JPH05186279A - Production of silicon carbide sintered porous body - Google Patents

Production of silicon carbide sintered porous body

Info

Publication number
JPH05186279A
JPH05186279A JP4001657A JP165792A JPH05186279A JP H05186279 A JPH05186279 A JP H05186279A JP 4001657 A JP4001657 A JP 4001657A JP 165792 A JP165792 A JP 165792A JP H05186279 A JPH05186279 A JP H05186279A
Authority
JP
Japan
Prior art keywords
silicon carbide
temperature
molded body
producing
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4001657A
Other languages
Japanese (ja)
Other versions
JP3213850B2 (en
Inventor
Hiroshi Demachi
博 出町
Yoshimi Ohashi
義美 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP00165792A priority Critical patent/JP3213850B2/en
Publication of JPH05186279A publication Critical patent/JPH05186279A/en
Application granted granted Critical
Publication of JP3213850B2 publication Critical patent/JP3213850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00267Materials permeable to vapours or gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a method for producing a porous sintered compact of silicon carbide for catching fine-particle carbon contained in a discharge gas from an industrial furnace for automotive internal combustion engines, ceramic industry and metal industry, especially to provide a producing method in the production cost and production days. CONSTITUTION:The objective for producing a porous sintered compact of silicon carbide is characterized in the first process by using silicon carbide powder as a starting material and, as necessary, mixing the silicon carbide powder with a crystal growth auxiliary, the second process by adding a binder to mold the mixture into a prescribed from and drying the molded body at a low temperature so as not to lower the strength of the dried molded body and properly cutting and processing the dried molded body with a diamond cutter in such a manner as to prevent the cutter from its temperature rise, the third process by, as necessary, carrying out defatting after processing in the second process and then decarbonizing in an oxidizing atmosphere and sintering at 2000-2400 deg.C in an inert gas atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化ケイ素焼結多孔体
の製造方法に関し、さらに詳しくは、自動車の内燃機
関、窯業、金属工業における工業炉等からの排ガス中に
含まれている微粒炭素を捕集するフィルタ−として使用
される炭化ケイ素焼結多孔体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon carbide sintered porous body, and more specifically, fine carbon contained in exhaust gas from an internal combustion engine of an automobile, a ceramic industry, an industrial furnace in the metal industry and the like. The present invention relates to a method for producing a silicon carbide sintered porous body used as a filter for collecting the.

【0002】[0002]

【従来の技術】従来、排ガス中に含まれる微粒炭素を捕
集し除去するために、排気経路中にセラミック製ハニカ
ム焼結体をフィルタ−として使用されている。しかし
て、このハニカム焼結体の製造方法は、炭化ケイ素粉末
を出発原料とし、必要により結晶成長助剤を添加し混合
物を得、該混合物に成形用結合剤を添加し所定の形状に
成形し、この成形体を不活性ガス雰囲気下で1500〜
1900℃の温度範囲内で一次焼結を行った後、切断及
び封止等の加工を行った後、再び不活性ガス雰囲気下に
おいて、2000〜2400℃の温度範囲内で二次焼結
を行っている。
2. Description of the Related Art Conventionally, a ceramic honeycomb sintered body is used as a filter in an exhaust passage in order to collect and remove fine carbon particles contained in exhaust gas. Thus, the method for manufacturing the honeycomb sintered body is such that silicon carbide powder is used as a starting material, a crystal growth auxiliary is added as necessary to obtain a mixture, and a molding binder is added to the mixture to form a predetermined shape. , This molded body under an inert gas atmosphere 1500-500
After performing primary sintering within the temperature range of 1900 ° C, after performing processing such as cutting and sealing, secondary sintering is performed within the temperature range of 2000 to 2400 ° C again in an inert gas atmosphere. ing.

