) which is integral with these (10, 11) and has a lower hardness than the hard surface layer (10) is interposed.
【請求項2】 前記軟質中間層(12)の厚さtは0.
2mm≦t≦0.8mmである、請求項1記載の高強度構造
部材。
2. The thickness t of the soft intermediate layer (12) is 0.
The high-strength structural member according to claim 1, wherein 2 mm ≦ t ≦ 0.8 mm.
【請求項3】 前記金属製母材(1)における金属間化
合物の体積分率Vfは15%≦Vf≦65%である、請
求項1または2記載の高強度構造部材。
3. The high strength structural member according to claim 1, wherein the volume fraction Vf of the intermetallic compound in the metal base material (1) is 15% ≦ Vf ≦ 65%.
【請求項4】 前記軟質中間層(12)における金属間
化合物は針状および塊状の少なくとも一方の形状を有す
る、請求項1,2または3記載の高強度構造部材。
4. The high-strength structural member according to claim 1, wherein the intermetallic compound in the soft intermediate layer (12) has at least one of a needle shape and a lump shape.
JP326192A 1992-01-10 1992-01-10 High strength structural member Pending JPH05186882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP326192A JPH05186882A (en) 1992-01-10 1992-01-10 High strength structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP326192A JPH05186882A (en) 1992-01-10 1992-01-10 High strength structural member

Publications (1)

Publication Number Publication Date
JPH05186882A true JPH05186882A (en) 1993-07-27

Family

ID=11552531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP326192A Pending JPH05186882A (en) 1992-01-10 1992-01-10 High strength structural member

Country Status (1)

Country Link
JP (1) JPH05186882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943558B2 (en) * 2009-08-31 2012-05-30 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943558B2 (en) * 2009-08-31 2012-05-30 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
US9109275B2 (en) 2009-08-31 2015-08-18 Nippon Steel & Sumitomo Metal Corporation High-strength galvanized steel sheet and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP7314184B2 (en) Method for manufacturing parts made of aluminum alloy
JP7311633B2 (en) Nickel-base alloy for powder and method for producing powder
US4731253A (en) Wear resistant coating and process
Qian et al. Parametric studies of laser cladding processes
EP0804627B1 (en) Oxidation resistant molybdenum alloy
CN111699063B (en) Method for producing aluminium-chromium alloy parts
JP2629152B2 (en) Manufacturing method of compressed metal articles
JP3017764B2 (en) Abrasion resistant composite roll and method for producing the same
CN109072344A (en) Titanium, aluminium, the BCC material of vanadium and iron and the product that is made from it
JP2013501630A (en) Raw powder for the production of high hardness overlays
Sarila et al. Characterization of microstructural anisotropy in 17–4 PH stainless steel fabricated by DMLS additive manufacturing and laser shot peening
EP0511318A1 (en) Plasma spraying of rapidly solidified aluminum base alloys.
JP7028791B2 (en) BCC materials for titanium, aluminum, niobium, vanadium, and molybdenum, and the products produced from them.
US20230191489A1 (en) Method for producing an aluminium alloy part
CN111560611A (en) Method for preparing transition layer of nickel-based coating on titanium alloy surface by laser cladding
US4440572A (en) Metal modified dispersion strengthened copper
US3650729A (en) Internally nitrided steel powder and method of making
JPH05186882A (en) High strength structural member
JPS63264294A (en) Welding method and product obtained through said method
JP7274304B2 (en) metal member
Cui et al. Development of low‐melting‐point filler materials for laser beam brazing of aluminum alloys: Entwicklung von Lötdrähten mit niedriger Schmelztemperatur für das Laserstrahllöten von Aluminium
US20230151471A1 (en) Fe-BASED ALLOY FOR MELT-SOLIDIFICATION-SHAPING AND METAL POWDER
JP2003055747A (en) Sintered tool steel and production method therefor
Wang et al. Cracking behavior in the transitional region of laser-clad coatings on Al–Si alloy under multiple impact loading
WO2023181104A1 (en) Titanium alloy material, titanium alloy wire material, titanium alloy powder material, and method for producing titanium alloy material