【0003】しかし、この方法では1500〜1900
℃という高温度で一次焼成したのち、再び2000℃以
上の高温焼成を行うため製造コストの上昇し、更に製造
に要する日数が長くかかるという欠点があった。
However, according to this method, 1500 to 1900
Since the primary calcination is performed at a high temperature of .degree. C., the high temperature calcination is performed again at 2000.degree.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明者は上
記の欠点を改善すべく種々検討した結果、成形体の乾燥
後、例えば切断カッタ−の温度をコントロ−ルすること
によって、一次焼成を行うことなく加工できることを見
出し本発明を完成したもので、本発明の目的は高温焼成
を一度で製品化しエネルギ−消費量及び不活性ガスの消
費量を半減した炭化ケイ素焼結多孔体の製造方法を提供
するにある。
Therefore, as a result of various studies to improve the above-mentioned drawbacks, the present inventor has found that after the molded body is dried, for example, the temperature of the cutting cutter is controlled to carry out the primary firing. The present invention has been completed by finding that it can be processed without carrying out, and an object of the present invention is a method for producing a sintered silicon carbide porous body in which high-temperature firing is commercialized at one time and energy consumption and inert gas consumption are reduced by half. To provide.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は、炭化ケ
イ素粉末を出発原料とし、必要により結晶成長助剤を添
加し混合物を得る第1工程と、該混合物に成形用結合剤
を添加し所定の形状に成形後乾燥して乾燥体とし、これ
を規定以上の温度に上昇しないような切断速度で切断・
加工する第2工程と、該加工処理後に、必要に応じて脱
脂を行い、その後酸化雰囲気で脱炭を行い、連続して不
活性ガス雰囲気下において、2000〜2400℃の温
度範囲で焼結する第3工程とからなることを特徴とする
炭化ケイ素焼結多孔体の製造方法である。
SUMMARY OF THE INVENTION The gist of the present invention is to use silicon carbide powder as a starting material, and optionally add a crystal growth aid to obtain a mixture, and a molding binder to the mixture. After forming into a predetermined shape, it is dried to form a dried body, which is cut at a cutting speed that does not increase above the specified temperature.
Second step of processing, and after the processing, degreasing is performed if necessary, decarburization is then performed in an oxidizing atmosphere, and sintering is continuously performed in an inert gas atmosphere at a temperature range of 2000 to 2400 ° C. And a third step, which is a method for producing a silicon carbide sintered porous body.

【0006】すなわち、本発明の特徴の一つは第2工程
おいて乾燥体を切断・加工する点にある。すなわち、成
形品の乾燥後の切断は、炭化ケイ素のような硬度の高い
材料はダイヤモンドカッタ−を用いて且つ切断部に水を
流してダイヤモンドカッタ−の発熱を押えて行う方法が
一般的であったが、乾燥体に水をかければ乾燥体は直ち
に吸湿し強度を失い変形したり、破損してしまうのが普
通であった。そのため、従来は一次焼成を行ったのち切
断等の加工を施していた。しかしながら、ダイヤモンド
カッタ−の温度を検知するセンサ−を用いてダイヤモン
ドソ−の温度が規定以上の温度に上昇しないような切断
速度を制御することにより一次焼成することなく切断を
行うのである。
That is, one of the features of the present invention is that the dried body is cut and processed in the second step. That is, the cutting of the molded product after drying is generally performed by using a diamond cutter for a material having a high hardness such as silicon carbide and by flowing water to the cut portion to suppress the heat generated by the diamond cutter. However, if water is applied to the dried product, the dried product usually absorbs moisture immediately, loses strength, and is deformed or damaged. Therefore, conventionally, processing such as cutting is performed after the primary firing. However, a sensor for detecting the temperature of the diamond cutter is used to control the cutting speed so that the temperature of the diamond saw does not rise above the specified temperature, whereby the cutting is performed without primary firing.

【0007】なお、ダイヤモンドソ−の温度は500℃
以下、好ましくは350℃以下に維持することが好まし
く、また乾燥体の強度を高めるために成形助剤として用
いるバインダ−量を管理することも重量であって、通常
程度の割合で添加する。
The temperature of the diamond saw is 500 ° C.
Hereinafter, it is preferable to maintain the temperature at 350 ° C. or lower, and it is also important to control the amount of the binder used as a molding aid in order to increase the strength of the dried body, and the binder is added in a normal ratio.

【0008】更に、本願発明について詳細に説明する。
まず、第1工程においては、β型の炭化ケイ素粉末を出
発原料とすることが好ましい。その理由は、β型の炭化
ケイ素結晶は比較的低温で合成される低温安定型結晶で
あり、焼結に際し、その一部が4H、6Hあるいは15
R型等の高温安定型のα型結晶に相転移して板状結晶を
形成し易いからである。また、結晶の成長性にも優れて
いるからである。特に、β型炭化ケイ素を60重量%以
上含有する出発原料を用いることにより、本発明の目的
とする焼結多孔体を好適に製造することができる。なか
でも、β型炭化ケイ素を70重量%以上含有する出発原
料を使用することが有利である。結晶成長助剤として
は、例えば、アルミニウム、ホウ酸、鉄、炭素等が挙げ
られる。
Further, the present invention will be described in detail.
First, in the first step, it is preferable to use β-type silicon carbide powder as a starting material. The reason is that the β-type silicon carbide crystal is a low temperature stable type crystal synthesized at a relatively low temperature, and when sintering, a part of it is 4H, 6H or 15H.
This is because it is easy to form a plate crystal by phase transition to a high temperature stable α-type crystal such as R-type. Further, it is also excellent in crystal growth. In particular, by using a starting material containing 60% by weight or more of β-type silicon carbide, the sintered porous body which is the object of the present invention can be preferably produced. Above all, it is advantageous to use a starting material containing 70% by weight or more of β-type silicon carbide. Examples of the crystal growth aid include aluminum, boric acid, iron, carbon and the like.

【0009】上記した物質のうち、アルミニウム、ホウ
酸、鉄は炭化ケイ素の結晶粒成長の速度を速くする働き
を有している。したがって、これらの物質の存在する箇
所では極めて多くの板状結晶の核が生成される。そし
て、それぞれの部分で板状結晶の発達が起こる結果、形
成される板状結晶の大きさが制限されるので、これらの
物質が多く存在する箇所ほど細かい組織の三次元網目構
造とすることができる。
Among the above-mentioned substances, aluminum, boric acid and iron have the function of increasing the rate of crystal grain growth of silicon carbide. Therefore, an extremely large number of plate-shaped crystal nuclei are generated at the locations where these substances are present. Then, as a result of the development of plate crystals in each part, the size of the plate crystals formed is limited, so it is possible to make a three-dimensional network structure with a finer structure in the places where many of these substances are present. it can.

【0010】これに対し、炭素は上記物質とは逆に炭化
ケイ素の結晶粒成長の速度を遅くする働きを有してい
る。したがって、これらの物質の存在する箇所では板状
結晶の核生成が制御されるので、形成される板状結晶の
数は相対的に少なくなる。その結果、それぞれの板状結
晶が比較的大きく成長するので、これらの物質が多く存
在する箇所ほど大きな組織の三次元網目構造とすること
ができる。
On the contrary, carbon has a function of slowing down the growth rate of crystal grains of silicon carbide, contrary to the above substances. Therefore, since the nucleation of plate crystals is controlled where these substances exist, the number of plate crystals formed is relatively small. As a result, since each plate crystal grows relatively large, it is possible to form a three-dimensional network structure having a larger texture in a place where many of these substances are present.

【0011】次に、第2工程において、第1工程におい
て得られた混合物にメチルセルロ−ス、ポリビニルアル
コ−ル、水ガラス等の成形用結合剤を添加し、押出し成
形、シ−ト成形、プレス成形等の方法により所定の形
状、例えばハニカム状に成形し次いで、これを乾燥して
乾燥体とした後、規定以上の温度に上昇しないような切
断速度を持って切断する。この工程における乾燥条件と
しては80℃以下であることが好ましい。80℃以上に
すると成形助剤の揮散により乾燥体の強度が低下する恐
れがあるためである。また、規定以上の温度に上昇しな
いような切断速度を持って切断するとは、先に述べたよ
うに、切断カッタ−の温度が具体的には500℃以下、
好ましくは300℃以下の温度であるような切断速度で
切断する。
Next, in the second step, a molding binder such as methyl cellulose, polyvinyl alcohol, water glass, etc. is added to the mixture obtained in the first step, and extrusion molding, sheet molding and pressing are performed. After being formed into a predetermined shape, for example, a honeycomb shape by a method such as molding, and then dried to be a dried body, it is cut at a cutting speed such that the temperature does not rise above a specified temperature. The drying condition in this step is preferably 80 ° C. or lower. This is because if the temperature is 80 ° C. or higher, the strength of the dried product may decrease due to volatilization of the molding aid. Further, to cut at a cutting speed that does not increase above the specified temperature, as described above, the temperature of the cutting cutter is specifically 500 ° C. or less,
Cutting is preferably performed at a cutting speed such that the temperature is 300 ° C. or lower.

【0012】また、ディゼル・パティキュレ−ト・フィ
ルタ−としてはハニカム構造体の端面を市松模様に封止
工程が必要であるが、本願発明においては乾燥後サイジ
ングを施した後、封止工程を行う。
In addition, the end face of the honeycomb structure is required to be sealed in a checkered pattern as a dizel particulate filter, but in the present invention, the sealing process is performed after sizing after drying. .

【0013】続いて、第3工程においては、第2工程に
おいて得られた成形体を必要に応じて脱脂処理を行う。
脱脂処理では成形体に添加した成形用助剤を除去する。
処理条件としては酸化雰囲気又は減圧下又は不活材雰囲
気で80℃〜600℃程度の温度範囲で処理を行う。そ
の後、酸化雰囲気で脱炭を行い、連続して不活性ガス雰
囲気下において、2000〜2400℃の温度範囲で焼
結する。この工程において、均一な結晶径と気孔径並び
に高い気孔率を有する気孔体を形成する。2000℃以
下では機械的強度が低く、又不均一な気孔径となり、ま
た、2400℃以上ではSicの異常成長等のために強
度劣化や気孔径分布不均一となるため2000〜240
0℃の温度範囲で焼結する。
Subsequently, in the third step, the molded body obtained in the second step is degreased as necessary.
In the degreasing treatment, the molding aid added to the molded body is removed.
As the treatment conditions, the treatment is carried out in a temperature range of about 80 ° C. to 600 ° C. in an oxidizing atmosphere, a reduced pressure atmosphere or an inert material atmosphere. Then, decarburization is performed in an oxidizing atmosphere, and sintering is continuously performed in an inert gas atmosphere at a temperature range of 2000 to 2400 ° C. In this step, a pore body having a uniform crystal diameter and a pore diameter and a high porosity is formed. If the temperature is 2000 ° C or lower, the mechanical strength is low and the pore size becomes non-uniform, and if the temperature is 2400 ° C. or higher, the strength is deteriorated and the pore size distribution becomes non-uniform due to abnormal growth of Sic, etc.
Sinter in the temperature range of 0 ° C.

【0014】特に、形状が大きい、例えば、外径50m
m以上の多孔体においては、残留炭素濃度が部分により
異なり、結晶成長速度に相違が生じるので、均一で大き
な気孔径とすることが困難となる。酸化雰囲気として
は、通常、空気中や酸素中を利用することができるが、
CO2ガスを含んだ雰囲気はマイルドな酸化が進みマト
リックスの炭化ケイ素の酸化を抑えられる。
In particular, the shape is large, for example, the outer diameter is 50 m.
In a porous material having a diameter of m or more, the residual carbon concentration varies depending on the part and the crystal growth rate varies, so that it is difficult to obtain a uniform and large pore diameter. Normally, air or oxygen can be used as the oxidizing atmosphere,
In an atmosphere containing CO 2 gas, mild oxidation progresses and the oxidation of silicon carbide in the matrix can be suppressed.

【0015】[0015]

【実施例】次ぎに実施例を以って具体的に本願発明を説
明する。 実施例 1 出発原料として使用した炭化ケイ素微粉末は70重量部
がβ型結晶からなるものを用いた。この出発原料には不
純物としてBが0.01;Cが0.5;Alが0.01
Nが0.2;Feが0.08原子量部;その他の元素は
痕跡量含まれており、これらの不純物総量は0.81原
子量部であった。また、この出発原料の平均粒径は0.
3μm、比表面積は18.7m2/gであった。これに
30重量部のα型結晶からなるものを用いた。この出発
原料には不純物としてBが0.02;Cが0.8;Al
が0.05;Nが0.2;Feが0.15原子量部;そ
の他の元素は痕跡量含まれている。またこの平均粒子径
は5.5μm、比表面積は0.8m2/gであった。
EXAMPLES Next, the present invention will be specifically described by way of examples. Example 1 The silicon carbide fine powder used as a starting material had 70 parts by weight of β-type crystals. In this starting material, B is 0.01; C is 0.5; Al is 0.01 as impurities.
N was 0.2; Fe was 0.08 atomic part; other elements were contained in trace amounts, and the total amount of these impurities was 0.81 atomic part. Also, the average particle size of this starting material is 0.
The surface area was 3 μm and the specific surface area was 18.7 m 2 / g. For this, 30 parts by weight of α-type crystal was used. In this starting material, B is 0.02; C is 0.8; Al as impurities.
Is 0.05; N is 0.2; Fe is 0.15 atomic part; other elements are contained in trace amounts. The average particle size was 5.5 μm and the specific surface area was 0.8 m 2 / g.

【0016】この出発原料に炭化ケイ素微粉末100重
量部に対してメチルセルロ−ス6重量部、ステアリン酸
エマルジョン4重量部、グリセリン4重量部、イオン交
換水14重量部からなる成形助剤を28重量部添加し、
混合・混練・成形して直径140mm、長さ150m
m、セル壁厚0.2mm、セル数170/m2のハニカ
ム状成形体を得た。これを真空で−10℃〜0℃の条件
下で乾燥し、次いで、この乾燥体をダイヤモンド・カッ
タ−の最高温度が300℃以下であるような条件下で切
断し、次いで封止処理をほどこした後、酸化雰囲気で6
50℃迄2℃/分で昇温して脱脂及び脱炭処理をを完了
させ、引き続き1.5℃/分で昇温して2200℃まで
昇温し最高温度で4時間保持した。得られたハニカム状
の炭化ケイ素焼結多孔体は気孔径20μm、気孔率40
%であった。
To this starting material, 28 parts by weight of a molding aid consisting of 6 parts by weight of methyl cellulose, 4 parts by weight of stearic acid emulsion, 4 parts by weight of glycerin and 14 parts by weight of deionized water per 100 parts by weight of silicon carbide fine powder. Part added,
140mm in diameter and 150m in length by mixing, kneading and molding
m, a cell wall thickness of 0.2 mm, and a cell number of 170 / m 2 were obtained. This is dried under vacuum at a temperature of -10 ° C to 0 ° C, and then the dried product is cut under the condition that the maximum temperature of the diamond cutter is 300 ° C or less, and then subjected to a sealing treatment. And then 6 in an oxidizing atmosphere
The temperature was raised to 50 ° C at 2 ° C / min to complete the degreasing and decarburization treatment, and subsequently the temperature was raised to 1.5 ° C / min to 2200 ° C and the maximum temperature was maintained for 4 hours. The obtained honeycomb-shaped silicon carbide sintered porous body had a pore diameter of 20 μm and a porosity of 40.
%Met.

【0017】[0017]

【発明の効果】以上述べたように、本願発明においては
成形体を形成後、これを乾燥して乾燥体とし、これを規
定以上の温度に上昇しないような切断速度を持って切断
することによって従来行っていた1次焼結を省略できる
ので、製造コスト及び製造に要する日数を低減させるこ
とができた。
As described above, according to the present invention, after forming a molded body, the molded body is dried to obtain a dried body, and the molded body is cut at a cutting speed that does not increase above a specified temperature. Since the previously performed primary sintering can be omitted, the manufacturing cost and the number of days required for manufacturing can be reduced.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭化ケイ素粉末を出発原料とし、必要に
より結晶成長助剤を添加し混合物を得る第1工程と、 該混合物に成形用結合剤を添加し所定の形状に成形後乾
燥して乾燥体とし、これを規定以上の温度に上昇しない
ような切断速度で切断・加工する第2工程と、 該加工処理後に、必要に応じて脱脂を行い、その後酸化
雰囲気で脱炭を行い、連続して不活性ガス雰囲気下にお
いて、2000〜2400℃の温度範囲で焼結する第3
工程とからなることを特徴とする炭化ケイ素焼結多孔体
の製造方法。
1. A first step of using silicon carbide powder as a starting material, and optionally adding a crystal growth aid to obtain a mixture, and adding a molding binder to the mixture, molding the mixture into a predetermined shape, and drying. The second step of cutting and processing the body into a body at a cutting speed that does not raise the temperature above the specified value, and after the processing, degreasing is performed as necessary, and then decarburization is performed in an oxidizing atmosphere to continuously perform And sintering under an inert gas atmosphere in a temperature range of 2000 to 2400 ° C.
A method for producing a silicon carbide sintered porous body, comprising the steps of:
JP00165792A 1992-01-08 1992-01-08 Method for producing sintered silicon carbide porous body Expired - Fee Related JP3213850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00165792A JP3213850B2 (en) 1992-01-08 1992-01-08 Method for producing sintered silicon carbide porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00165792A JP3213850B2 (en) 1992-01-08 1992-01-08 Method for producing sintered silicon carbide porous body

Publications (2)

Publication Number Publication Date
JPH05186279A true JPH05186279A (en) 1993-07-27
JP3213850B2 JP3213850B2 (en) 2001-10-02

Family

ID=11507592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00165792A Expired - Fee Related JP3213850B2 (en) 1992-01-08 1992-01-08 Method for producing sintered silicon carbide porous body

Country Status (1)

Country Link
JP (1) JP3213850B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692753A (en) * 1992-09-11 1994-04-05 Ibiden Co Ltd Production of silicon carbide sintered porous body
JP2002234779A (en) * 2001-02-02 2002-08-23 Ngk Insulators Ltd Honeycomb structure and production method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA02003672A (en) 1999-10-18 2002-08-30 Firmenich & Cie Esters comprising a secondary carbamoyl function and their use as odorant alcohol precursors.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692753A (en) * 1992-09-11 1994-04-05 Ibiden Co Ltd Production of silicon carbide sintered porous body
JP2002234779A (en) * 2001-02-02 2002-08-23 Ngk Insulators Ltd Honeycomb structure and production method therefor
EP1364930A1 (en) 2001-02-02 2003-11-26 Ngk Insulators, Ltd. Honeycomb structure and method for preparation thereof

Also Published As

Publication number Publication date
JP3213850B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
US8092740B2 (en) Method of manufacturing a porous material
EP1277714B1 (en) Honeycomb structure and method for its manufacture
EP1900709B1 (en) Method for manufacturing honeycomb structured body and material composition for honeycomb fired body
JP2578176B2 (en) Porous ceramic honeycomb filter and method for producing the same
JP2005521624A (en) Mullite body and method for forming mullite body
US4921616A (en) Alveolar ceramic filters for high melting metals
EP2671857B1 (en) Honeycomb structure in silicon carbide material, and electric-heating type catalyst carrier
JPH05254958A (en) Low thermal expansion, high porosity cordierite body and fabrication thereof
JP4473463B2 (en) Porous silicon nitride and method for producing the same
JPH02282442A (en) Aluminide structure
JP2001310128A (en) Ceramic body, ceramic carrier having catalyst-carrying function, and ceramic catalyst body and its producion
EP1679294A1 (en) Method for manufacturing silicon carbide based honeycomb structure and silicon carbide based honeycomb structure
JPH07138083A (en) Production of porous aluminum titanate sintered compact
JP3213850B2 (en) Method for producing sintered silicon carbide porous body
JPH0651596B2 (en) Method for manufacturing cordierite honeycomb structure
JP3983838B2 (en) Method for producing high-strength porous α-SiC sintered body
JPH0585814A (en) Production of cordierite honeycomb structure
JP4574044B2 (en) Porous silicon nitride and method for producing the same
JP4381011B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
JP3235032B2 (en) Method for manufacturing ceramic molded body
JPS6321254A (en) Manufacture of silicon nitride ceramics
JP2005058999A (en) Manufacturing method for silicon nitride honeycomb filter
JP5120793B2 (en) Method for producing porous silicon carbide
JP4468541B2 (en) Method for producing recrystallized SiC
JPS62287027A (en) Manufacture of porous cu-alloy sintered compact

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees